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Summary 
To characterize how protein-protein interaction (PPI) networks change, we quantified the 
relative PPI abundance of 1.6 million protein pairs in yeast across 9 growth conditions, with 
replication, for a total of 44 million measurements. Our multi-condition screen identified 13,764 
pairwise PPIs, a 3-fold increase over PPIs identified in one condition. A few “immutable” PPIs 
are present across all conditions, while most “mutable” PPIs are rarely observed. Immutable 
PPIs aggregate into highly connected “core” network modules, with most network remodeling 
occurring within a loosely connected “accessory” module. Mutable PPIs are less likely to co-
express, co-localize, and be explained by simple mass action kinetics, and more likely to 
contain proteins with intrinsically disordered regions, implying that environment-dependent 
association and binding is critical to cellular adaptation. Our results show that protein 
interactomes are larger than previously thought and contain highly dynamic regions that 
reorganize to drive or respond to cellular changes.  
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Introduction 
As environmental conditions change, cells undergo programmed alterations that ultimately 
rewire PPI networks to execute different biological processes. Numerous examples of localized 
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PPI rewiring have been found (Balajee and Geard, 2001; Celaj et al., 2017; Mailand et al., 2013; 
Marles et al., 2004; Rochette et al., 2014). Yet, little is known about how PPI networks 
reorganize on a global scale or what drives these changes. One challenge is that commonly-
used high-throughput PPI screening technologies are geared toward PPI identification (Gavin et 
al., 2002; Ito et al., 2001; Tarassov et al., 2008; Uetz et al., 2000; Yu et al., 2008), not a 
quantitative analysis of relative PPI abundance that is necessary to determine if changes in the 
PPI network are occurring. The murine dihydrofolate reductase (mDHFR)-based protein-
fragment complementation assay (PCA) provides a viable path to characterize PPI abundance 
changes because it is a sensitive test for PPIs in the native cellular context and at native protein 
expression levels (Freschi et al., 2013; Remy and Michnick, 1999; Tarassov et al., 2008). 
Indeed, moderate-scale mDHFR-PCA studies have characterized the dynamics of a subset of 
known PPIs in yeast, finding that between 15% and 55% change across environments and are 
frequently driven by changes in protein abundance (Celaj et al., 2017; Rochette et al., 2014; 
Schlecht et al., 2012, 2017).  
 
However, because mDHFR-PCA studies have only considered the dynamics of PPIs that have 
been identified under standard laboratory growth conditions (rich complete media), they may be 
providing an incomplete view of global PPI rewiring (Celaj et al., 2017). One possibility is that 
PPIs identified from a single condition are biased towards “immutable” PPIs that are found in all 
conditions, and “mutable” PPIs that are present in only some conditions have a large impact on 
global PPI network dynamics. If true, mutable PPIs would also be expected to be 
underrepresented in current PPI networks, with important consequences to our understanding 
of how the protein interactome is organized and how proteins typically interact. Previous work 
supports the idea that proteins that participate in mutable PPIs have different properties. For 
example, protein hubs predicted by mRNA co-expression data to participate in mutable PPIs 
(“date” hubs) have been found to have more genetic interactions and to bridge tightly connected 
modules in the PPI network (Han et al., 2004). However, the robustness of conclusions drawn 
from co-expression data has undergone a vigorous debate (Agarwal et al., 2010; Batada et al., 
2006, 2007; Bertin et al., 2007; Yu et al., 2008).   
 
Here, we combine the mDHFR-PCA assay with a double barcoding system (Liu et al., 2019; 
Schlecht et al., 2017) to quantify the relative in vivo PPI abundance of 1.6 million protein pairs 
across 9 growth conditions. We find that a large majority of PPIs detected in our screen have 
not been identified as PPIs in standard growth conditions, providing us with a new view of how 
mutable PPIs contribute to PPI network rewiring.  
 

Results  
Defining a multi-condition PPI network  
In mDHFR-PCA, two proteins of interest are fused to complementary mDHFR fragments. An 
interaction between the proteins reconstitutes mDHFR, providing resistance to the drug 
methotrexate and a growth advantage that is proportional to the PPI abundance (Celaj et al., 
2017; Freschi et al., 2013; Rochette et al., 2014; Schlecht et al., 2012, 2017). We have 
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previously shown that mDHFR-PCA can be adapted into a pooled barcode sequencing assay 
by fusing two genomic barcodes in vivo using a method called PPiSeq (Schlecht et al., 2017). 
To generate a large PPiSeq library, all strains from the protein interactome (mDHFR-PCA) 
collection that were found to contain a protein likely to participate in at least one PPI (Tarassov 
et al., 2008) were barcoded in duplicate using the double barcoder iSeq collection (Liu et al., 
2019), and mated together in a single pool (Figure 1A). Double barcode sequencing revealed 
that the PPiSeq library contained 1.79 million protein pairs and 6.05 million double barcodes 
(92.3% and 78.1% of theoretical, respectively), with each protein pair represented by an 
average of 3.4 unique double barcodes (Figure S1). The library was grown under mild 
methotrexate selection in 9 environments for 12-18 generations in serial batch culture, diluting 
1:8 every ~3 generations, with a bottleneck population size greater than 2 x 109 cells (Table S1). 
Double barcodes were enumerated over 4-5 timepoints by sequencing, and the resulting 
frequency trajectories (Table S2) were used to estimate the relative fitness (Table S3) of each 
strain, which is a rough measure of the average PPI abundance over a growth cycle (Figure 1B) 
(Levy et al., 2015; Li et al., 2018; Schlecht et al., 2017). We recovered a minimum of two 
reliable replicate fitness estimates for 1.6 million protein pairs, and downstream analysis was 
limited to this set. We examined the reproducibility of fitness estimation within an environment 
by plotting the standard deviation by the mean of replicate fitness measures for each protein 
pair (Figures 1C and S2). We found that fitness estimates are precise for high-fitness strains 
(putative PPIs), but less precise for low-fitness strains, which are more subject to noise 
stemming from growth bottlenecks, PCR, and sequencing (Li et al., 2018).   
 
To identify protein pairs that interact, we compared replicate fitness scores for each protein pair 
against a set of ~17,000 negative control strains that were included in the pool (Figure 1D, ORF 
x Null). Using putatively positive and negative reference sets, we empirically determined a 
statistical threshold for each environment with the best balance of precision and recall (positive 
predictive value (PPV) > 61% in SD media, Methods, section 6). In general, protein pairs 
required replicated high fitness measures (mean > 0.18 in SD) and low variance (standard 
deviation < 0.02 in SD) to be identified as a PPI (Figures 1C and 1D). However, due in part to 
differences in the strength of methotrexate selection across environments, the minimal fitness of 
a PPI varied by environment (Figure S2 and Table S4). Quantitative fitness measures between 
different barcodes marking the same PPI within a growth pool correlate well (0.67 < r < 0.92 for 
all environments, Spearman’s correlation, Figures 1E and S3), as do fitness measures of the 
same PPI assayed in replicate growth cultures (Spearman’s r = 0.73, Figure 1F).  
 
In total, we identified 13,764 PPIs across 9 environments, a 2.9-fold increase over PPIs 
identified under standard growth conditions (SD media), and a 5.6-fold increase over colony-
based mDHFR-PCA (Figure 1G). Within our search space, PPIs identified by liquid-growth-
based PPiSeq encompass 62% (1544 of 2476 PPIs, PPV > 98.2% in (Tarassov et al., 2008), 
see Methods for differences between PPVs) of those identified by mDHFR-PCA, but only 7% 
(925 of 13,259 PPIs) of those identified by other methods. In addition, PPiSeq identified 34% of 
PPIs (1838 of 5347) that mDHFR-PCA had identified as likely to be PPIs (80% < PPV < 98.2% 
in (Tarassov et al., 2008)) but had not called. 
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Further highlighting similarities to colony-based mDHFR-PCA, PPiSeq is enriched for PPIs 
within and between membranous compartments (Figure 2A, blue box) and those involved in cell 
division (purple box), and between related biological processes (Figure 2B, green box). By 
examining how much PPIs change across environments, we found that some cellular 
compartments and biological processes were more likely to gain or lose PPIs. For example, the 
number of PPIs associated with the chromosome are more variable (Figure 2A, orange 
triangles), as are those involved in transcription (Figure 2B, black triangles), which is consistent 
with a role for PPI-level regulation of gene expression. Also changing are PPIs involved in 
protein translation, RNA processing, and ribosome regulation (Figure 2B, brown triangles), 
which could reflect a global regulation of ribosome production rates in different growth or stress 
conditions (Brauer et al., 2007; Gasch et al., 2000). However, some processes are less likely to 
change in PPI number, such as endocytosis, exocytosis, vacuolar organization, and transport of 
amino acids, lipids, carbohydrates and endosomes. 
 

A large dynamic accessory protein interactome 
We partitioned PPIs by the number of environments in which they were identified and found that 
PPIs identified in few environments (defined here as mutable PPIs) far outnumbered those 
identified in most or all environments, with PPIs identified in only one environment outnumbering 
all other PPIs combined (Figure 3A and S4). Relatively immutable PPIs were likely to have been 
previously reported by colony-based mDHFR-PCA or other methods, while the PPIs found in 
the fewest environments were not. One possible explanation for this observation is that previous 
PPI assays, which largely tested in standard laboratory growth conditions, and variations thereof, 
are biased toward identification of the least mutable PPIs. That is, since immutable PPIs are 
found in nearly all environments, they are more readily observed in just one. However, another 
possible explanation is that, in our assay, mutable PPIs are more likely to be false positives in 
environment(s) in which they are identified or false negatives in environments in which they are 
not identified. To investigate this second possibility, we first asked whether PPIs present in very 
few environments have lower fitnesses, as this might indicate that they are closer to our limit of 
detection. We found no such pattern: mean fitnesses were roughly consistent across PPIs found 
in 1 to 6 conditions, although they were elevated in PPIs found in 7-9 conditions (Figure S5A). 
To directly test the false-positive rate stemming from pooled growth and barcode sequencing, 
we validated randomly selected PPIs within each mutability bin by comparing their optical 
density growth trajectories against controls (Figures 3B). We found that mutable PPIs did 
indeed have lower validation rates in the environment in which they were identified, yet putative 
false positives were limited to ~50%, and, within a bin, do not differ between PPIs that have 
been previously identified and those that have been newly discovered by our assay (Figure 
S5B). We also note mutable PPIs might be more sensitive to environmental differences 
between our large pooled PPiSeq assays and clonal 96-well validation assays, indicating that 
differences in validation rates might be overstated. To test the false-negative rate, we assayed 
PPIs identified in only SD by PPiSeq across all other environments by optical density growth 
and found that PPIs can be assigned to additional environments (Figure S5C). However, the 
number of additional environments in which a PPI was detected was generally low (2.5 on 
average), and the interaction signal in other environments was generally weaker than in SD 
(Figure S5D). To better estimate how the number of PPIs changes with PPI mutability, we used 
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these optical density assays to model the validation rate as a function of the mean PPiSeq 
fitness and the number of environments in which a PPI is detected. This accurate model 
(Spearman's r =0.98 between predicted and observed, see Methods) provided confidence 
scores (predicted validation rates) for each PPI (Table S5) and allowed us to adjust the true 
positive PPI estimate in each mutability bin. Using this more conservative estimate, we still 
found a preponderance of mutable PPIs (Figure S5E). Finally, we used a more conservative PPI 
calling procedure to identify PPIs with a low rate of false positives (Methods, Table S6). Using 
this higher confidence set, we still found the mutable PPIs far outnumbered others in the multi-
condition PPI network (Figure S6A).  
 
We next examined if mutable PPIs can be distinguished from less mutable PPIs in the PPI 
network. We first asked whether proteins that participate in less or more mutable PPIs differed 
in their connectivity (degree distribution) and found that proteins from less mutable PPIs are 
more likely to be and interact with hubs in the multi-environment PPI network (Figures S7A and 
S7B). One possible explanation for these findings is that proteins in less mutable PPIs form a 
“backbone” in the PPI network and that proteins in more mutable PPIs decorate this backbone. 
Alternatively, proteins that participate in less and more mutable PPIs may be forming distinct 
modules in the protein interactome, with modules of less mutable PPIs being more highly 
connected. To distinguish between these two possibilities, we calculated a mutability score for 
each protein based on the variability in fitness measures across environments for PPIs in which 
it participates, and compared the mutability score of each protein against the mean mutability 
score of its neighbors (Methods, Figure S7C and S7D). We found that the neighbors of proteins 
in less mutable PPIs tend to be in other PPIs with low mutability, suggesting that less mutable 
PPIs are forming tight “core” modules in the PPI network and that more mutable PPIs form a 
distinct “accessory” module. To verify this, we applied three network community detection 
algorithms to our multi-environment PPI network (Clauset et al., 2004; Pons and Latapy, 2005; 
Rosvall et al., 2009). Each found three major communities that differed by the mean mutability 
score of their constituents: two core modules composed with a greater proportion of highly 
connected (hub) proteins with low or intermediate mutability scores, and an accessory module 
composed of less connected proteins with high mutability scores (Figures 3C-E and S8A-C). 
Using gene ontology term enrichment analysis, we found that proteins in each module were 
enriched for different cellular compartments. The less mutable core modules are associated with 
membranous compartments (low mutability) and the actin cytoskeleton (intermediate mutability), 
while the highly mutable accessory module is associated with the chromosome (Figure 3E and 
Table S7). 
 

