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We introduce single molecule light field microscopy
(SMLFM), a novel 3D single molecule localization technique
that is capable of up to 20 nm isotropic precision across a 6 µm
depth of field. SMLFM can be readily implemented by in-
stalling a refractive microlens array into the conjugate back fo-
cal plane of any widefield single molecule localization system.
We demonstrate that 3D localization can be performed by post-
processing 2D localization data generated by common, widely-
used, algorithms. In this work we benchmark the performance
of SMLFM and finally showcase its capabilities by imaging fluo-
rescently labeled membranes of fixed eukaryotic cells below the
diffraction limit.

* Correspondence: ko311@cam.ac.uk

1 Introduction
Single Molecule localization Microscopy (SMLM) has
emerged as one of the most popular approaches to super-
resolution fluorescence imaging, in part due to the relative
simplicity of its experimental implementation (1). In 3D
SMLM, axial information is usually obtained at the detriment
of both precision and resolution resulting from: a reduction
in photon throughput (attributable to additional optical el-
ements), intrinsically higher background from out-of-focus
emitters and extended point spread functions (2). We in-
troduce Single Molecule Light Field Microscopy (SMLFM),
a simple and highly-efficient 3D super-resolution imaging
technique which combines the complementary strengths of
SMLM and light field detection to achieve super-resolution
imaging throughout a continuous 3D volume.

Numerous approaches for extending the depth of field of
single molecule localization microscopy have been devel-
oped (3–6). The most successful examples perform single-
shot 3D imaging by modifying the shape of the intensity point
spread function (PSF) to encode axial information. Astig-
matic or rotating Double-Helix Point Spread Functions (DH-
PSF) have depths of fields (DOFs) ranging from 0.5 to 4
µm (7, 8). Larger axial ranges have been achieved using
other wavefront engineering approaches (9), such as Tetrapod
(Saddle-Point) (10) and secondary astigmatism (11). How-
ever, in these cases, extracting the super resolved positions
of single molecules is generally more challenging than in
2D SMLM as the engineered PSFs cannot accurately be ap-
proximated by 2 dimensional Gaussian functions. As a re-
sult, more computationally expensive approaches, necessitat-
ing phase retrieval (12, 13) or spline fitting (14) to generate

finely tuned templates are required. Furthermore, the large
spatial footprint of these sculpted PSFs decreases the maxi-
mum achievable localization density, significantly decreasing
throughput. Another approach, multi-focal plane microscopy
(MPM), images a discrete number of axial planes to different
lateral positions on one or more detectors (15–18). However,
since an emitter located on a particular axial plane is in focus
in a subset of these images, whilst contributing background
to the others, only a fraction of the total number of detected
photons contribute to the precision of each localization.

Light field microscopes built using refractive microlens ar-
rays (MLA) have point spread functions composed of an ar-
ray of spots, each of which resembles a 2-dimensional Gaus-
sian function. This is also the case for other pupil bisecting
methods (19, 20). Each spot remains compact throughout the
DOF, which is extended with respect to the widefield case
due to the low effective numerical aperture (NA) of each mi-
crolens. Hence, existing, optimized, algorithms (21, 22) can
be utilized to estimate the location of the centre of each foci
with a precision much finer than its width. Information from
each 2D localization can be combined to estimate 3D emit-
ter position. The temporal sparsity of SMLM, which limits
the probability of overlap between images of distinct emit-
ters, makes it an extremely attractive technique to combine
with light field microscopy. We compare two SMLFM con-
figurations tuned to different DOFs by characterising their
3D precision using fluorescent beads in photon regimes en-
countered in bio-imaging using popular labelling protocols.
We also demonstrate efficient detection and localization of
single molecules in densely blinking specimens by imaging
the membrane of fixed T-cells using both SMLFM configura-
tions, achieving up to 25 3D localizations per frame.

2 Light field microscopy
Light field microscopy (LFM) offers single-shot three-
dimensional imaging by simultaneously collecting light from
a large, continuous depth-of-field. Emitter location is dis-
criminated through wavefront sampling, generally using a re-
fractive microlens array. The MLA partitions a 2D detector
into a 2D array of 2D measurements, such that each pixel can
be mapped to a 4 dimensional space - known as the light field
L(x,y,u,v). Light field measurements encode both the spa-
tial location and arrival direction of incident photons, where
(x,y) and (u,v) denote spatial and angular co-ordinates re-
spectively. The location of the MLA in the detection path
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Fig. 1. (A) Optical layout of a light field microscope with a microlens array positioned in a conjugate pupil plane. (B) The microlens array samples spatial and angular
information from the wavefront, which exhibits asymmetric curvature about the primary image plane. Hence two emitters located at (xi,yi,zi) (red) and (xi,yi,−zi)
(blue) are imaged to different positions in each perspective view. (C) Simulated point spread functions for two different light field microscope configurations, with different
magnifications of the back focal plane and hence different effective microlens NA (depth of field).

