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Abstract  

Rapid ascent to High Altitude (HA) can cause severe damage to body organs and may lead to 

many fatal disorders. During induction to HA, human body undergoes various physiological, 

biochemical, hematological and molecular changes to adapt to the extreme environmental 

conditions. Many literature references hint that gene-expression-regulation and regulatory 

molecules like microRNAs (miRNAs) and Transcription Factors (TFs) control adaptive 

responses during HA-stress. These biomolecules are known to interact in a complex 

combinatorial manner to fine-tune the gene expression and help in controlling the molecular 

responses during this stress and ultimately help in acclimatization. HAHmiR.DB (High-

Altitude Human miRNA Database) is a unique, comprehensive, curated collection of miRNAs 

that have been experimentally validated to be associated with HA-stress; their level of 

expression in different altitudes, fold change, experiment duration, biomarker association, 

disease and drug association, tissue-specific expression level, Gene Ontology (GO) and Kyoto 

Encyclopaedia of Gene and Genomes (KEGG) pathway associations. As a server platform it 

also uniquely constructs and analyses interactive miRNA-TF-Gene coregulatory networks and 

extracts regulatory-circuits/Feed Forward Loops (FFLs) using in-house scripts. These 

regulatory circuits help to offer mechanistic insights in complex regulatory mechanisms during 

HA stress. The server can also build these regulatory networks between two and more miRNAs 

of the database and also identify the regulatory-circuits from this network. Hence HAHmiR.DB 

is the first-of its-kind database in HA research which a reliable platform to explore, compare, 

analyse and retrieve miRNAs associated with HA stress, their coregulatory networks and FFL 

regulatory circuits. HAHmiR.DB is freely accessible at http://www.hahmirdb.in 

 

INTRODUCTION 

High Altitude (HA) is defined as height between 2500 – 4000 m above sea level; very high 

altitude is between 4000 – 5500 m and altitudes above 5500 m are considered extremely high 

altitude.  These altitudes affect normal physiology and health due to the low partial pressure of 

oxygen at these altitudes (1). Oxygen concentration and the barometric pressure at sea level is 
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about 21% and 760 mmHg respectively but the barometric pressure decreases gradually and 

significantly at higher altitudes which also affects the oxygen concentration. At an altitude of 

3500m, there are 40% fewer oxygen molecules per breath (1). Hence the supply of oxygen to 

the body tissues also decreases significantly. This condition is known as hypobaric hypoxia 

(2). To oxygenate the body adequately, the hypoxic condition triggers an acclimatization 

mechanism both at the physiological and molecular levels. At the physiological level, the body 

hyperventilates to increase the oxygen concentration in the blood. The blood pressure increases 

to augment the oxygen supply to the tissues (3). But the sudden increase in blood flow can also 

cause fluid to leak from the blood capillaries and this fluid build-up in the lungs and the brain, 

triggers life-threatening illnesses i.e. High-Altitude Pulmonary Edema (HAPE) and High-

Altitude Cerebral Edema (HACE)(4). At the molecular level, the lack of oxygen (hypoxia) is 

sensed by the oxygen sensor of cells called Prolyl hydroxylases (PHDs)(3). These PHDs further 

activate the master transcription factor of hypoxia known as hypoxia-inducible factor‐1 (HIF‐

1) (5) which largely controls the signalling machinery responsible for hypoxia-adaptive-

responses in the body (3). These molecular responses in hypoxia-adaptation are controlled by 

the fine-tuning of the transcriptome expression(6). The gene regulatory elements, such as TFs 

and miRNAs are crucial as they have been found to play a decisive role in maintaining 

physiological and molecular homeostasis, both under normoxic and hypobaric hypoxia 

conditions(7). miRNAs are known to regulate a number of molecular mechanism during HA 

acclimatization or disorders, e.g. miR-16, -20b, -22 and -206 and 17/92 are downregulated 

during HAPE and  are responsible for disruption of the ion channels and loss of cellular 

integrity (8). Increase in red blood cell count, haematocrit values and haemoglobin are 

established physiological response at HA.  Hsa-miR-210-3p (also known as the master 

regulator hypoxiamiR) expression is positively correlated with the change in red blood cell 

counts, haemoglobin and haematocrit values at HA and is proposed to be associated with 

human acclimatization to life at HA (9). Human plasma miRNA expression profiles are thus 

reported to be associated with human adaptation to hypobaric hypoxic environments (10). hsa-

miR-369-3p, hsa-miR-449b-3p, and hsa-miR-136-3p, miR-495 and miR-323a-3p, miR-500a-

5p and miR-501-5p have been reported to be differentially expressed at different altitude and 

duration of exposure and have been proposed to have immense potential as markers or 

therapeutic targets (11). miRNAs are known to interact with other regulatory molecules like 

TFs. SNP variants of some of the TFs like EPAS1, EGLN1, PPRAG inherent in the Tibetan 

population are reported as important ecological traits for high-altitude adaptation (12-14). 