Properties of mutable PPIs 
Previous work has used patterns of mRNA co-expression to predict which hub proteins are 
likely to participate in PPIs that are mutable across environments (calling these proteins “date 
hubs”), and found that they have several distinguishing features (Han et al., 2004). However, 
the robustness of these conclusions has been vigorously debated (Agarwal et al., 2010; Batada 
et al., 2006, 2007; Bertin et al., 2007; Yu et al., 2008). Here, because we have a direct measure 
of the mutability of each PPI across environments, we are able to confidently validate or reject 
predictions made from co-expression data, in addition to testing new hypotheses.  
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We first asked whether co-expression is indeed a predictor of PPI mutability and found that it is: 
co-expression mutual rank (which is inversely proportional to co-expression) declined with PPI 
mutability (Figure 4A) (Obayashi and Kinoshita, 2009; Obayashi et al., 2019). Confirming a 
second prediction from co-expression data, we found that proteins from less mutable PPIs are 
more likely to co-localize to the same cellular compartment in standard laboratory conditions 
than those from more mutable PPIs (Chong et al., 2015), suggesting localization changes drive 
some changes (Figure 4B) (Levy et al., 2014; Rochette et al., 2014). Both the co-expression 
and co-localization patterns were also apparent in our higher confidence PPI set (Figure S6B 
and S6C), indicating that they are not caused by different false positive rates between the 
mutability bins.  
 
We next asked what features from existing genome-wide data sets correlate with proteins that 
are involved in less or more mutable PPIs. We binned proteins by their PPI degree, and, within 
each bin, determined the correlation between the mutability score and another gene feature 
(Figure 4C and S9, Table S8) (Costanzo et al., 2016; Finn et al., 2014; Gavin et al., 2006; 
Holstege et al., 1998; Krogan et al., 2006; Levy and Siegal, 2008; Myers et al., 2006; Newman 
et al., 2006; Östlund et al., 2010; Rice et al., 2000; Stark et al., 2011; Wapinski et al., 2007; 
Ward et al., 2004; Yang, 2007; Yu et al., 2008). These correlations were also calculated using 
our higher confidence PPI set, confirming results from the full data set (Figure S6D and S6E). 
We found that mutable hubs (> 15 PPIs) have more genetic interactions, in agreement with 
predictions from co-expression data (Bertin et al., 2007; Han et al., 2004), and that their deletion 
tends to cause larger fitness defects. However, these two correlations were weaker or not seen 
with non-hub proteins. Contradicting predictions from co-expression data, we did not find that 
mutable hubs are more quickly evolving, as measured by dN/dS (Costanzo et al., 2016; Yang, 
2007), but that non-hub proteins (the vast majority of mutable PPIs) are. In addition, we found 
that proteins that participate in mutable PPIs tend to have lower mRNA and protein expression 
levels than those in less mutable PPIs (Holstege et al., 1998; Newman et al., 2006), perhaps 
because highly abundant proteins are more difficult to post-translationally regulate. As might be 
expected, we also found that mutable hubs, but not non-hubs, are more likely to participate in 
multiple protein complexes than less mutable proteins (Costanzo et al., 2016). Finally, 
confirming another prediction from co-expression data (Singh et al., 2007), we found that 
proteins in mutable PPIs are more likely to contain intrinsically disordered regions, suggesting 
that they may adopt different conformations in some environments or intracellular contexts to 
promote a PPI. Taken together, these correlations largely confirm predictions from co-
expression data, but highlight differences between hub and non-hub proteins in the core and 
accessory PPI networks.  
 
Given the above results, we suspected that changes in mutable PPIs may be more likely to be 
driven by post-translational regulation than protein abundance changes (Taylor et al., 2009). We 
first tested if the relationship between protein abundance and PPI abundance changes with PPI 
mutability. For each PPI, we compared our estimated PPI abundance in standard rich media 
(fitness in SD) to a meta-analysis estimate of mean protein abundance of each protein pair (Ho 
et al., 2018). These two measures correlate weakly (Pearson's r = 0.16, Figure S10A). However, 
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when binned by PPI mutability, we find that less mutable PPIs are more strongly correlated than 
highly mutable PPIs (Figure 4D). Second, we asked if quantitative changes in PPI abundance 
across conditions are better predicted by changes in protein abundance for less mutable PPIs. 
Using homodimer PPI abundance estimates (fitnesses) as a proxy for protein abundance 
(Stynen et al., 2018) in a mass-action kinetics model (Methods), we tested if changes in the 
estimated abundance of a set of PPIs (1,212 heterodimers) are explained by our proxy measure 
of the constituent protein abundances (180 homodimers). We find that some heterodimers fit 
this simple model well (Figure 4E, right), while others fit poorly (Figure 4E, left), with 19% of 
heterodimers explained by the model (Figure S10B, Methods). We next used logistic regression 
to determine what features may underlie a good or poor fit to the model (Figure S10C) and 
found that PPI mutability was the best predictor, with more mutable PPIs being less frequently 
explained (Figure 4F). Unexpectedly, mean protein abundance was the second best predictor, 
with high abundance predicting a poor fit to the model, particularly for less mutable PPIs (Figure 
S10D and S10E). Taken together, these data suggest that mutable PPIs are subject to more 
post-translational regulation across environments and that high basal protein abundance may 
limit the ability of gene expression changes to regulate PPIs.  
 

Rewiring of the Glucose Transporter Network 
We have shown above that most protein network rewiring occurs within a dynamic accessory 
module and that changes in the module are more likely to reflect condition-specific protein 
localization, binding, or other mechanisms, rather than by changes in protein abundance. To 
explore whether coordinated changes are also occurring in the core module and what drives 
these changes, we examined how core PPIs involved in carbohydrate transport change across 
environments (Figure 5A). Glucose is transported into the cell using membrane-spanning 
hexose transporters (HXT genes) (Boles and Hollenberg, 1997; Kruckeberg, 1996; Özcan and 
Johnston, 1999). The major Hxt transporters can be divided by their extracellular glucose 
binding into low affinity (Hxt1, Hxt3) , moderate affinity (Hxt5), and high affinity (Hxt2, Hxt4, Hxt6, 
Hxt7) (Ozcan and Johnston, 1995; Reifenberger et al., 1995; Verwaal et al., 2002), two of which 
were excluded from our screen (Hxt4, Hxt6). For PPIs involving at least one HXT gene product, 
we found that there were only minor differences in PPI abundance between most environments 
that contained glucose as their sugar source. However, several environments showed marked 
differences (NaCl, 16 ℃, Doxorubicin, Raffinose), presumably reflecting how transport is altered 
in these environments. We examined changes in the Raffinose (low glucose (Özcan and 
Johnston, 1999)) and NaCl (high glucose, osmotic stress (Verwaal et al., 2002)) environments 
more closely by plotting a carbohydrate transport subnetwork in each environment (Figures 5B 
and C) and validating differences using optical density growth trajectories of 90 randomly 
chosen PPIs (Figures 5D). Most Hxt PPIs that were detectable in SD were lost in the low 
glucose Raffinose environment. However, Hxt5, the only glucose transporter expressed during 
the stationary phase (Verwaal et al., 2002; Wu et al., 2004), maintained most of its PPIs 
(Figures 5B and C). Surprisingly, the high affinity glucose transporter Hxt7, whose mRNA and 
protein expression has been reported to increase in Raffinose (Lai et al., 2007; Ye et al., 2001), 
lost most of its PPIs, suggesting other factors such as protein endocytosis or degradation could 
be important to regulating its activity over our growth cycles (Ye et al., 2001). In NaCl, fewer 
PPIs were detectable than in SD, but some PPIs, especially those involving Hxt5 increased in 
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relative abundance (Figures 5B and C). Previous work has found that HXT5 expression 
increases during salt stress (Verwaal et al., 2002), suggesting the change in Hxt5 PPIs may be 
a direct consequence of its change in abundance. Taken together and consistent with 
mechanisms of core network regulation described above, these results suggest that the 
changes in the glucose transport subnetwork are mainly driven by changes in protein 
expression (Celaj et al., 2017). 
 

Size of the pan-environment protein interactome 
The yeast protein interactome has been previously estimated to contain 37,600 to 75,500 
detectable interactions in standard growth conditions (Hart et al., 2006; Sambourg and Thierry-
Mieg, 2010). We have shown here that much of the PPI network is rewired across conditions 
(Figure 3A), suggesting that the pan-environment PPI network is likely to be larger than these 
projections. To estimate how many PPIs remain to be discovered within our search space (~9% 
of protein pairs), we constructed several hypothetical PPI-by-environment observation matrices 
by randomly assigning a PPI observation at a rate proportional to its confidence score within an 
environment (Methods, Table S5). We then plotted PPI accumulation curves across permuted 
orders of environment addition (Jari Oksanen et al., 2019) and found that the number of 
observed PPIs is beginning to approach saturation, with fewer PPIs accumulating with the 
addition of each new environment (Figure 6). Borrowing a species richness estimator from 
ecology (Jari Oksanen et al., 2019), we estimate that there are ~10,840 true interactions within 
our search space across all environments, ~3-fold more than are detected in SD (note 
difference to Figure 3, which counts observed PPIs). This analysis shows that the number of 
PPIs present across all environments is much larger than the number observed in a single 
condition, but that it is feasible to discover most of these new PPIs by sampling a limited 
number of conditions.   
 

Discussion 
We developed a massively parallel quantitative PPI assay to characterize how the yeast protein 
interactome changes across conditions. We found a large, previously undersampled accessory 
protein interactome that changes across conditions and is enriched for proteins involved in 
transcription, RNA processing, and translation. Mutable PPIs are less likely to co-express, co-
localize, and be explained by simple mass action kinetics, and more likely to contain intrinsically 
disordered regions, evolve quickly, and be of low abundance in standard conditions. Taken 
together, these results suggest that major rewiring within the protein interactome is driven to a 
larger extent by post-translational regulation, with protein abundance changes being more likely 
to tune levels of relatively immutable PPIs in the core interactome.  
 
Results presented here and elsewhere (Huttlin et al., 2020) suggest that PPIs discovered under 
a single condition or cell type are a small subset of the full protein interactome emergent from a 
genome. We sampled nine diverse environments and found approximately 3-fold more 
interactions than in a single environment. However, the discovery of new PPIs began to saturate, 
indicating that most condition-specific PPIs can be captured in a limited number of conditions. 
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Testing in many more conditions will undoubtedly identify new PPIs, however a more important 
outcome could be the identification of coordinated network changes across conditions. Much 
like coordinated responses in gene expression (Brauer et al., 2007; Gasch et al., 2000), these 
will provide a new mechanistic view of how the cellular system changes in response to 
environmental challenges. 
 
We have shown that our iSeq platform is capable of building libraries that exceed one billion 
interactions (Liu et al., 2019; Schlecht et al., 2017), making it feasible to expand assay coverage 
to an entire protein interactome. While we used reconstruction of C-terminal-attached mDHFR 
fragments as a reporter for PPI abundance, similar massively parallel assays could be 
constructed with different PCA reporters or tagging configurations to validate our observations 
and overcome false negatives that are specific to our reporter. Indeed, the recent development 
of “swap tag” libraries, where new markers can be inserted C- or N-terminal to most genes 
(Weill et al., 2018; Yofe et al., 2016), in combination with our iSeq double barcoder collection 
(Liu et al., 2019), makes extension of our approach eminently feasible. 
 
Our assay detected subtle fitness differences across environments (Fig S4B and S4C), which 
we used as a rough estimate for changes in relative PPI abundance. While it would be tempting 
to use fitness as a direct readout of absolute PPI abundance within a cell, non-linearities 
between fitness and PPI abundance may be common and PPI dependent. For example, the 
relative contribution of a reconstructed mDHFR molecule to fitness might diminish at high PPI 
abundances (saturation effects) and fitness differences between PPIs may be caused, in part, 
by differences in how accessible a reconstructed mDHFR molecule is to substrate. In addition, 
environmental shifts might impact cell growth rate, initiate a stress response, or result in other 
unpredictable cell effects that impact the selective pressure of methotrexate and thereby fitness 
(Figure S2 and S3). Finally, our assays were performed across cycles of batch growth meaning 
that changes in PPI abundance across a growth cycle (e.g. lag, exponential growth, saturation) 
are coarse grained into one measurement. While this method potentially increases our chance 
of discovering a diverse set of PPIs, it might have an unpredictable impact on the relationship 
between fitness and PPI abundance (Li et al., 2018). To overcome these issues, strains 
containing natural or synthetic PPIs with known abundances and intracellular localizations could 
be spiked into cell pools to calibrate the relationship between fitness and PPI abundance in 
each environment. In addition, continuous culturing systems may be useful for refining precision 
of growth-based assays such as ours. 
 