varies but it is generally positioned in either a conjugate im-
age plane or a conjugate back focal (Fourier) plane. The loca-
tion of the MLA dictates the sampling rates of the spatial and
angular co-ordinates of the light field. When the microlens
array is placed in an image plane the microlenses themselves
sample the spatial domain. Since this configuration results in
a loss of spatial resolution, observed most acutely at the im-
age plane (23), the microlens array is optimally located in a
plane conjugate to the pupil of the microscope objective for
SMLFM (24). This configuration is known as Fourier light
field microscopy (25–27).

Each microlens locally apertures the wavefront and gen-
erates a focused image, displaced in the direction of, and at
a distance proportional to, the average gradient of the aper-
tured wavefront. Hence, not considering aberrations, emit-
ters located on the nominal focal plane are imaged to iden-
tical locations in each perspective view. As a result of par-
allax, axially displaced emitters are imaged to different po-
sitions in each perspective view (28). In normalized pupil
co-ordinates, the phase in the pupil plane due to an emitter
located at (xi,yi,zi) is:

Φxi,yi,zi = kNA(xiu+yiv) +nszik

√
1−
(

NAρ
ns

)2
(1)

where ρ2 = u2 +v2 = 1 at the pupil edge and 0 at the optical
axis, k is the free space wavenumber, ns is the sample re-
fractive index and NA is the numerical aperture of the micro-
scope objective. The location of the foci in each sub-aperture
(perspective view), denoted (xuv,yuv) is related to the 3D
emitter position (xi,yi,zi) according to:

(
xuv
yuv

)
=
(

1 0 uα
0 1 vα

)xiyi
zi

 (2)

where α= α(u,v) is defined:

α(u,v) = NA

ns

√
1−
(
NAρ
ns

)2
(3)

Given a sufficient number of photons, the centre of each
foci can be estimated with a precision much finer than it’s
width by fitting a 2D Gaussian profile (29–31). An extremely
convenient feature of SMLFM is that existing algorithms and
software packages (22) designed and optimized for tradi-
tional 2D SMLM can be applied to raw SMLFM data to yield
a set of n localizations {(xuv,yuv)}. ThunderSTORM was
used throughout this work (21). Given this set of localiza-
tions, the 3D position of a point emitter can be estimated as
the least-squares solution to an equation of the form Ax = b.
Here b represents the set of 2D localizations, A describes the
disparity between perspective views as per Equation 2 and
x = (xi,yi,zi) is the 3D SMLFM localization.

In most SMLM experiments, it is necessary to detect sev-
eral hundred thousand localizations to generate high reso-
lution datasets and achieve Nyquist sampling of the under-
lying structure (32). Hence any viable 3D approach must
be capable of detecting and localising multiple emitters in
each frame. As demonstrated in (c) of Figure 2, in SMLFM
this is achieved by using Equations 2 and 3 to identify the
most-likely subset of 2D localizations in {(xuv,yuv)} which
correspond to a single emitter. Briefly, the set of localiza-
tions {(xuv,yuv)} is ordered by decreasing photon number
and increasing radial co-ordinate. Taking each member of
this ordered set as a ‘seed’ localization, the number of corre-
sponding 2D localizations in {(xuv,yuv)} found at each pos-
sible diffraction limited location across the entire axial range
is integrated. The largest, and hence most-likely, grouping
is identified, and an ordinary least squares solution is cal-
culated to Ax = b, to yield xi = (xi,yi,zi). A successful
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Fig. 2. A schematic summary of the algorithm used to estimate 3D emitter position from 4D light field measurements. (A-B) Images of point emitters are detected and
localized by Gaussian fitting using traditional 2D SMLM algorithms. Each localization is indexed by the view it appeared in (illustrated here by different shades of grey). Scale
bar in (A) represents 15 µm. (A) (inset) Example of an image of a single molecule in a perspective view. (C) localizations in different views corresponding to the same emitter
are identified by applying the constraints of the optical model and removed from the set of all 2D localizations. The process is iterated over until there are no more un-grouped
2D localizations (D) The normal least-squares solution is calculated to give each 3D localization. (E) The 3D localizations are plotted to yield a super-resolved image.

SMLFM localization results in the group of localizations be-
ing removed from the available pool. The process is repeated
until no more localizations can be grouped and fitted.