Several reports hint towards TF and miRNA working in conjunction to influence the precise 

control and fine-tuning of gene expression during multifactorial disorders like myocardial 

infarct, cancer, multiple sclerosis, schizophrenia etc. They are also known to regulate a variety 

of processes in hypoxia associated disorders like malignancies, wound repair, stroke etc. (15-

20).  

A tripartite interaction between a miRNA, TF and a common Gene form regulatory-circuits 

also known as a Feed Forward Loop (FFL). In FFL, either the TF or miRNA or both regulate 

each other and also a target gene. It can be further categorized as miRNA-FFL and TF-FFL. 

In a miRNA-FFL, miRNA is the main regulator, which regulates a TF and its common target 

gene while in a TF-FFL, TF is the main regulator (20). These FFLs motifs have been found 
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to play vital roles in disease pathology, drug repurposing, and disease recurrence and hence 

can be used for the understanding of the underlying mechanism of disease initiation, 

progression, and recurrence (16,21). Recently, miRNA based FFLs are proposed as potential 

biomarkers for complex multifactorial disorders like colorectal cancer, myocardial infarct etc. 

(21,22). Analysis of miRNA-TF-gene co-regulatory networks in these diseases has found to 

successfully predict the disease pathology and recurrence. 

Recently there have been number of studies assessing miRNA expression and regulation during 

HA stress. This molecular data is scattered and our study is a systematic attempt to collect, 

curate, analyse, visualize and store this data. HAHmiR.DB (High Altitude Human miRNA 

Database) is a first-ever comprehensive database for miRNA associated with HA-stress; their 

coregulatory networks and regulatory-circuits. The database currently contains 386 human 

miRNAs which are manually curated from peer-reviewed publications related to high-

throughput techniques such as microarray, qPCR, RNA seq, etc. The database stores the 

association of each miRNA with HA-stress in terms of the experimental group, altitude and 

duration of experiment, level of regulation (up/down), fold change, GEO accession, association 

as biomarker and a corresponding link to the respective publication. The database also collates 

mature miRNA Ids, miRNA and RNAcentral accession, family, precursor and mature sequence 

and the stem-loop structure. It also retrieves and stores the miRNA gene targets. Using these, 

miRNA-TF-gene co-regulatory networks are built and two types of FFLs i.e. miRNA-FFL and 

TF-FFL are extracted using in-house scripts. The database also stores other information about 

miRNAs like their role in other diseases, its tissue-specific expression and their association 

with drugs. GO and KEGG pathway enrichment of the miRNA targets are also stored. As a 

server platform, HAHmiR.DB also builds interactive and dynamic miRNA-TF-gene co-

regulatory networks of user-defined miRNA list and also identifies the FFL regulatory-circuits 

from the network. HAHmiR.DB will help to uncover the underlying cross-talk between 

miRNA, TF and gene that governs the fine-tuning of gene expression during HA 

acclimatization. It will be useful in revealing novel and robust targets and important regulating 

modules responsible for acclimatizing to HA. Researchers can further use this information for 

getting mechanistic insights in the complex molecular responses in HA-related disorders. 

 

MATERIAL AND METHODS 

Data Collection 

The combination of keywords such as “High Altitude” and “miRNA” were used to extract the 

list of publications from PubMed and Google scholar as on January 2020 (23,24). After 

removing redundancy and duplicity, the publications were manually curated to identify the 

differentially expressed (DE) miRNAs from human studies. For each miRNA its experimental 

group, experiment altitude, duration of induction, level of expression, fold Change, GEO (Gene 

Expression Omnibus) accession and its reference paper were compiled. Sometimes the 

information e.g. fold change, the tissue of expression was not categorically listed in the 

publication, so those entries are recorded as ‘na’. We also recorded whether any literature text 

had associated the miRNA as a biomarker for HA acclimatization. Subsequently, miRBase 

stem Loop Id, miRBase accession number, miRNA Family, 5' ID, 3'ID, Chromosome number, 
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precursor sequence, mature sequence, and RNA central ID for each miRNAs were retrieved 

and stored from the  miRBase(25), miRGen 2.0(26) and  RNAcentral(27) databases  

respectively. To ensure uniformity in the nomenclature, the names of precursor miRNAs were 

mapped to the mature miRNA using miRBase(25) and miRDB(28) databases .  