PPIs have often been reported as a qualitative presence or absence of a PPI, but the propensity 
of two proteins expressed in the same cell to form a complex is a continuum. For some 
analyses in this work, we use qualitative statistical calls to identify "positive" PPIs, but our 
approach preserves and analyzes a quantitative signal for each PPI. Quantitative assays 
presented here and elsewhere (Celaj et al., 2017; Diss and Lehner, 2018; Rochette et al., 2014; 
Schlecht et al., 2012, 2017) hold promise to shift the paradigm of high-throughput PPI assays 
from PPI detection to in vivo PPI characterization. This will require novel analyses to re-
conceptualize the PPI network as a continuum of interaction probabilities that are dependent not 
only on changes in protein abundance, but also post-translational modifications, intracellular 
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localization, steric effects, and competitive binding (Stynen et al., 2018). One important goal 
would be to estimate an in vivo “functional binding affinity” for each PPI — an important analog 
to in vitro binding affinity that reports how PPI abundance scales with the abundance of its 
constituent proteins (Kastritis and Bonvin, 2013). Here we use homodimer abundance as a 
proxy for protein abundance. However, protein abundance could be measured directly in the 
same pool (Levy et al., 2014) by, for example, attaching a full length mDHFR to each gene 
using “swap tag” libraries mentioned above (Weill et al., 2018; Yofe et al., 2016). Changes in the 
functional affinity across environments would point to other mechanisms of  in vivo regulation 
that could be dissected in high-throughput by combining PPiSeq with mutagenesis of interacting 
proteins or trans-acting factors (Diss and Lehner, 2018).  
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Figures and Legends 

 
Figure 1. PPiSeq (A) A cartoon of PPiSeq yeast library construction. Strains from the protein 
interactome collection are individually mated to strains from the double barcoder collection and 
sporulated to recover haploids that contain a mDHFR-tagged protein and a barcode. Haploids 
are mated as pools. In diploids, expression of Cre recombinase causes recombination between 
homologous chromosomes at the loxP locus, resulting in a contiguous double barcode that 
marks the mDHFR-tagged protein pair. (B) Representative double barcode frequency 
trajectories over twelve generations of competitive growth. Trajectories are used to calculate a 
quantitative fitness for each double barcoded strain. (C) Standard error of fitness estimates of 
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protein pairs. The blue and red lines represent the median standard error for a sliding window 
(width = 0.05) of all fitness-ranked protein pairs and of only the positive protein-protein 
interactions, respectively. (D) Estimated fitness of strains with different double barcodes 
representing the same protein pair in the same pooled growth. Positive protein pairs are 
randomly selected within a fitness window. ORF x Null is a violin plot of the fitness distribution of 
all interactions with a mDHFR fragment that is not tethered to a yeast protein. DHFR(-) is yeast 
strains that lack any mDHFR fragment. DHFR(+) is yeast strains that contain a full length 
mDHFR under a strong promoter. (E) Density plot of the fitness of double barcodes that 
represent the same putative PPI in the same pooled growth. In B-E, the data in SD environment 
are used. (F) Density plot of the normalized mean fitness of the same PPI between two pooled 
growth cultures in SD environment. PPIs detected in either one growth culture are included. (G) 
Venn diagram of the number of PPIs identified within our search space by PPiSeq in 9 
environments (magenta), PPiSeq in SD environment (pink), the interactome-scale protein-
fragment complementation screen (PCA, yellow), and the BioGRID database excluding any 
PPIs previously detected by PCA (blue).  
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Figure 2. Functional enrichment of PPIs detected by PPiSeq. PPI enrichment (red) and 
variability (blue) across environments of gene ontology cellular compartments (A) and biological 
processes (B). Red node size is the percent of interacting protein pairs (interaction density) 
observed for a given pair of GO terms and the node color is the p-value of this percent over a 
random expectation. Blue node size and color are the variability (coefficient of variation, CV) of 
interaction densities across nine environments tested. GO terms are hierarchically clustered by 
the interaction density (red dots). Boxes mark frequently interacting and invariable cellular 
compartments and biological processes involved in membrane transport and protein maturation 
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(blue and green) and cell division (purple). Barplots show the mean CV of interaction densities 
for each GO term across all other GO terms. Orange, black and brown triangles highlight three 
different groups of related GO terms: chromosome, transcription, and translation, respectively. 
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Figure 3. A large accessory protein interactome. (A) Barplot of PPI number binned by the 
number of environments in which a PPI is observed. Colors indicate PPIs called by both PPiSeq 
and BioGRID inclusive of mDHFR-PCA (red), PPIs called by PPiSeq that scored high but were 
not called by mDHFR-PCA (yellow), and PPIs called by PPiSeq that scored low by mDHFR-
PCA (blue). (B) Validation rates of PPIs binned by the number of environments in which a PPI is 
observed. Validations were performed using OD600 trajectories of clones grown in multi-well 
plates. (C) Mutable and less mutable PPIs form distinct modules in the network. PPIs that are 
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detected in at least 5 environments (red edges) form two tight core modules. PPIs that are 
detected in fewer than 5 environments (blue edges) form a less connected accessory module. 
Proteins in different modules are labeled with different shapes and colors. The network uses an 
edge-weighted spring embedded layout. (D) Number of PPIs within and between each 
community. PPIs detected in at least or fewer than five environments are shown in red and blue, 
respectively. The size of the square or circle is proportional to the number of PPIs. The number 
below each community is the number of proteins within each community. (E) Scatter plot of 
degrees and mutability scores of proteins in each community. 
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Figure 4. Properties of mutable and less mutable PPIs. (A) The co-expression mutual rank for 
PPIs binned by the number of environments in which the PPI is detected. A higher mutual rank 
means worse co-expression. Notches are the 95% confidence interval for the median, hinges 
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correspond to the first and third quartiles, and whiskers extend 1.5 times the interquartile range. 
(B) The percent of protein pairs that have been found colocalized by gene ontology (GO Slim, 
dashed line) and fluorescence (solid line) (Chong et al., 2015). (C) Spearman correlation 
between the PPI mutability score and other gene features, binned a gene’s PPI degree. In B 
and C, the error bars are the standard deviation from 1000 bootstrapped data sets. (D) Pearson 
correlation between a PPI’s fitness and geometric mean abundance of two interacting proteins 
in (Ho et al., 2018), binned by the number of environments in which a PPI is detected. (E) 
Examples of non-significant (Erv25 x Shr3) and significant (Akr1 x Any1) predictions. Observed 
heterodimer fitness (SAB) is plotted against the expectation based on the geometric mean of the 
two constituent homodimer fitnesses (SAA and SBB). (F) Percent of heterodimers whose fitness 
changes can be significantly predicted by the geometric mean of the two constituent 
homodimers, binned by the number of environments in which a PPI is observed.  
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Figure 5. Carbohydrate transport network rewiring as captured by PPiSeq. (A) Heatmap of 
abundances (fitnesses) of PPIs involved in carbohydrate transport across different 

A B

C

D

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

Hxt5Hxt2

Hxt7

Hxt1

Hxt3

SD

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

Hxt5Hxt2

Hxt7

Hxt1

Hxt3

Raffinose

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

Hxt5Hxt2

Hxt7

Hxt1

Hxt3

NaCl

NaC
l

FK50
6

Hyd
rox

yu
rea

Fo
rsk

olin SD
H 2O

2

16
 °C

Doxo
rub

icin

Raff
ino

se

Pr
ote
in

Protein
HXT1
HXT7
HXT3
HXT5
HXT2
Others

0

0.2

0.4

0.6

0.8

1

1.2

NaC
l

FK50
6

Hyd
rox

yu
rea

Fo
rsk

olin SD
H 2O

2

16
 °C

Doxo
rub

icin

Raff
ino

se

Pr
ote
in

Protein
HXT1
HXT7
HXT3
HXT5
HXT2
Others

0

0.2

0.4

0.6

0.8

1

1.2

NaC
l

FK50
6

Hyd
rox

yu
rea

Fo
rsk

olin SD
H 2O

2

16
 °C

Doxo
rub

icin

Raff
ino

se

Pr
ote
in

Protein
HXT1
HXT7
HXT3
HXT5
HXT2
Others

0

0.2

0.4

0.6

0.8

1

1.2

NaC
l

FK50
6

Hyd
roxy

urea

Forsk
olin SD

H2O
2

16
 ℃

Doxo
rubici

n

Raffi
nose

Fitness

0.6

Hxt1 Hxt7 Hxt3 Hxt5 Hxt2

0.0

0.3

0.9

1.2

Fi
tn

es
s

●

●

●

●

●

●

●

●
●
●

●
●
●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

0.0

0.3

0.6

0.9

1.2

HXT1 HXT7 HXT3 HXT5 HXT2

Fi
tn
es
s

Environment
SD

Raffinose

NaCl

●

●

●

●

●

●

●

●
●
●

●
●
●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

0.0

0.3

0.6

0.9

1.2

HXT1 HXT7 HXT3 HXT5 HXT2

Fi
tn
es
s

Environment
SD

Raffinose

NaCl

SD

Raffinose

NaCl

Environment

Protein

Hxt1
Hxt7
Hxt3
Hxt5
Hxt2
Others

0

0.2

0.4

0.6

0.8

1

1.2

−0.5

−0.3

−0.1

0.1

0.3

0.5

0.7

−0.5−0.4−0.3−0.2−0.1 0 0.1 0.2 0.3
Fitness change in Rraffinose by PPiSeq

Fi
tn

es
s 

ch
an

ge
 in

 R
af

fin
os

e 
by

 O
D5

95

HXT1
HXT7
HXT3
HXT5
HXT2
Other

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

-0.5

-0.3

-0.1

0.1

0.3

0.5

0.7

Fitness change in Raffinose by PPiSeq

Fi
tn

es
s 

ch
an

ge
 in

 R
affi

no
se

 b
y 

O
D

59
5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3
Fitness change in NaCl by PPiSeq

Fi
tn

es
s 

ch
an

ge
 in

 N
aC

l b
y 

O
D5

95

HXT1
HXT7
HXT3
HXT5
HXT2
Other

—0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

Fitness change in NaCl by PPiSeq

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

Fi
tn

es
s 

ch
an

ge
 in

 N
aC

l b
y 

O
D

59
5

Hxt1

Hxt7

Hxt3

Hxt5

Hxt2

Other

Spearman’s r = 0.61 Spearman’s r = 0.21

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 22, 2020. ; https://doi.org/10.1101/2020.05.20.106583doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.20.106583


 

 20 

environments. (B) Boxplots of fitnesses of PPIs involving Hxt proteins in SD, Raffinose and 
NaCl environments. The bottom of each box, the line drawn in the box, and the top of the box 
represent the 1st, 2nd, and 3rd quartiles, respectively. The whiskers extend to ± 1.5 times the 
interquartile range. (C) Circular network plots of PPIs containing Hxt proteins in SD, Raffinose, 
and NaCl environments. Nodes are proteins and colors are as in A. Node size is proportional to 
its degree in the multi-environment PPI network. Edge width is proportional to abundance in 
each environment. (D) Scatter plot of fitness changes relative to SD as measured by PPiSeq 
and clonal growth dynamics for randomly chosen carbohydrate-transport PPIs in Raffinose (80 
PPIs) and NaCl (90 PPIs).  
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Figure 6. The estimated number of true PPIs discovered by PPiSeq using repeated sampling of 
data in permuted orders of environment addition. Boxplots summarize the distribution of the 
number of unique PPIs across permutations. The bottom of each box, the line drawn in the box, 
and the top of the box represent the 1st, 2nd, and 3rd quartiles, respectively. The whiskers extend 
to ± 1.5 times the interquartile range. Overlayed solid red lines and dashed red lines are the 
Kindt exact accumulation curves and the bootstrap estimators of the total number of unique 
PPIs across infinite environments for each simulation, respectively.  
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Supplementary Figures  

 
Figure S1. Double barcodes and protein pairs in the PPiSeq library. (A) Distribution of the initial 
double barcode count of the PPiSeq library in SD environment at a sequencing depth of 
209,899,687 reads. (B) Number of barcodes per protein pair in the PPiSeq library. Spike-in 
control protein pairs are not included in the plot. 
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Figure S2. Standard error of fitness estimates of protein pairs in each environment. The blue 
and red lines represent the median standard error for a sliding window (width = 0.05) of all 
fitness ranked protein pairs and of only the positive protein-protein interactions, respectively.  
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Figure S3. Density plot of the fitness of double barcodes that represent the same positive PPI in 
the same pooled growth of each environment. 
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Figure S4. (A) Barplot of number of PPIs in each environment binned by the number of 
environments in which a PPI is observed. (B) Heatmap of fitness values of all detected PPIs 
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across different environments. PPIs (rows) and environments (columns) are hierarchically 
clustered by the fitness values across environments. (C) Scatter plot of mean fitness values of 
the same PPI across two different growth conditions. Colors indicate in which condition(s) PPIs 
are called. PPIs that have been detected in at least one environment are shown in B and C. 
Negative values and missing measurements are replaced with zeros. 
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Figure S5. Validating PPIs. (A) Boxplots and univariate scatterplots of fitness values of PPIs 
binned by the number of environments in which a PPI is observed. The bottom of each box, the 
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line drawn in the box, and the top of the box represent the 1st, 2nd, and 3rd quartiles, respectively. 
The whiskers extend to 1.5 times the interquartile range (from the 1st to 3rd quartile). The fitness 
for each PPI is calculated by taking the mean of the fitness values for all environments where 
that PPI was detected.  (B) Validation rates of PPIs binned by the number of environments in 
which a PPI is observed. Validations were performed using OD600 trajectories of clones grown 
in multi-well plates. PPIs that have been previously reported in BioGRID (red) or are previously 
unreported (blue) are shown. (C) Validation of 20 randomly chosen PPIs that were only 
detected in SD by PPiSeq. Validations use OD600 trajectories of clones grown in different 
environments. Red and blue boxes represent positive and negative PPI detection, respectively. 
(D) Density plot of the increase in the relative area under the growth curve (AUC) against a 
negative control strain for the 20 PPIs shown in C. Dashed vertical lines represent the mean 
AUC increase for an environment. (E) Barplot of the PPI number and the predicted true positive 
PPI number binned by the number of environments in which a PPI is observed.  
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Figure S6. Mutable PPIs and their properties for higher confidence PPI calls. (A) Barplot of the 
PPI number binned by the number of environments in which a PPI is observed. Colors indicate 
PPIs called by both PPiSeq and BioGRID inclusive of mDHFR-PCA (red), PPIs called by 
PPiSeq that scored high but were not called by mDHFR-PCA (yellow), and PPIs called by 
PPiSeq that scored low by mDHFR-PCA (blue). (B) The co-expression mutual rank for PPIs 
binned by the number of environments in which the PPI is detected. A higher mutual rank 
means worse co-expression. Notches are the 95% confidence interval for the median, hinges 
correspond to the first and third quartiles, and whiskers extend 1.5 times the interquartile range. 
(C) The percent of protein pairs that have been found colocalized by gene ontology (GO Slim, 
dashed line) and fluorescence (solid line) (Chong et al., 2015). (D) Spearman correlation 
between the protein’s mutability score and other gene features. (E) Spearman correlation 