Due to sample and system aberrations, the phase in the
pupil plane cannot be entirely accounted for by point source
displacements. In other 3D SMLM approaches, it is neces-
sary to estimate or calculate Φexp. in order to scale a depth-
dependent calibration curve and correct the estimated zi posi-
tions. Phase retrieval methods require stacks of images con-
taining multiple emitters imaged at different depths to cal-
culate the experimental phase (12, 13). This is necessary
because in most imaging modalities, angular information is
lost when an intensity measurement is made using a detector.
Since both intensity and angular information are captured in
light field measurements, it is possible to directly measure
aberrations, using the 2D localizations themselves, similarly
to the method used in (33). For all experimental data pre-
sented in this work, these aberrations are estimated by mea-
suring the average residual disparity across the field of view,
for emitters close to the focal plane. The residual disparity
is subsequently subtracted from all localizations and the light
field fitting algorithm re-run to recover the 3D position of
point sources. The 3D SMLFM fitting procedure is summa-
rized in Figure 2. For further details, along with a summary
of the parameters used for 2D and light field fitting, refer to
the supplementary information.

3 SMLFM optical design
A standard widefield microscope can be converted to a
Fourier light field microscope by adding two components, a
lens (L3) and a microlens array. L3 is placed in a 4f con-
figuration with the tube lens, L2, which relays the back focal
(Fourier) plane onto the MLA. As is the case with Shack-
Hartmann sensors, the performance of SMLFM is primarily
dictated by the properties of the microlenses spanning the
pupil. The effective pitch determines the extent of the wave-
front sampled by a microlens and, further, the division of col-
lected photons into separate foci. Precise light field localiza-
tion requires finer wavefront sampling which can be achieved
using smaller microlenses. Decreasing the microlens pitch
increases the axial range since the effective NA of each mi-

crolens dictates the operable depth of field. However, the
division of photons amongst a large number of microlenses
leads to degradation of 2D localization precision.

To investigate these relationships experimentally, two dif-
ferent configurations of light field microscope were built and
tested (hereafter referred to as configuration 1 and configu-
ration 2). Since the relative robustness of SMLFM to aber-
rations reduces the requirement for refractive index match-
ing, an oil immersion lens was used to maximize collec-
tion efficiency. The lens used also had a pupil diameter
which was easily magnified by the tube lens and off-the-
shelf achromatic lenses L3 = 75 mm (configuration 1) and
L3 = 100 mm (configuration 2) to a diameter approximately
equal to an integer number of microlenses for both configu-
rations. The same, square lattice MLA (SUSS micro-optics,
18-00178) with microlens pitch of 1015 µm and focal length
of 25.4 mm was used in both configurations. These two con-
figurations have differing number of illuminated microlenses
and magnification factors to the sCMOS sensor located at the
focal plane of the MLA. For precise details of both config-
urations, refer to the supplementary information where fur-
ther information regarding the consequences of utilizing an
oil immersion objective to image into aqueous medium may
also be found.

The square lattice of the MLA used in our experiments
results in partially illuminated microlenses, as illustrated in
(A) of Figures 1 and 3. Since this results in distorted PSF’s
all data from these microlenses was excluded from analysis
in this proof-of-principle work. As a result, the maximum
photon throughput was reduced from a theoretical throughput
of 100% to maximum values of 65% (configuration 1) and
87% (configuration 2). The actual throughput depends on the
number of views used to estimate emitter position. A custom-
designed MLA could be fabricated to optimally tessellate the
pupil and maximize the photon throughput.

4 Results and discussion
To benchmark the performance of SMLFM, a 2D sample
comprised of 100 nm fluorescent beads (TetraSpeck Fluores-
cent Microspheres Kit; T14792; ThermoFisher) immobilized
on a coverslip (#1.5 thickness) was imaged. Data was ac-
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Fig. 3. (A) Images of fluorescent beads in different views for configuration 1 and configuration 2. The red circles illustrate the wavefront diameter in the BFP. The white lines
indicate the microlens edges. In both configurations, the corner microlenses were partially illuminated and were not included in subsequent analysis. Scale bars represent 1
µm. (B-C) Lateral and axial localization precision (circular markers) and fit error (∆x,∆z) as a function of the axial position (z) of an emitter for (B) configuration 1 and (C)
configuration 2. (D) Lateral and axial precision (markers) as a function of number of photons. (E-F) 50 nm axial steps can be resolved using both configurations.

quired as the microscope stage was translated in fixed steps
of 50 nm along the optical axis. For both configurations,
4000 net photons were detected on average across the en-
tire axial range. The localization precision was calculated as
the standard deviation of the fitted 3D position at each 50
nm step with 10 repeats at an exposure of 10 ms. A sum-
mary of results is presented in in Figure 3. For configuration
1, isotropic lateral and axial localization precision was mea-
sured, remaining below 20 nm throughout a 3 µm imaging
depth (below 50 nm over a 4 µm axial range). As expected,
due to the lower effective NA of each microlens, configu-
ration 2 exhibited a larger depth of field with the isotropic
lateral and axial precision remaining below 20 nm over an
extended 5 µm range. At photon flux of 4000 per event,
this value is competitive with other 3D localization tech-
niques (9, 10, 34). The data presented in (B-C) of Figure 3,
demonstrate that the fit error is a robust upper-bound for the
precision across all depths and hence can be used to evaluate
the quality of each fit.