Data Annotation 

A comprehensive and exhaustive list of human TF and Co-Transcription Factors (Co-TFs) 

were mined from  TFcheckpoint, DBD, TcoF-DB V2 and TRANSFAC(29-32). This was stored 

as human TF list. For each miRNA, its experimentally-validated gene targets were identified 

from MirTarBase and miRecords (33,34). These gene targets were annotated as TF or gene by 

comparison with human TF list. This way the corresponding miRNA→gene interactions were 

annotated as miRNA→TF or miRNA→gene interactions.  

Further TF → gene and TF → miRNA interactions were compiled from OregAnno(35), 

TRRUST-V2(36) and TransmiR v2.0(37), PutmiR(38) databases respectively. Using these 

miRNA→gene, miRNA→TF, TF → gene, TF → miRNA interactions, a miRNA-TF-gene 

coregulatory network was built for each miRNA in the database. Additionally 

miRNA → miRNA interactions between miRNAs in the database were also added from 

PmmR(39) database to identify more complex network interactions.  

To make the database more informative, several other attributes were added; miRNA: disease 

associations were mined from HMDD(40); miRNA: tissue association from miRmine(41) and 

miRNA:drug relationship from PharmacomiR(42). For each miRNA, GO-functional 

enrichment and KEGG pathway enrichment of their target genes was performed using 

Database for Annotation, Visualization and Integrated Discovery (DAVID)(43). The complete 

overview of data collection and annotation is listed in (Figure 1) 

FFL Motif Identification 

Each vertex in the network is labelled as Vm, VTF or Vgene. Where, Vm refers to a miRNA, VTF 

refers to a TF and Vgene refers to a gene. The edges are annotated as Emt, Emg, Etg, Etm where 

Emt refers to edge from Vm to VTF, Emg refers to edge from Vm to Vgene, Etg refers to edge from 

VTF to Vgene and Etm refers to edge from VTF to Vm. 

For each Vm, its edges Emg from the miRNA→gene interactions is searched in miRNA→TF 

interaction to identify a corresponding Emt with a common vertex Vm. Thereafter, an analogous 

Etg is searched in the TF → gene interactions. If found, the complete graph containing three 

vertices (Vm , VTF, Vgene) and edges(Emt, Emg, Etg) were labelled as miRNA-FFL motif graph . 

Similarly, in order to find TF-FFL motif, edge Etm and Etg were identified from TF → miRNA 

and TF → gene interactions dataset respectively. Further the program scans for an Emg 

associated with Vm and Vgene in miRNA→gene interaction dataset. If algorithm finds Emg, the 

complete graph containing three vertices (Vm, VTF, Vgene) and edges (Etm, Emg, Etg) were 

labelled as TF-FFL motif graph. This methodology was used to identify miRNA-FFLs and TF-

FFLs for each human miRNA.  

Database Development 
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Finally, after collection, processing and enrichment of the data, all the database files were 

stored as JavaScript Object Notation (JSON) files in MongoDB database relational 

database(44). These JSON files was uploaded on the server localhost using pymongo and query 

commands were made in the command line client in MongoDB compass. The database uses 

Asynchronous JavaScript and XML (AJAX) technique for API calls. AJAX is a web 

development technique that is used for creating interactive web applications. It utilizes 

XHTML for content along with the document object model and JavaScript for dynamic content 

display. Vis.js library functions are used for interactive visualization of network graphs on 

front-end. The website is available online at www.hahmirdb.in and requires no registration. It 

provides a user-friendly interface to browse and analyse HA associated miRNAs.    
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Figure 1 Overview of data collection and annotation in HAHmiIR.DB 
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RESULTS 

HAHmiR.DB database allows to browse, retrieve, analyse and compare miRNAs which are 

associated with HA-stress. In ‘Browse’ option, user can either search individual miRNA 

directly from a pull-down menu or can use a variety of filters to fetch the miRNAs of interest. 