A B C

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●●
●

●

●0

10
00

20
00

30
00

40
00

50
00

1 2 3 4 5 6 7 8 9
Environments in which a PPI is observed

C
o−

ex
pr

es
si

on
 m

ut
ua

l r
an

k

Environments in which  
a PPI is observed

1 2 3 4 5 6 7 8 9
C

o-
ex

pr
es

si
on

 m
ut

ua
l r

an
k

0
10

00
20

00
30

00
40

00

10
0

2 4 6 8

30
40

50
60

70
80

90
10

0

Environments in which a PPI is observed

Pe
rc

en
t c

ol
oc

al
ize

d

●

●

●

●
●

●

●

●
●

●

●

●
●

● ●

●
● ●

Gene Ontology
Fluoresence

2 4 6 8
Environments in which  

a PPI is observed

30
40

50
60

70
80

90
Pe

rc
en

t c
o-

lo
ca

liz
ed

Correlation with the mutability score

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

Protein abundance

Expression level

Genetic interaction degree

Deletion fitness defect

Number of complexes

Protein disorder

dN/dS

PPI degree
0−4
5−14
15+

Correlation with the mutability score
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

dN/dS

Protein disorder

Number of complexes

Deletion fitness defect

Genetic interaction degree

Expression level

Protein abundance

N
um

be
r o

f P
PI

s

0
10

00
20

00
30

00
40

00

BioGRID
mDHFR−PCA (80% < PPV < 98.2%)
Previously unreported

8%

24.5%

33.9% 37.7% 39.6% 38.9% 42.1%
34.3% 45.6%

7.8%

19.3%

29.3% 27.3% 36.7% 42.8% 46.5%
56.7% 46.8%

1 2 3 4 5 6 7 8 9
Number of environments in which a PPI is identifiedEnvironments in which  

a PPI is observed

1 2 3 4 5 6 7 8 9

0
10

00
20

00
30

00
30

00
N

um
be

r o
f P

PI
s

BioGRID
mDHFR-PCA (80% < PPV < 98.2%)
Previously unreported

Spearman correlation with the mutability score
-0.4 -0.2 0 0.2

Spearman correlation with PPI stability

−0.4 −0.2 0.0 0.2 0.4

Protein abundance

PPI degree, Biogrid

Expression level

Codon adaptation index

Broad conservation

Yeast conservation

Curated phenotypes

Number of domains

Genetic interaction degree

Multifunctionality

PPI degree, Tap MS

Number of complexes

Deletion fitness defect

Phenotypic capacitance

Protein length

PPI degree, Y2H

Protein disorder

dN/dSdN/dS
Protein disorder

Deletion fitness defect
Phenotypic capacitance

PPI degree, Y2H

PPI degree, Tap MS
Number of complexes

Protein length

Number of domains
Genetic interaction degree

Multifunctionality
Curated phenotypes
Broad conservation

Yeast conservation
Codon adaption index

Expression level

PPI degree, BioGRID

Protein abundance

D E

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 22, 2020. ; https://doi.org/10.1101/2020.05.20.106583doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.20.106583


 

 30 

between the PPI mutability score and other gene features, binned a gene’s PPI degree. In C-E, 
the error bars are the standard deviation from 1000 bootstrapped data sets. 
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Figure S7. PPIs with a similar mutability are more likely to be connected. (A) Degree density of 
proteins binned by the number of environments in which a PPI is detected. (B) Degree density 
of all proteins that are neighbors of proteins binned by the number of environments in which a 
PPI is detected. (C) Mutability score density of proteins binned by the number of environments 
in which a PPI is detected. (D) Mutability score density of all proteins that are neighbors of 
proteins binned by the number of environments in which a PPI is detected. Any unique protein 
that participates in a PPI within each bin was counted. The degree (A) and mutability score (C) 
of a protein were obtained from a multi-environment network that includes all PPIs detected in at 
least one environment. The degree (B) and mutability score (D) for a target protein’s neighbor 
was calculated as above, only the interaction between the target protein and its neighbor was 
first removed.  
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Figure S8. The multi-environment PPI network contains three major communities with different 
mutability scores. Boxplots and univariate scatterplots of mutability scores of communities with 
at least 10 proteins identified by (A) Fast-Greedy (B) Walktrap, and (C) InfoMAP algorithms. 
The bottom of each box, the line drawn in the box, and the top of the box represent the 1st, 2nd, 
and 3rd quartiles, respectively. The whiskers extend to 1.5 times the interquartile range. 
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Figure S9. Spearman correlation between the protein’s mutability score and other gene 
features. The error bars are the standard deviation from 1000 bootstrapped data sets. 
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Figure S10. Exploring the relationship of protein abundance, PPI abundance, and PPI 
mutability. (A) Density plot of the fitness of a PPI strain in the SD environment against the 
geometric mean protein abundance from (Ho et al., 2018). Colors are the density of points in 
hexagonal bins. (B) Linear fits to a mass-action kinetic model where the x-axis is the 
heterodimer PPI fitness expected from the homodimer fitnesses of the constituent proteins, and 
the y-axis is the measured heterodimer fitness. The left panel contains heterodimers 
significantly explained by the model that do not require a significant intercept (FDR < 0.05, see 
Methods). Colors are the R2 of the mass-action kinetics model fit. (C) The coefficients of each 
scaled feature in a logistic model predicting a good fit to the mass-action kinetics model, as fit 
by ‘glm’ function in R. (D) Density plot of the geometric mean abundance of a heterodimer pair 
against the Pearson correlation between the predicted and observed heterodimer fitness across 
conditions. Colors are the density of points in hexagonal bins. Red line is a Deming regression, r 
is the Pearson correlation. (E) Explained PPIs are composed of less abundant proteins. Box 
and dot plot of the mean protein abundance of a heterodimer for PPIs that are explained and 
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not explained by the mass-action kinetics model. Boxplot summarizes the first, second, and 
third quartiles. *** p < 10-9 Wilcoxon signed-rank test.   
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Supplementary Tables 
Tables can be downloaded from: https://osf.io/jmhrb/ 
 
Table S1. Bottleneck cell size and generation number of serial batch culture in different 
environments. “T-1” is frozen stock from which all competitions start. “T0” to “T7” are the serial 
population bottlenecks. 
 
Table S2. Read count of each double barcode at different time points in each environment. Four 
or five time points were sequenced per environment. Spike-in control PPIs were named as 
follows in the column “PPI”:  “ORF_HO:TEF1pr-DHFR1-2”, “ORF_HO:TEF1pr-linker-DHFR1-2”, 
“HO:TEF1pr-DHFR3_ORF”, and “HO:TEF1pr-linker-DHFR3_ORF” are interactions with a DHFR 
fragment that is not tethered to a yeast protein (ORF X Null in Figure 1D); “positive_DHFR” are 
yeast strains that contain a full length mDHFR under a strong promoter (DHFR + in Figure 1D); 
“negative_non_DHFR” are yeast strains that lack any mDHFR fragment (DHFR- in Figure 1D); 
“Pos_PPI_number-first(ORF1~Pos_ORF2~Pos)” and “Pos_PPI_number-
second(ORF2~Pos_ORF1~Pos)” are 70 likely protein interaction pairs; “Neg_PPI_number-
first(ORF1~Neg_ORF2~Neg)” and “Neg_PPI_number-second(ORF2~Neg_ORF1~Neg)” are 67 
random pairs. These likely protein interaction pairs and random pairs were chosen from the 
previously constructed reference sets (Liu et al., 2019; Yu et al., 2008). The suffixes of “first” 
and “second” stand for the same protein pair with a different protein chimera acting the bait 
protein (i.e. ORF1-DHFR[1,2] X ORF2-DHFR[3] and ORF1-DHFR[3] X ORF2-DHFR[1,2]).  
 
Table S3. Estimated fitness and estimation error of each double barcode in each environment.  
Spike-in controls are as in Table S2. The estimation error, d, describes the deviation of the 
predicted counts from the observed counts at different time points for each double barcode (see 
Methods). High d indicates higher error in fitness estimation. 
 
Table S4. Number of double barcodes found in the pool, mean fitness, p-value, and whether or 
not a PPI is called. For PPI calling, 1 represents a positive PPI and 0 represents a negative PPI. 
Spike-in controls are as in Table S2.  
 
Table S5. Predicted validation rates for identified PPIs in each environment. 
 
Table S6. High-confidence PPIs in each environment. In each environment, 1 represents a 
positive PPI and 0 represents a negative PPI.  
 
Table S7. Significant gene ontology terms enriched for proteins in each community of the PPI 
network as detected by the InfoMAP algorithm. 
 
Table S8. Protein features derived from the PPiSeq multi-environment network and other gene 
features. “PPI.degree.PPiSeq” is the number of PPIs detected for each protein. 
“Mean.positive.environment.number.PPiSeq” is the mean number of environments in which 
those PPIs are detected. “Standard.deviation.positive.environment.number.PPiSeq” is the 
standard deviation of the number of environments in which those PPIs are detected.   
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Methods 
1 PPiSeq library construction  
1.1 Construction of diploid PPiSeq library 
A interactome-scale protein-fragment complementation assay (PCA) screen (Tarassov et al., 
2008), found 2770 PPIs with a positive predictive value (PPV) of 98.2%. In this study, MATa bait 
(F[1,2], 1757 strains) and MAT𝛂 prey (F[3], 1135 strains) PCA strains that participated in a PPI 
with > 80% PPV (~10,000 PPIs) in (Tarassov et al., 2008) were selected for barcoding. Each 
strain was barcoded in duplicate, pooled with strains of the same mating type, and mated to 
opposite mating type strains as part of a pool to generate ~4 double barcoded strains per PPI. 
Strains lost at each stage of this process are detailed in Table SM1. The final diploid PPiSeq 
pool contained ~6 million double barcodes, representing ~1.6 million protein pairs. Controls 
added to this pool are discussed later. 
 
1.1.1 Construction of haploid PPiseq libraries 
Haploid PCA strains were picked from Yeast-Interactome Collection (Dharmacon, YSC5849) 
using the ROTOR HDA (SINGER instruments) and mated as arrays to the double barcoder 
collection on YPD agar plates (Liu et al., 2019). Following a 24-h incubation at 30 ℃, diploids 
were selected by replicating colonies onto YPD + Nat + G418 plates (bait-F[1,2]) or YPD + Hyg 
+ G418 plates (prey-F[3]) and incubating at 30 ℃ for 48-h. Selected diploids were replicated 
onto the sporulation plates (Baryshnikova et al., 2010), sealed with parafilm, and incubated at 
room temperature for a week. Sporulated bait-F[1,2] diploids were replicated onto SC - Met - 
Lys - Cys - Arg - His + Canavanine + G418 + Nat plates and incubated at 30 ℃ for 96-h to 
select MATa barcoded bait (F[1,2]) strains. Sporulated prey-F[3] diploids were replicated onto 
SC - Met - Lys - Cys - Arg - Leu + Canavanine + G418 + Hyg plates and incubated at 30 ℃ for a 
week to select for MAT𝛂 barcoded prey (F[3]) strains. To further purify barcoded haploids, they 
were replicated again onto the same selection plates and incubated at 30 ℃ for another 48-h. 
Purified haploids were stored at -80℃ in 384-well plates.  
 

Process Number of F[1,2] 
strains retained  
(number of 
barcodes) 

Number of F[1,2] 
strains lost 
(number of 
barcodes) 

Number of F[3] 
strains retained 
(number of 
barcodes) 

Number of F[3] 
strains lost 
(number of 
barcodes) 

Picking from the 
PCA collection 

1742 15 1130 5 

Mating with two 
double barcoder 
strains 

1742 (3484) 0 1116 (2232) 14 (28) 

Sporulation and 
haploid selection 

1741 (3481) 1 (3) 1113 (2222) 3 (10) 
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Replicating and 
pooling 

1741 (3481) 0 1113 (2222) 0 

Table SM1. Strain losses during barcoding and pool construction. 
 
1.1.2 Generation of the diploid PPiSeq library by bulk mating  
Frozen barcoded F[1,2] and F[3] strains were thawed and replicated into 384-well plates with 
SC - Met - Lys - Cys - Arg - His + Canavanine + G418 + Nat and SC - Met - Lys - Cys - Arg - 
Leu + Canavanine + G418 + Hyg liquid media, respectively. The cells were grown to saturation 
at 30 ℃ for 96-h. All F[1,2] and F[3] clones were pooled by pipetting, resulting in 2.13 X 1010 and 
3.36 X 1010 cells, respectively. F[1,2] and F[3] pools were each transferred to independent 
flasks of 1 L YPD + G418 liquid media and grown at 30 ℃ for 24-h. The two cell pools were 
mixed (2 L, 5.36 X 1011 cells), pelleted, resuspended in 50 mL water, plated onto 46 YPD plates 
at a density of ~1.15 X 1010 cells per plate, and incubated for 24-h at 30 °C to mate. All cells 
were scraped from YPD plates and pooled in ~250 mL of water. The number of cells in the pool 
was counted (7 X 1011 cells) and all cells were plated onto 265 YPD + Nat + Hyg + G418 plates 
at equal cell densities (~2.5 X 109 cells per plate). Cells were incubated at 30 ℃ for 48-h and 
then replica plated onto another 265 YPD + Nat + Hyg + G418 plates. After another 48-h 
incubation at 30 °C, cells were scraped from the 265 plates and pooled in ~1.3 L of water. All 
cells (~1.67 X 1012) were spun down at 1500 g, resuspended with 8.5 L YP + 2% galactose 
liquid media, and grown at 30 ℃ for 48-h. Cells were counted (~2.88 X 1012) and ~44.4% of 
cells were transferred into 16 L SC-Ura liquid media, and incubated for 72-h at 30 ℃. Cells were 
1:10 diluted into another 16 L SC-Ura liquid media and grown for another 48-h. Finally, all the 
cells were collected to form the pooled diploid PPiSeq library.  
 