The relationship between SMLFM localization precision
and number of photons was measured by varying the laser
power to explore a range of net detected photons. The 10 ms
exposure time was kept constant. This data was acquired over
an axial range of 4 µm (configuration 1) and 7 µm (configu-
ration 2). The localization precision was again calculated as
the standard deviation of the fitted 3D position across 20 re-
peats (10 repeats for configuration 2). A summary of results
is presented in (D) of Figure 3. For the full dataset refer to
the supplementary information. At low photon numbers con-
figuration 1 outperforms configuration 2, due to the higher
number of photons per microlens, resulting in higher signal-
to-noise ratio and better 2D localization precision. However,

at sufficiently high photon numbers, the performances of the
two configurations becomes comparable. The precision floor
of both configurations is approximately isotropic with values
of 8 nm (configuration 1) and 10 nm (configuration 2) respec-
tively. A linear, monotonic relationship between fit and stage
position was observed in the case of both configuration 1 and
configuration 2, demonstrating a 1:1 mapping between emit-
ter location and disparity between perspective views (E-F in
Figure 3). Crucially, clear contrast can be observed in the 50
nm axial steps. Taken together, the experimental results pre-
sented in Figure 3 confirm the viability of LFM as a single
molecule imaging technique.

The single-molecule sensitivity of SMLFM was conclu-
sively demonstrated by imaging Alexa-647 dispersed on a
coverslip (#1.5 thickness) with a 70 ms exposure time.
Fluorescent traces exhibiting discrete signal levels, charac-
teristic of single molecule photobleaching events were ob-
served (35). Figure 4 shows an example of single step pho-
tobleaching of a fluorophore at the tail-end of the distribu-
tion of typical localised molecules acquired in this experi-
ment. Traces of the integrated intensity from images of the
emitter in each perspective view are plotted. As expected,
spatio-temporal correlations are observed between measure-
ments from different views.

To examine the super-resolution structural imaging capa-
bilities of SMLFM, we imaged the membrane of fixed Jurkat
T-cells using point accumulation for imaging of nanoscale
topography (PAINT), based on the stochastic binding of flu-
orescent wheat germ agglutinin (36). Cells were imaged by
using a HILO illumination to reduce background. Datasets
comprised of 45,000 to 150,000 images were acquired over
1 to 3 hours. For full details of the experimental parame-
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ters refer to the supplementary information. Typical frames,
which capture information throughout the depth of field, con-
tained 80 2D localizations, corresponding to, on average, 10
total light field localizations. After filtering by precision (us-
ing an upper limit of 80 nm) experiments achieved averages
between 3 and 13 light field localizations per frame. The
density of localizations permitted achieved using SMLFM is
≈ 1.3 million localizations (≈ 380,000 post-filtering) over
45,000 frames. This high density is enabled by the abil-
ity to fit multiple molecules with the same lateral position
but differing axial position. This localization density is
competitive with other large depth-of-field 3D SMLM ap-
proaches (8, 9, 15). Visualizations of these filtered SMLFM
localizations are shown in Figure 5 for two such experiments,
one for each SMLFM configuration. Horizontal and vertical
projections through each cell demonstrate that the resolution
of SMLFM is sufficient to resolve the 3D membrane contour
and microvilli.

5 Conclusion

We have demonstrated the viability of SMLFM for scanless
3D super-resolution imaging. Our results show that SMLFM
can localize single molecules with a near isotropic precision
of 20 nm using only a few thousand emitted photons, a com-
parable performance to other 3D imaging techniques (3–6).
We have also demonstrated detection and 3D localization of
single molecules in densely blinking specimens, achieving
up to 25 light field localizations per frame in data sets of
40,000 to 150,000 frames. The mechanism which enables
SMLFM, disparity between perspective views, is one which
reveals the underlying wavefront structure and amplitude
of the field in the pupil. Such data enables post-acquisition
aberration correction without requiring phase retrieval or
z-dependent calibration scans. This rich information coupled
with the simple PSF footprint and the optical properties of
microlens arrays result in SMLFM having the potential to
offer highly accurate and precise multi-colour 3D nanoscopy
over whole eukaryotic cell volumes.

See Supplement 1 for supporting content.
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