1.2 Construction of barcoded DHFR-fragment control strains  
1.2.1 Overview 
Bait or prey PCA constructs that nonspecifically bind to other tagged proteins will result in false 
positive interactions calls. To screen for these promiscuous constructs (Tarassov et al., 2008), 
we constructed barcoded strains that constitutively express one of four unlinked DHFR 
fragments under the TEF1 promoter at the HO locus: linker-F[1,2], F[1,2], linker-F[3], and F[3], 
where the linker codes for a 10 amino acid (Gly.Gly.Gly.Gly.Ser)2 flexible polypeptide. These 
strains were mated to the haploid PPiSeq libraries (section 1.1.1) to generate diploid DHFR-
fragment control (ORF x Null) strains. ORF x Null control strains were spiked into the final 
diploid PPiSeq library (section 1.3). Identification and removal of promiscuous bait or prey 
constructs because of interactions with DHFR-fragment controls is described in section 6.4.   
 
1.2.2 Construction and barcoding haploid strains that express DHFR fragments 
The linker-DHFR[1,2]-NatMx and DHFR[1,2]-NatMX fragments were cloned from the plasmid 
pAG25 linker-DHFR[1,2]-NatMX (Tarassov et al., 2008) with primers oSL368 and oSL373, and 
oSL369 and oSL373, respectively (Table SM2). Similarly, the linker-DHFR[3]-HygMx and 
DHFR[3]-HygMX fragments were cloned from the plasmid pAG32 linker-DHFR[3]-HygMX 
(Tarassov et al., 2008) with primers oSL368 and oSL373, and oSL370 and oSL373, respectively. 
These primers add BamHI and XhoI restriction sites on either end of each amplicon. BamHI and 
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XhoI restriction sites were used to subclone amplicons downstream of the TEF1pr sequence in 
the pS413 TEF1pr-His3 plasmid. These plasmids were used as a PCR template to construct 
homologous recombination cassettes for integration at the HO locus. PCR was carried out using 
primers oSL378 and oSL379, which add 40-nucleotides of homology to the HO locus to either 
end of the aplicons. Amplicons were integrated into the HO locus of  BY4741 (MATa, his3△1, 
leu2△0, met15△0, ura3△0)  or BY4742 (MAT𝛂, his3△1, leu2△0, lys2△0, ura3△0) using 
standard lithium acetate transformation and selected on YPD + Nat or YPD + Hyg, respectively. 
Each of these strains was barcoded twice, as described above (section 1.1.1), resulting in 
strains ySL235-241 (Table SM3).   
 

Name Sequence Use 

oSL368 CGGGATCCATGGGCGGTGGCGGATCAGGAGG Forward primer for amplifying linker-
F[1,2] or linker-F[3] 

oSL369 CGGGATCCATGGTTCGACCATTGAACTGCATC
GTCG 

Forward primer for amplifying F[1,2] 

oSL370 CGGGATCCATGAGTAAAGTAGACATGGTTTGG
ATAGTCGGAGGCAG 

Forward primer for amplifying F[3] 

oSL373 CCGCTCGAGTCGACACTGGATGGCGGCGT Reverse primer for amplifying 
linker-F[1,2], F[1,2], linker-F[3], or 
F[3] 

oSL378 TATCCTCATAAGCAGCAATCAATTCTATCTATAC
TTTAAACATAGCTTCAAAATGTTTCTACTCCTTT
TTTACTCTTCCA 

Forward primer for amplifying 
DHFR fragment that was inserted 
into HO locus 

oSL379 ACTTTTATTACATACAACTTTTTAAACTAATATAC
ACATTTCGACACTGGATGGCGGCG 

Reverse primer for amplifying 
DHFR fragment that was inserted 
into HO locus 

Table SM2. Primers used in the construction of DHFR-fragment control strains 
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Strain Genotype Barcode 

ySL235 MATa, ybr209w:: GalCre-Lox2272/66-Lox5171/66/71-
Barcode1-5’URA3-KanMX-Lox5171,can1::MFApr1-
HIS3-MF𝛂1pr-LEU2, Ho::TEF1 promoter-linker-
DHFR[1,2]-NatMX, his3△1, leu2△0, ura3△0 

TCCTGAATTATGAAACACGT
TCTCGA 

ySL236 MATa, ybr209w:: GalCre-Lox2272/66-Lox5171/66/71-
Barcode2-5’URA3-KanMX-Lox5171,can1::MFApr1-
HIS3-MF𝛂1pr-LEU2, Ho::TEF1 promoter-linker-
DHFR[1,2]-NatMX, his3△1, leu2△0, ura3△0 

GGTTCAACTAGCAATAGTC
TTGCTTA 
 

ySL237 MATa, ybr209w:: GalCre-Lox2272/66-Lox5171/66/71-
Barcode1-5’URA3-KanMX-Lox5171,can1::MFApr1-
HIS3-MF𝛂1pr-LEU2, Ho::TEF1 promoter-DHFR[1,2]-
NatMX, his3△1, leu2△0, ura3△0 

TCCTGAATTATGAAACACGT
TCTCGA 

ySL238 MATa, ybr209w:: GalCre-Lox2272/66-Lox5171/66/71-
Barcode2-5’URA3-KanMX-Lox5171,can1::MFApr1-
HIS3-MF𝛂1pr-LEU2, Ho::TEF1 promoter-DHFR[1,2]-
NatMX, his3△1, leu2△0, ura3△0 

GGTTCAACTAGCAATAGTC
TTGCTTA 

ySL239 MAT𝛂, ybr209w:: GalCre-Lox66/71-KanMX-3’URA3-
Barcode1-LoxP-Lox2272/71, can1::MFApr1-HIS3-
MF𝛂1pr-LEU2, Ho::TEF1 promoter-linker-DHFR[3]-
HygMX, his3△1, leu2△0, ura3△0 

TCCAGAAATACGTTACGGC
TTAAGTT 

ySL240 MAT𝛂, ybr209w:: GalCre-Lox66/71-KanMX-3’URA3-
Barcode2-LoxP-Lox2272/71, can1::MFApr1-HIS3-
MF𝛂1pr-LEU2, Ho::TEF1 promoter-linker-DHFR[3]-
HygMX, his3△1, leu2△0, ura3△0 

CGGGCAATTTGCTTATCAC
TTGAAAT 

ySL241 MAT𝛂, ybr209w:: GalCre-Lox66/71-KanMX-3’URA3-
Barcode1-LoxP-Lox2272/71, can1::MFApr1-HIS3-
MF𝛂1pr-LEU2, Ho::DHFR[3]-HygMX, his3△1, leu2△0, 
ura3△0 

AGGGCAAGAGGATTCGATG
TTCCACT 

ySL242 MAT𝛂, ybr209w:: GalCre-Lox66/71-KanMX-3’URA3-
Barcode2-LoxP-Lox2272/71, can1::MFApr1-HIS3-
MF𝛂1pr-LEU2, Ho::DHFR[3]-HygMX, his3△1, leu2△0, 
ura3△0 

CATCCAAGGAGATTGACGA
TTAAGAT 

Table SM3. Barcoded haploid DHFR-fragment control strains 
 
1.2.3 Bulk mating of barcoded DHFR-fragment control strains with haploid PPiSeq 
libraries 
Pooled F[1,2] and F[3]  haploid PPiSeq libraries were constructed as described above (section 
1.1.2). Approximately 1.5 X 109 cells of the pooled MATa PPiSeq library (~2 X 1010 cells) and 
~1.5 X 109 cells of the pooled MAT𝛂 PPiseq library (~3 X 1010 cells) were inoculated into 75 mL 
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YPD + Nat + G418 and 75 mL YPD + Hyg + G418 liquid media, respectively, and grown for 16-
h. Meanwhile, barcoded MATa and MAT𝛂 fragment control strains were each inoculated into 3 
mL YPD + Nat + G418 or YPD + Hyg + G418 liquid media, respectively, and grown for 24 hours. 
1 mL of each of the 4 barcoded MATa fragment control strains (ySL235-238) was added to 80 
mL YPD + Nat + G418 liquid media and grown for 16 hours. Similarly, 1 mL of each of the 4 
barcoded MAT𝛂 fragment control strains (ySL239-242) was added to 80 mL YPD + Hyg + G418 
liquid media and grown for 16-h. These fragment control strain libraries were each mixed with 
the corresponding haploid PPiSeq library at equal cell numbers to yield mating pools of 2 X 1010 
cells. Mating pools were pelleted, resuspended in water and plated on two YPD plates at a 
density of 1010 cells/plate. Cells on mating plates were incubated for 24-h at 30 ℃, scraped and 
pooled in water (~3.6 X 1010 cells). Cells were plated onto 10 YPD + Nat + Hyg + G418 plates at 
equal cell densities, incubated for 48-h at 30 ℃, and replica plated onto another 10 YPD + Nat + 
Hyg + G418 plates. After another 48-h incubation at 30 ℃, cells were scraped, pooled in water, 
counted (~6 X 1010 for each mating), spun down, transferred to 350 mL YP + Galactose liquid 
media, and grown for 24-h at 30℃. Next, 120 mL cells from each mated pool were transferred 
into 1 L SC - Ura liquid media and incubated for 48-h at 30 ℃. Cells from each pool were diluted 
1:10 into another 1 L of SC - Ura liquid media and grown for another 48-h. The two polls were 
mixed at a ratio such that the final pool contains ~2000 copies of each genotype.  
 
1.3 Adding spike-in controls to the diploid PPiSeq library 
We spiked-in several different barcoded control strains into the diploid PPiSeq library at various 
frequencies to aid in the downstream data analysis (Table SM4). In addition to DHFR-fragment 
controls developed here (section 1.2.3), several other previously developed controls were 
spiked-in: 10 positive control strains containing a full length of mDHFR (DHFR+), 100 negative 
control strains lacking a mDHFR (DHFR-), a set of 70 likely protein-protein interaction pairs 
(positive reference set or PRS) (Liu et al., 2019; Yu et al., 2008), and a set of 67 random pairs 
(random reference set or RRS) (Liu et al., 2019; Yu et al., 2008). After mixing, the pool of 1.5 x 
1011 cells was centrifuged, washed with SC - Ura liquid media, transferred into 6 L SC-Ura liquid 
media, and grown at 30 ℃ for 24-h to form the final PPiSeq library.  
 

Strain Description Estimated Number of 
Barcodes 

Initial Barcode 
Frequency 

Use 

Diploid PPiSeq Library 7.5 x 106 1.3 x 10-7 PPI screening 

DHFR-fragment 
controls (ORF x Null) 

2.3 x 104 1.1 x 10-7 Filter promiscuous bait 
or prey, null distribution 
for PPI significance 
tests 

DHFR+ controls 10 1 x 10-9 Normalize fitnesses 
across environments 
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DHFR- controls 100 1.3 x 10-6 Normalize fitnesses 
across environments 

Positive Reference Set 
(PRS) 

426 1.3 x 10-6 Benchmarking PPiSeq 

Random Reference Set 
(RRS) 

380 1.3 x 10-6 Benchmarking PPiSeq 

Table SM4. Strains in the PPiSeq library 
 
2 Cell growth 
The final PPiSeq library (section 1.3) was grown in serial batch culture in 14 environments with 
0.5 μg/mL methotrexate, 9 of which were used for PPI detection (Table SM5, see below for a 
discussion why some environments could not be used). The PPiSeq library was grown in the 
SD environment twice, with replicates being performed in different labs and at different times 
(Figure 1F). For each environment, ~7.4 X 109 of frozen cells were inoculated into 1.2 L media 
in a 2 L Delong flask (Bellco). The cells were grown for a total of 21 generations, bottlenecking 
1:8 every 48-h (~3 generations between transfers). Bottlenecks were performed by pelleting 150 
mL of the evolution and then transferring the pellet into 1.2 L of fresh media. At each bottleneck, 
the cell concentration was measured to estimate the number of generations that passed. The 
~1.05 L of cells remaining after bottlenecking was centrifuged, resuspended in water (~1 X 109 
cells/mL) and then stored in -20 ℃ for downstream processing. 
 
The methotrexate concentration chosen (0.5 μg/mL) was previously determined to cause a ~30% 
fitness deficit for cells that lack DHFR in SD (Schlecht et al., 2017). Prior to barcode sequencing, 
we assessed whether this methotrexate concentration causes a similar fitness deficit in the 
other environments by monitoring growth of cells that lack DHFR (DHFR- control stains) in that 
environment with or without the addition of methotrexate (Figure SM1). To our surprise, the 
fitness cost of 0.5 μg/mL methotrexate varied considerably between environments, with some 
environments showing similar growth curves of the DHFR- cells in the presence and absence of 
methotrexate. Because our ability to detect PPIs depends on methotrexate exerting a large 
fitness cost in the absence of any DHFR molecules, 5 environments with small fitness costs 
were not processed further. In future studies, we recommend first tuning the methotrexate 
concentration in each environment so that all environments cause a similar fitness deficit.   
 

Laboratory condition 

Condition Component Incubation 
Temperature  

PPI detection 
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Synthetic Defined 
(SD) 

1.7 g/L yeast nitrogen base (w/o 
amino acids and ammonium 
sulfate) 
72 mg/L histidine 
5 g/L ammonium sulfate 
360 mg/L leucine 
20 g/L glucose 
0.5 μg/mL methotrexate 

30 ℃ 

 

Yes 

Abiotic stress conditions  

H2O2 SD + 0.001% H2O2  30 ℃ Yes 

16 ℃ SD  16 ℃ Yes 

37 ℃ SD  37 ℃ No 

NaCI (0.4 M) SD + 0.4 M NaCl 30 ℃ Yes 

NaCI (1 M) SD + 1 M NaCl 30 ℃ No 

Addition of small molecules  

Forskolin SD + 20 μM forskolin 30 ℃ Yes 

Doxorubicin SD + 6 μM doxorubicin 30 ℃ Yes 

Hydroxyurea SD + 10 mM hydroxyurea 30 ℃ Yes 

FK506 SD + 50 μM FK506 30 ℃ Yes 

Rapamycin SD + 200 nM rapamycin 30 ℃ No 

Altered carbon or nitrogen  

Raffinose 1.7 g/L yeast nitrogen base  
5 g/L ammonium sulfate 
72 mg/L histidine 
360 mg/L leucine 
20 g/L raffinose 

30 ℃ Yes 

3% ethanol and 3% 
glycerol 

1.7 g/L yeast nitrogen base  
5 g/L ammonium sulfate 
72 mg/L histidine 
360 mg/L leucine 
3% ethanol 
3% glycerol 

30 ℃ No 
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Methionine 1.7 g/L yeast nitrogen base 72  
mg/L histidine 
360 mg/L leucine 
11.34 g/L methionine 
20 g/L glucose 

30 ℃ No 

Leucine 1.7 g/L yeast nitrogen base 
72 mg/L histidine 
10.32 g/L leucine 
20 g/L glucose 

30 ℃ No 

Table SM5. Description of the environmental conditions tested. Cells were shaken at 220 rpm. 
In SD, 0.2% DMSO was added as a vehicle control. 
 

 
Figure SM1. The OD 600 trajectories of DHFR(-) strain in various conditions with and without 
0.5 μg/mL methotrexate 
 
3 Barcode Sequencing 
Genomic DNA was extracted using the MasterPure Yeast DNA purification Kit (epicentre) with 
modifications, as described (Schlecht et al., 2017). Double barcodes were then amplified using 
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a two-step PCR protocol (Levy et al., 2015; Liu et al., 2019). First, a 4-cycle PCR was 
performed with OneTaq polymerase (New England Biolabs) in 200 reactions (125 μL/reaction), 
with 500 ng of genomic DNA template per reaction (~500 copies per double barcode total). 
Primers for this reaction follow this format: 
Forward: 
ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNXXXXXTTAATATGGACTAAAG
GAGGCTTTT 
Reverse: 
CTCGGCATTCCTGCTGAACCGCTCTTCCGATCTNNNNNNNNXXXXXXXXXTCGAATTCAAG
CTTAGATCTGATA. 
The Ns in these sequences correspond to any random nucleotide and are used as Unique 
Molecular Identifiers (UMIs) in the downstream analysis to remove skew in the counts caused 
by PCR jackpotting. The Xs correspond to a one of several multiplexing tags, which allows 
different samples to be distinguished when loaded on the same sequencing flow cell. The 
complete list of all primers used here are in Table S3 of Liu et al., 2019 (Liu et al., 2019). The 
PCR products were pooled and purified with NucleoSpin Gel and PCR Clean-up columns 
(Macherey-Nagel) at 20 reactions per column. A second 22-cycle PCR was performed with 
PrimeSTAR HS polymerase (Takara) in 20 125 μL reactions. For each reaction, 30 μL of 
purified product from the previous PCR was used as template, and primers were standard 
Illumina paired-end ligation primers (pE1 and pE2 (Liu et al., 2019)). PCR products were pooled 
and purified by NucleoSpin Gel and PCR Clean-up columns (Macherey-Nagel) at 5 reactions 
per column. Amplicons were further purified by agarose gel electrophoresis. Because barcode 
amplicons may form heteroduplex DNA, with a different electrophoretic mobility, the complex 
PCR product typically formed a smear with apparent sizes between 400 bp and 3 kb. To prevent 
biases that may be caused by differences between barcodes in the propensity to form 
heteroduplex molecules, we cut out an agarose chunk that spanned this entire smear and used 
this for sequencing. Purified amplicons were quantified by Qubit fluorometry (Life Technologies, 
Q32854), pooled, and pair-end sequenced on Illumina Hiseq 4000 with 25% balanced DNA 
spike-in.  
 
4 Barcode sequencing analysis 
4.1 Barcode counting 
Barcode reads were processed with custom written software in Python, as described (Levy et al., 
2015; Schlecht et al., 2017), with modifications (available in Github 
https://github.com/sashaflevy/PPiSeq). Briefly, sequences were first sorted by their multiplexing 
tags, and then parsed to isolate the two barcodes (26 base pairs each) and two UMIs (8 base 
pairs each). Barcode reads were removed if they failed to pass any of three quality filters: (1) 
The average Illumina quality score for both barcode regions must be greater than 30, (2) the 
first barcode must match the regular expression: 
'\D*?(.ACC|T.CC|TA.C|TAC.)\D{4,7}?AA\D{4,7}?TT\D{4,7}?TT\D{4,7}?(.TAA|A.AA|AT.A|ATA.)\D
*' 
(3) the second barcode must match the regular expression: 
'\D*?(.ACC|T.CC|TA.C|TAC.)\D{4,7}?AA\D{4,7}?AA\D{4,7}?TT\D{4,7}?(.TAC|T.AC|TT.C|TTA.)\
D*'.  Each barcode (of 2) was independently clustered with Bartender (default settings except z 
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= -1) (Zhao et al., 2018). Bartender cluster centroids (with associated read indices) were 
matched to the known barcode sequences (Liu et al., 2019) if they were less than 2 mismatches 
away (Levenshtein distance). These matches provided a list of all read indices for a particular 
known barcode. The read indices for all unique double barcodes were identified, and the 
number of unique UMI combinations at these indices was used as the ultimate count for each 
double barcode. For all time points and conditions, the average double barcode read count was 
greater than 30.  
 
4.2 Correction for putative PCR chimeras 
PCR chimeras are two barcodes that stem from two different templates that are merged during 
PCR or sequencing (Jaffe et al., 2019; Schlecht et al., 2017; Sinha et al., 2017). PCR chimeras 
are most easily detected by the presence of an erroneous double barcode (that is not in the pool) 
made from two single barcodes that are in the pool, but paired with other barcodes. However, 
PCR chimeras can also inflate counts of double barcodes that are in the pool. We have 
previously found that the number of PCR chimeras for a barcode pair (BC1-BC2) scales linearly 
with the product of the total count of each constituent barcode in the pool across all double 
barcodes (BC1*BC2) (Schlecht et al., 2017). This linear relationship can vary subtlety from 
sample to sample. To determine the relationship for each sample, we therefore fit a line (using 
the  lm() function in R) for each BC1-BC2 combination that did exist in the experimental pool at 
each time point in each environment. This line was used to estimate the expected number of 
PCR chimeras for each BC1-BC2 combination that did exist in the pool. The expected number 
of PCR chimeras was subtracted from the observed BC1-BC2 read count to generate a 
corrected read count.    
 
5 Fitness estimation 
Fitness of each double barcode was estimated by likelihood maximization using Fit-Seq (default 
settings) (Li et al., 2018). Some double barcodes were present in the pool at low or 
undetectable frequencies, making fitness estimation unreliable. Prior to performing Fit-Seq, we 
therefore merged all lineages that were likely to result in a poor fitness estimate into a single 
large lineage. If a lineage met any of the following criteria, it was merged: 1) it contains less than 
three times points with a read count greater than zero, 2) it has no time point with greater than 4 
reads, or 3) it has less than 10 reads across all time points. In all environments, the merged 
lineage trajectory was similar to negative control lineages, indicating that merged lineages are 
likely to be negative for PPIs. To remove poor fitness estimates that were not initially merged, 
we calculated the difference (d) between the observed trajectory and the predicted trajectory 
(from Fit-Seq) given the estimated fitness:    

𝑑	 = 	(å )
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑐𝑜𝑢𝑛𝑡𝒊	 − 	𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑐𝑜𝑢𝑛𝑡#

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑐𝑜𝑢𝑛𝑡#
8
$

 

where i is the generation number.  
We defined lineages with poor fitness estimates as those with d >= 19 (Figure SM2), and 
removed them from downstream analyses.   
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Figure SM2. Distribution of difference (d) between observed trajectory and predicted trajectory. 
Blue line represents d = 19, a threshold used to remove poor estimates.  
 
6 Identification of PPIs 
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6.1 Overview 
In each environment and for each protein pair, we calculated a mean fitness value (f) and a p-
value (p) against negative controls from its replicate fitness measurements. We called PPIs 
using a combination of f and p by using a dynamic threshold that rendered the best balance 
between precision and recall, as assessed using reference sets constructed from the BioGRID 
database. We removed PPIs containing “promiscuous proteins” by identifying proteins that 
interact with untethered mDHFR fragment controls.   
 
6.2 Merging two replicate SD datasets 
Since we collected fitness measurements from two independent growth cultures in the SD 
environment, we merged the data from these two experiments prior to PPI calling. Because the 
range of fitness values of the two SD datasets differed slightly, we first normalized the fitness 
value for each barcode: 
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝐹𝑖𝑡𝑛𝑒𝑠𝑠%&'()*+ =

,#-.+//!"#$%&'	0	,#-.+//()*+(-)
,#-.+//()*+(/)	0	,#-.+//()*+(-)

	, 
where Fitnessbarcode is the fitness of each double barcoded PPiSeq strain, FitnessDHFR(-)  is the 
mean fitness of 100 control strains that lack a mDHFR reporter, and FitnessDHFR(+) is the mean 
fitness of 10 control strains that have a full-length mDHFR reporter under the TEF1 promoter. 
We considered all barcodes that mark the same PPI from two datasets as replicate 
measurements for that PPI. To compare PPIs called in the SD environment with other 
environments (Figure 2 and after), we removed 783 PPIs that were called using a single barcode 
(measured twice in SD, but only once in all other environments).  
 
6.3 Calculating a p-value for each protein-protein pair 
To identify positive PPIs in each environment, we first generated a null fitness distribution from 
control strains (ORF x Null; 17,594 double barcodes) that contain a DHFR-fragment control 
(F[1,2] or F[3]) that is not fused with an ORF paired with an ORF-DHFR fusion (F[3] or F[1,2], 
respectively). For each protein pair with at least 2 fitness scores (2 double barcodes), we 
compared the replicate fitness scores against this null distribution using a one-sided Welch’s t-
test and obtained a p-value for each protein pair. Protein pairs with only one fitness score were 
not considered for PPI detection.  
 
6.4 Construction of positive reference sets  
A positive reference set in each environment was constructed by identifying high-confidence 
PPIs from the BioGRID database (BIOGRID-organism-Saccharomyces_cerevisiae_S288C-
3.4.160) (Stark et al., 2006). We defined any protein pair identified as a PPI by at least 3 
separate methods, and at least one binary method (“Two-hybrid”, “FRET”, “PCA”), to be a high-
confidence PPI. For each environment, we selected this high-confidence set from all protein 
pairs with at least two fitness scores in that environment (i.e. it has a p-value determined in 
section 6.3) as the positive reference set (SD: 580 protein pairs; Forskolin: 534; FK506: 517; 
NaCl: 563; Raffinose: 432; Hydroxyurea: 576; H2O2: 585; Doxorubicin: 561; 16 °C: 578). We 
note that most previously defined PPIs have been observed in standard growth media (e.g. SD), 
so we expect that some fraction of positive reference PPIs may not be present in other 
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environments. In the absence of any previous environment-specific PPI calls, these positive 
reference sets were nevertheless useful for selecting thresholds for our PPI calling (see below).  
 
6.5 Construction of random reference sets 
Fifty random reference sets were constructed in each environment by sampling from all protein 
pairs that we assayed with no evidence of being a PPI in the BioGRID database. Because most 
protein protein pairs are not expected to physically interact, we used this random reference set 
as putative negative PPIs for selecting thresholds for our PPI calling. The number of protein 
pairs selected for the random reference set was chosen to reflect the percentage of protein 
pairs in our screen that have been identified as a PPI in BioGRID by any form of evidence 
(~1%). That is, in an environment with 600 protein pairs in its positive reference set, we selected 
~60,000 (100x) protein pairs for each random reference set. Choosing a random reference set 
of this size allows us to more accurately report positive predictive values (Jensen and Bork, 
2008). 
We note that the number of PPIs included in the positive and negative reference sets impact 
positive predictive values (PPVs), and thus PPVs between studies that use different sized 
reference sets are not directly comparable (Jensen and Bork, 2008). For example, the ratio of 
number of PPIs in the positive reference set over the negative reference set is ~40 times 
smaller in the proteome-scale PCA study, resulting in higher PPVs (Jensen and Bork, 2008; 
Tarassov et al., 2008). If the proteome-scale PCA study used similar sized reference sets as we 
do here, the PPV for positive calls would be comparable to this study.  
 
6.6 Calling positive PPIs using a dynamic threshold on mean fitness and p-value 
PPIs were identified in each environment using a combination of the mean fitness (f) and p-
value (Log10(p-value): p) for each protein pair in that environment. To determine dynamic f and p 
thresholds for a PPI call, we first chose many discrete threshold combinations of f (0 to 0.5) and 
p (-5 to 0) and determined the PPV for each using the positive and random reference sets to 
estimate true and false positives: 
𝑃𝑃𝑉	 = 	 12

12	3	,2
, 

where TP is the number of true positives. FP is the number of false positives.  
Many combinations of discrete f and p values have a similar PPV (Figure SM3A). However, the 
PPV for a given f and p can vary when using different random reference sets (Figure SM3B and 
SM4). Therefore, to determine the mean relationship between f and p for each PPV in an 
environment, we fit a sigmoidal curve [nls(f ~ SSlogis(p, Asym, xmid, scal) in R] using data from 
all 50 random reference sets in that environment. Data at p < -4 (p-value < 10-4) was generally 
too sparse to confidently fit a regression. We therefore applied a more conservative constant f 
threshold at these p (threshold equals the minimum f when p >= -4). We next considered each 
PPV regression line as a potential dynamic threshold for PPI calling. To determine the optimal 
dynamic threshold for each environment (the PPV regression that renders the best balance of 
precision and recall), we calculated the number of true positives (TP), true negatives (TN), false 
positives (FP), and false negatives (FN). The threshold with the maximal Matthews correlation 
coefficient (MCC) (Matthews, 1975) was chosen.  

𝑀𝐶𝐶	 = 	
𝑇𝑃	 × 	𝑇𝑁	 − 	𝐹𝑃	 × 	𝐹𝑁	

D(𝑇𝑃	 + 	𝐹𝑃)	(𝑇𝑃	 + 	𝐹𝑁)	(𝑇𝑁	 + 	𝐹𝑃)	(𝑇𝑁	 + 	𝐹𝑁)
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The chosen threshold and its performance in each environment are shown in Figure SM4 and 
Table SM6. In all cases, using a dynamic threshold showed superior performance over any 
combination of discrete thresholds (Figure SM5).  
 
To examine whether our analyses were robust to different thresholds, we also defined a 
conservative dynamic threshold with an FPR < 0.1%. This strict threshold identifies “higher 
confidence” PPIs in each environment (Table SM6).  
 

 
Figure SM3. Defining a dynamic threshold for PPI calling. (A) A discrete combination of a 
fitness threshold (f) and a p-value threshold (p) results in a PPV. Colored lines are fitness and p-
value thresholds that result in the same PPV in SD. (B) Density plot of all f and p combinations 
that result in a PPV of 0.7 using 50 different random reference sets in SD. The black line is the 
fitted sigmoid model that is used for the dynamic threshold. 
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Figure SM4. Density plot of the dynamic thresholds in each environment. Data were split into 
two groups: p < -4 and p >= -4. For p >= -4, as in Figure SM3B, a sigmoidal function was fit to f 
and p combinations that result in the same PPV value. For p < -4, the fitness threshold was set 
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to equal the minimum fitness value when p >= -4. The dynamic threshold that results in the 
maximum MCC in each environment was shown in the plot.  
 

Dynamic threshold in each environment that optimizes balance between precision and recall 

Environme
nt 

Optimal_ 
threshold 

FPR TPR PPV MCC F1_ score Detected_ 
PRS (70) 

Detected_ 
RRS(67) 

SD1 0.7 0.002830 0.4647 0.6075 0.5274 0.5266 20 3 

SD2 0.73 0.002315 0.4317 0.6386 0.5214 0.5152 20 2 

SD-merge 0.7 0.002473 0.4124 0.6187 0.5012 0.4949 19 3 

FK506 0.72 0.001960 0.4352 0.6551 0.5307 0.5230 20 3 

H2O2 0.73 0.002232 0.4342 0.6517 0.5283 0.5212 20 3 

Hydroxyure
a 

0.74 0.002220 0.4569 0.6613 0.5461 0.5405 19 1 

NaCl 0.73 0.001450 0.2895 0.6462 0.4292 0.3999 18 1 

Forskolin 0.64 0.003727 0.5424 0.5608 0.5476 0.5514 22 2 

Raffinose 0.48 0.008105 0.5633 0.4001 0.4688 0.4679 20 2 

Doxorubicin 0.77 0.001765 0.3440 0.6425 0.4667 0.4481 18 2 

16 °C 0.41 0.002810 0.1367 0.3164 0.2030 0.1909 21 3 

Strict dynamic threshold in each environment for “higher confidence” PPI calls 

Environme
nt 

Optimal_ 
threshold 

FPR TPR PPV MCC F1_ score Detected_ 
PRS (70) 

Detected_ 
RRS(67) 

SD-merge 0.79 0.0009452 0.2839 0.7454 0.4571 0.4112 17 2 

FK506 0.78 0.0009783 0.3384 0.7476 0.5004 0.4659 18 2 

H2O2 0.8 0.0008730 0.3060 0.7717 0.4831 0.4382 17 2 

Hydroxyure
a 

0.8 0.0009849 0.3221 0.7566 0.4908 0.4519 17 1 

NaCl 0.76 0.0009651 0.2374 0.6928 0.4026 0.3536 18 1 

Forskolin 0.77 0.0009215 0.3027 0.7427 0.4714 0.4301 17 1 

Raffinose 0.56 0.004454 0.4265 0.4793 0.4470 0.4513 18 1 

Doxorubicin 0.82 0.0009894 0.2692 0.7156 0.4359 0.3912 17 2 

16 °C 0.51 0.0009002 0.07138 0.4323 0.1725 0.1225 17 3 

Table SM6. Metrics for the dynamic thresholds used in each environment. “FPR”: false positive 
rate; “TPR”: true positive rate; “PPV”: positive predictive value; “MCC”: Matthews correlation 
coefficient; “Detected_PRS(70)”: 70 likely protein interaction pairs in a positive reference set; 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 22, 2020. ; https://doi.org/10.1101/2020.05.20.106583doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.20.106583


 

 53 

“Detected_RRS(67)”: 67 random pairs in a random reference set (Liu et al., 2019; Yu et al., 
2008).  
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Figure SM5. Dynamic thresholds (red) of f and p have a higher positive predictive value (PPV) 
than most discrete combinations (blue). Points represent the PPVs for dynamic thresholding 
and for all combinations of discrete fitness and p-value thresholds underlying a constant range 
of false positive rates obtained from the optimal dynamic threshold in each environment.  
 
6.7 Detection and removal of promiscuous proteins 
We excluded from our PPiSeq library any proteins that have been previously found to 
promiscuously form (likely spurious) PPIs in standard growth conditions (Tarassov et al., 2008). 
However, new promiscuous proteins may arise in other conditions screened here. We detected 
these promiscuous bait or prey constructs by determining if a PPI was called when it was paired 
with a DHFR-fragment control (see section 1.2 and 1.3). If a bait or prey construct was identified 
as promiscuous in one environment, all PPIs containing that construct were removed in that 
environment. If a bait or prey construct was identified as promiscuous in two or more 
environments, all PPIs containing that construct were removed from all environments. 
Promiscuous proteins are summarized in Table SM7. 
 

Protein 

Positive_
environm
ent_numb
er 

SD_merg
e H2O2 

Hydroxyu
rea 

Doxorubi
cin Forskolin Raffinose NaCl FK506 16 ℃ 

YMR120C 6 1 1 1 0 1 1 0 1 0 

YIL143C 6 1 1 1 0 1 1 1 0 0 

YLL034C 5 1 1 0 1 0 0 1 0 1 

YPL139C 4 1 1 0 0 0 0 1 1 0 

YGR278W 2 0 1 0 0 0 0 1 0 0 

YPL112C 2 0 0 0 1 0 0 1 0 0 

YIL070C 2 0 0 0 1 0 0 0 1 0 

YHL007C 2 0 0 0 1 0 0 0 1 0 

YDR452W 2 0 0 0 1 0 0 0 1 0 

YOL147C 1 0 1 0 0 0 0 0 0 0 

YER087W 1 0 0 0 1 0 0 0 0 0 

YER063W 1 0 0 0 1 0 0 0 0 0 

YOR323C 1 0 0 0 1 0 0 0 0 0 

YNL064C 1 0 0 0 1 0 0 0 0 0 

YKR080W 1 0 0 0 0 1 0 0 0 0 

YJL153C 1 0 0 0 0 1 0 0 0 0 

YDL208W 1 0 0 0 0 0 0 1 0 0 

YLR182W 1 0 0 0 0 0 0 1 0 0 

YPR124W 1 0 0 0 0 0 0 1 0 0 

YHR114W 1 0 0 0 0 0 0 1 0 0 
YDR381C
-A 1 0 0 0 0 0 0 1 0 0 

YGR198W 1 0 0 0 0 0 0 1 0 0 
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YDR171W 1 0 0 0 0 0 0 1 0 0 

YGR130C 1 0 0 0 0 0 0 1 0 0 

YLL022C 1 0 0 0 0 0 0 1 0 0 
YMR136
W 1 0 0 0 0 0 0 1 0 0 

YKL010C 1 0 0 0 0 0 0 1 0 0 

YCR033W 1 0 0 0 0 0 0 1 0 0 

YPL083C 1 0 0 0 0 0 0 1 0 0 

YOR360C 1 0 0 0 0 0 0 1 0 0 

YOR393W 1 0 0 0 0 0 0 1 0 0 

YNL026W 1 0 0 0 0 0 0 1 0 0 

YGR195W 1 0 0 0 0 0 0 1 0 0 

YOR306C 1 0 0 0 0 0 0 1 0 0 

YDL093W 1 0 0 0 0 0 0 1 0 0 

YCR059C 1 0 0 0 0 0 0 1 0 0 

YOL081W 1 0 0 0 0 0 0 1 0 0 

YGR140W 1 0 0 0 0 0 0 1 0 0 

YKL139W 1 0 0 0 0 0 0 1 0 0 
YEL017C-
A 1 0 0 0 0 0 0 0 1 0 

YDL112W 1 0 0 0 0 0 0 0 1 0 

YDR057W 1 0 0 0 0 0 0 0 1 0 

YFR001W 1 0 0 0 0 0 0 0 0 1 

YJL124C 1 0 0 0 0 0 0 0 0 1 

YDR151C 1 0 0 0 0 0 0 0 0 1 

YBR057C 1 0 0 0 0 0 0 0 0 1 

YHR146W 1 0 0 0 0 0 0 0 0 1 

YDR379W 1 0 0 0 0 0 0 0 0 1 

YDR513W 1 0 0 0 0 0 0 0 0 1 

YMR227C 1 0 0 0 0 0 0 0 0 1 

YDR420W 1 0 0 0 0 0 0 0 0 1 

Table SM7. Summary of promiscuous proteins that interact with a mDHFR fragment that is not 
tether to any protein. Promiscuous protein and non-promiscuous proteins are represented by 1 
and 0, respectively, in each environment. 
 
7 PPI validation by split mDHFR clonal growth dynamics 
MATa (BAIT-DHFR-F[1,2]-NatMX) and MAT𝛂 (PREY-DHFR-F[3]-HgyMX) PCA strains were 
cherry-picked from the Yeast-Interactome Collection (Dharmacon, YSC5849) and mated on 
YPD plates using a ROTOR HDA (SINGER instruments). A negative control diploid strain that 
lacks DHFR was generated by mating a MATa (HO::NatMX) strain with a MAT𝛂 (HO::HygMx) 
strain. Following mating, cells were plated onto YPD + Nat + Hyg agar and grown for 48-h at 
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30 °C. Each diploid colony was re-arrayed into 3 wells of YPD + Nat + Hyg liquid media in the 
same 96-well plate. Negative control diploids were manually inoculated into 6 wells of each 96-
well plate. Plates were grown for 24-h at 30 °C, and then stored in 15% glycerol at -80 °C. 
Frozen cells were thawed and inoculated into a new 96-well plate filled with yeast nitrogen base 
+ ammonium sulfate + His + Leu + Ura + glucose and grown for 48-h at 30 °C. Cells were next 
inoculated into a fresh 96-well plate containing the condition media and grown for 48-h at 30 °C. 
Growth conditions are as listed in Table SM5, plus an additional 72 mg/L uracil, since these 
diploids do not contain URA3. For growth curve measurements, cells were re-inoculated into 
fresh media, and the optical density (OD600) of each culture was monitored every 15 mins for 
48-h using a GENios microplate reader (Tecan). The optical density trajectory of each strain 
was also measured in the absence of methotrexate (MTX-) as a control. The area under the 
curve (AUC) for each well was calculated as the sum of all OD readings right after saturation 
(40-h for MTX + and 25-h for MTX-). We compared the replicate AUCs of each protein pair 
(AUCtarget MTX + - AUCtarget MTX -) against those of negative controls (AUCcontrol MTX + - AUCcontrol MTX -) 
using a one-sided Welch’s t-test, and calculated an adjusted p-value (Q-value) for each protein 
pair. A protein pair was considered as a validated PPI if Q-value <= 0.05. Since there is a 
marginal difference of AUC between positive PPIs and the negative controls in the absence of 
MTX, we did not measure AUCs without MTX when validating PPI dynamics across different 
conditions. The change in AUC for a protein pair in a specific condition compared to SD was 
calculated as follows: 
 

𝐴𝑈𝐶	𝑐ℎ𝑎𝑛𝑔𝑒().*#-#). 	

= (
𝐴𝑈𝐶-&'5+-	6173 	− 	𝐴𝑈𝐶().-')8	6173

𝐴𝑈𝐶().-')8	6173
)().*#-#). 	

− 	(
𝐴𝑈𝐶-&'5+-	6173 		− 		𝐴𝑈𝐶().-')8	6173

𝐴𝑈𝐶().-')8	6173
)9:	 

 
8 Network density within Gene Ontology terms  
Gene Ontology (GO) terms of each protein were obtained from SGD (20190405, 
https://downloads.yeastgenome.org/curation/literature/go_slim_mapping.tab). Non-informative 
GO terms (“cellular_component”, “biological_process”, “molecular_function”, 
“not_yet_annotated”, “other”) were removed. GO terms cover three domains: cellular 
compartment (CC), biological process (BP), and molecular function (MF). In this analysis, a PPI 
is considered as an interaction between two GO terms. For each GO term interaction, the 
interaction density was calculated as the ratio of the number of PPIs identified over the number 
of protein pairs assayed. To estimate GO term enrichment in our PPI network, we constructed 
1000 random networks by replacing each bait or prey protein that was involved in a PPI with a 
randomly chosen protein from all proteins in our screen. This randomization preserves the 
degree distribution of the network. The interaction density for a GO term pair was calculated 
across all random networks and the distribution of network densities was used to assess 
statistical significance of the real network using a one-way Fisher-Pitman permutation test 
(Hothorn et al., 2006). The coefficient of variation (CV) of interaction density is the variability in 
PPI number for each GO term pair across all 9 environments tested. The variability for an 
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individual GO term was calculated by averaging the CVs for all GO term interactions in which it 
participates. 
 
9 Modeling validation rate  
For each PPI, we obtained three measurements: the mean fitness value (f), the log10(p-value) 
against negative controls (p), and the number of environments in which the PPI is detected (n).  
In section 6, we identified positive PPIs by using a combination of f and p. In section 7, we re-
tested 502 PPIs by comparing their optical density growth trajectories against controls. With this 
validation data, we aimed to predict a validation rate (v) for each PPI based on f and n. Each of 
these two features was a good predictor by itself (Figures SM6A, and B). To further improve 
predictions, we split the 502 re-tested PPIs into different bins of f and n. When binning by f for 
example, if there are 50 PPIs with 0.25 < f <= 0.26, and 45 of them re-tested as positive, then 
vbin is 0.9 (45/50), fbin is the mean f of the 50 PPIs, and nbin is the mean n of the 50 PPIs. 
Similarly, when binning by n, we calculated vbin and fbin by taking the mean v and f of PPIs within 
that bin. By following this procedure, we accumulated two datasets (one binned on f, and the 
other binned on n) of how the vbin depends on fbin and nbin. We trained a linear model (lm(vbin ~ fbin 
+ nbin) in R) with one dataset, and examined the accuracy of the model with the other dataset. 
The model performed well with the validated data (Figure SM6C). We then applied this model to 
each PPI in each environment to calculate a predicted validation score.  
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Figure SM6. Predicting validation rate. (A and B) Distributions of mean fitness value (f) and 
number of environments in which the PPI is detected (n) for validated and unvalidated PPIs. (C) 
Comparison between observed validation rates and predicted validation rates for 502 PPIs 
binned by n. Predicted validation rates were calculated using the mean f and n within each bin.   
 
10 Calculating variability scores 
We obtained replicate fitness values for each PPI in each environment. Due to the differences in 
the range of fitness values in different environments (Figure SM1), we first normalized fitness 
values for each PPI replicate (barcode) using the following formula: 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝐹𝑖𝑡𝑛𝑒𝑠𝑠%&'()*+ =
𝐹𝑖𝑡𝑛𝑒𝑠𝑠%&'()*+ 	− 	𝐹𝑖𝑡𝑛𝑒𝑠𝑠:;,<(0)
𝐹𝑖𝑡𝑛𝑒𝑠𝑠:;,<(3) 	− 	𝐹𝑖𝑡𝑛𝑒𝑠𝑠:;,<(0)

 
where Fitnessbarcode is the fitness of each double barcoded PPiSeq strain, FitnessDHFR(-) is the 
mean fitness of 100 control strains that lack a DHFR reporter, and FitnessDHFR(+) is the mean 
fitness of 10 control strains that have a full-length DHFR reporter under the TEF1 promoter. 
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From these replicate normalized fitness values, we calculated an average fitness value for each 
protein pair in each environment. For protein pairs with a different protein chimera acting the 
bait protein (i.e. ORF1-DHFR[1,2] X ORF2-DHFR[3] and ORF1-DHFR[3] X ORF2-DHFR[1,2]), 
only one version was kept and the average fitness was used. Negative mean fitness values, 
which are likely due to measurement error of a non-interacting protein pair, were replaced with 0. 
Using these normalized fitness values, we calculated the coefficient of variation (CV) for each 
PPI using its fitness values across all environments. The variability score for each protein was 
then calculated by averaging the CVs for PPIs in which it participates. The variability score for a 
target protein’s neighbor was calculated as above, only the interaction between the target 
protein and its neighbor was first removed.  
 
11 Network visualization and community detection 
The comprehensive PPI interaction network was generated with Cytoscape (v3.7.2) (Shannon 
et al., 2003) using the edge-weighted spring embedded layout with the default setting. Glucose 
transport related PPI networks were generated by igraph (R package) (Csárdi and Nepusz, 
2006) using the layout_in_circle layout. Communities were identified with three algorithms: Fast-
Greedy (Clauset et al., 2004), Walktrap (Pons and Latapy, 2005), InfoMAP (Rosvall et al., 2009), 
which were implemented by igraph (R package) (Csárdi and Nepusz, 2006) with default settings. 
Fast-Greedy is a bottom-up hierarchical approach, which tries to optimize modularity in a greedy 
manner. Initially, every vertex belongs to a separate community, and communities are merged 
iteratively so that each merge yields the largest increase in modularity. The algorithm stops 
when the maximum modularity is reached. Walktrap is an approach based on random walks, 
with the rationale that walks are more likely to be trapped within the same community because 
there are only a few edges that lead outside a community. It uses the results of these random 
walks to merge separate communities in a bottom-up manner like the Fast-Greedy algorithm. 
Fast-Greedy and Walktrap suffer from a resolution limit (small communities below a size 
threshold will always be merged to neighboring communities), and thus cannot detect small 
communities. The InfoMap algorithm uses community partitions of the graph as a Huffman 
code that compresses the information about a random walker exploring the network. It finds 
an optimal partition that assigns nodes to modules such that the information needed to 
compress the movement of the random walkers is minimized. The three major communities 
detected by the InfoMAP algorithm (Rosvall et al., 2009) are shown in Figure 3C.  
  
12 Gene Ontology enrichment of network communities 
We examined whether proteins in three major communities detected by infoMAP (Rosvall et al., 
2009) were overrepresented in specific cellular compartments or biological processes. Gene 
Ontology enrichment was implemented with a conditional hypergeometric algorithm using the 
GOstats R package (Falcon and Gentleman, 2007). The set of proteins used for enrichment 
comparison are proteins that are involved in at least one PPI as determined by PPiSeq.  
 
13 Co-expression analysis 
Co-expression mutual rank scores were downloaded from COXPRESdb v7.3 
(https://coxpresdb.jp/)and used directly to determine if differences exist between PPI groups 
(Obayashi et al., 2019).  
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14 Colocalization rate analysis 
Two proteins were defined as colocalized by fluorescence if they localize to at least one cellular 
compartment in common in synthetic medium, as identified from high-throughput microscopy of 
GFP-fusion proteins (Chong et al., 2015). The colocalization rate for a PPI set was calculated by 
only considering proteins pairs for which localization is reported for both proteins. Two proteins 
were defined as colocalized by gene ontology if they are annotated to the same GO-slim cellular 
compartment annotation, not counting co-annotation to the general terms "other", "membrane", 
or "cellular_component". Bootstrapping was performed by sampling with replacement from all 
detected PPIs prior to binning PPIs (by number of environments detected) and determining the 
colocalization rates within those bins.  
 
15 Features of genes that participate in mutable and less mutable PPIs 
Genes were binned by their PPI degree, as reported in BioGRID (Stark et al., 2006), and protein 
variability scores (section 11) were correlated with various previously defined gene features 
(Costanzo et al., 2016; Finn et al., 2014; Gavin et al., 2006; Holstege et al., 1998; Krogan et al., 
2006; Levy and Siegal, 2008; Myers et al., 2006; Newman et al., 2006; Östlund et al., 2010; 
Rice et al., 2000; Stark et al., 2011; Wapinski et al., 2007; Ward et al., 2004; Yang, 2007; Yu et 
al., 2008). Gene features are from (Costanzo et al., 2016). Correlations binned by PPI degree 
are reported in Figure 4C and unbinned correlations are reported in Supplementary Figure S9. 
Bootstrapping was performed by sampling with replacement from all genes that participate in at 
least one PPI prior to determining the correlation between the PPI variability score and a gene 
feature.  
 
16 Protein and PPI abundance analysis 
Protein abundance was taken from a meta-analysis study (Ho et al., 2018) and compared to PPI 
fitness in the SD environment, under the assumption that it is the most comparable to standard 
lab growth conditions. The base R ‘cor’ function was used to calculate the Pearson correlation 
of the PPISeq signal of each PPI to the geometric mean abundance of the two constituent 
proteins. We then repeated this analysis on sets of PPIs binned by the number of environments 
in which a PPI was detected.  
 
17 Homodimer/heterodimer mass-action kinetics model 
To estimate how variation in protein abundance across environments affects abundance of the 
PPI complex, we used a simple mass-action kinetics model of two proteins, of concentrations 
[𝐴]and [𝐵], binding to form a dimer [𝐴𝐵]. This relationship can be expressed as [𝐴𝐵] =
𝑘?@A[𝐴][𝐵], where 𝑘?@A is a constant that reflects the population-average functional affinity of the 
two proteins. We assume that this constant also encompasses effects from heterozygosity (only 
1/4 of heterodimers contain complementary mDHFR tags) and that cell volume does not change. 
We assume that the fitness 𝐹 of a PPiSeq strain depends linearly on the concentration of a 
dimer of complementary tagged proteins, such as 𝐹@A = 𝑘B:;,<[𝐴𝐵]. In order to model the 
expected [𝐴𝐵], we used the fitness of the homodimers (𝐹@@ and 𝐹AA) as a proxy for abundance 
of the constituent proteins ([𝐴] and [𝐵]), assuming that most of the proteins are dissociated. 
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Getting a relationship like [𝐴] ∼ Q ,00

C1()*+C2
00 for both homodimers 𝐴𝐴 and 𝐵𝐵, we use this to 

model the fitness of the strain corresponding to the heterodimer 𝐴𝐵 as 𝐹@A ∼
C2
03

DC2
00C2

33
√𝐹@@𝐹AA. 

Thus, the fitness of the heterodimer strain should correspond to the geometric mean of the 
fitnesses of the homodimers of the constituent proteins, scaled by a term relating the functional 
affinities of each dimer. This model does not capture the complexity of in vivo cellular biology, 
but serves as a simple quantitative tool to dissect the contribution of these two factors 
(abundance and functional affinity) with respect to each other. 
 
We selected data from all heterodimer PPIs amongst all homodimer-participating proteins, 
requiring that each PPI be quantified in at least four conditions and be considered positive in at 
least one condition. We pooled these measurements of PPIs from both tag configurations 
(F[1,2]-F[3] or F[3]-F[1,2]), if available, collecting a dataset of 1,212 PPIs amongst 180 proteins. 
With this, we used OLS linear regression in R to fit a model of the geometric mean of the 
homodimer signals multiplied by a free constant and plus a free intercept. Significantly 
explained heterodimer PPIs were judged by a significant coefficient (FDR < 0.05) of homodimer 
fitnesses predicting the heterodimer fitness (slope) and an insignificant intercept (p-value > 0.05, 
single-test). This criteria was used to identify PPIs for which protein expression does or does not 
appear to play as significant of a role as other post-translational mechanisms. 
To select protein/PPI features that may be associated with being explained or not explained by 
this expression-variation mass-action model, we collected features with sufficient data from 
(Byrne and Wolfe, 2005; Cherry, 2015; Chong et al., 2015; Costanzo et al., 2016; Marchant et 
al., 2019; Stark et al., 2006). We constructed a dataset from these by treating each heterodimer 
as a separate observation for each of the two constituent proteins, thus associating the features 
of a protein with the modeling result for each considered heterodimer in which it participates. 
We then used the 'glm' function in R to fit a logistic model. We adjusted the resulting p-values 
for each feature's coefficient by the Benjamini-Hochberg correction. 
 
18 Estimating the size of the pan-environment PPI network 
To estimate the size of the pan-environment PPI network, we used a bootstrap approach from 
the ecology R package vegan (Jari Oksanen et al., 2019). However, false positives will inflate 
this estimate, so we first sought to obtain a more confident estimate of the true PPIs detected. 
We took our dataset of each PPI observed in each condition, and then sub-sampled each PPI in 
each environment at a rate of the modeled validation rates (as calculated above, Table S5). We 
repeated this procedure 32 times, and for each of these trials then calculated the Kindt exact 
accumulation curve and the bootstrapped species richness estimate, treating each PPI 
analogous to a species. Then for each sub-sample we randomly permuted the order of 
environment addition and calculated the curve of the accumulated number of unique PPIs 
10,000 times. 
 
Data and software availability 
Raw barcode sequencing data are available from the NIH Sequence Read Archive as accession 
PRJNA630095 (https://trace.ncbi.nlm.nih.gov/Traces/study/?acc=SRP259652). Barcode 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 22, 2020. ; https://doi.org/10.1101/2020.05.20.106583doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.20.106583


 

 62 

sequences, counts, fitness values, and PPI calls are available in the Supplementary Tables 
(https://osf.io/jmhrb/). Additional data to make figures are available in Mendeley data 
(https://data.mendeley.com/datasets/9ygwhk5cs3/1) and Open Science Framework 
(https://osf.io/7yt59/) as detailed in code repository README files. Analysis scripts are written in 
R and Python. All code used to analyze data, perform statistical analyses, and generate figures 
is available at Github (https://github.com/sashaflevy/PPiSeq). 
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