The “Search by Single miRNA” option allows the user to select a miRNA from a drop-down 

menu and further link to its detailed information page.  The database also provides user with 

four other filters to select and retrieve the list of miRNAs (Figure 2). These filters are based on 

level of expression (upregulated/ downregulated); duration of experiment 

(Days/Months/Native), experimental altitude (3600-7000m) and by search by association. The 

experimental altitude option is provided with a slider bar, where user can select the altitude 

range (3600m - 7600m) to get the set of miRNAs associated with that extent. The fourth browse 

option of the database “Browse by Association” is the special option, where user can retrieve 

a list of miRNAs associated with gene list/biomarker/drug/GO ID/GO term /KEGG ID/KEGG 

term.  

 

 

Figure 2: The web image of HAHmiR.DB - ‘Browse’ option allows the user to browse DE 

miRNA during HA using multiple filters i.e. level of expression, duration of experiment, 
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experimental altitude and browse by associations that includes filters such as miRNAs 

associated with gene list, miRNAs associated as biomarker, miRNAs associated with a drug, 

miRNAs associated with an GO ID/term, miRNAs associated with a KEGG ID/pathway  

 

“miRNAs Associated with a Gene List” option allows to select gene(s) from a pull-down gene 

list and fetch the miRNAs regulating these genes (Supplementary Figure S1a). “miRNAs 

Associated as Biomarkers” option allows the user to extract list of miRNAs that are associated 

as biomarkers in HA conditions (Supplementary Figure S1b). Similarly, “miRNAs Associated 

with a Drug” option allows user to identify miRNAs associated with a particular drug 

(Supplementary Figure S1c). “miRNAs Associated with a GO ID” (Supplementary Figure 

S1d), “miRNAs Associated with a GO Term” (Supplementary Figure S1e), “miRNAs 

Associated with a KEGG ID” (Supplementary Figure S1f), “miRNAs Associated with a KEGG 

Pathway” (Supplementary Figure S1g) allows user to fetch miRNA based on functional 

association such as GO ID, GO term, KEGG ID and KEGG pathway respectively. All the 

above options provide a resultant list of miRNAs that are hyperlinked to their respective 

detailed information pages. The list of these miRNAs can be downloaded in Excel /PDF format 

for further analysis.  

The miRNA information page of HAHmiR.DB can be broadly divided into four sections. 

(i) Knowledge base:  

The first section of the database provides general information about miRNA such as miRBase 

accession number, miRBase Stem Loop Id, 5’/3’ ID, miRNA family, chromosome number, 

precursor and mature sequences, RNAcentral ID etc. It also contains miRNA stem loop 

structure where mature miRNA sequence is highlighted with red colour (Figure 3a). The 

miRBase accession, 5’/3’IDs and RNA Central Ids are also hyperlinked to miRBase and 

RNAcentral databases to provide additional details of the miRNA like mature and precursor 

miRNA sequence, miRNA stem loop structure, chromosome location, source organism, target 

proteins, target lncRNAs, genome locations, Rfam classification etc (25,27).  

 HAHmiR.DB uniquely offers directed miRNA-TF-gene co-regulatory network of the miRNA. 

The details of the in-house scripts to build this network are provided in the methodology 

section. The network nodes are color coded (miRNA-red, TF-green, Target Gene-yellow) and 

interactive with option likes Zoom in/out, translation of nodes etc. These networks can be saved 

in publication quality images. User can also download the network file which can also be 

exported and visualized in publically freely available software’s like Cytoscape(45), 

BINA(46), Gephi etc.  

(ii) miRNA association with high altitude: 

For each miRNA, its association with HA is compiled in the form of experimental group, 

experiment altitude, duration of experiment, level of expression, fold change, GEO accession, 

association as biomarker and the respective reference which is hyperlinked to PubMed (23) 

database which allows easy access to the original publication (Figure 3b). 
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Figure 3: Web image of the miRNA information page a) The first section of hsa-let-7b-5p 

miRNA information page with details about the miRNA and hyperlinking to external 

databases like miRBase and RNAcentral b) The second section shows information related to 

experimental details of DE human miRNA during HA  conditions in published literature. c) 

The web image of the miRNA- FFL in tabular format. d) The web image of the TF- FFL in 

tabular format. e) miRNA associations with drug f) miRNA associations with different 
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disease g) miRNA expression level in different tissues. h) GO Functional enrichment of the 

miRNA targets i) KEGG pathway enrichment of the miRNA targets. The lengthy tables can 

be searched through ‘search’ box and information in table can be download in both excel 

and PDF format 

 

(iii) Feed Forward Loops:  

Biological systems are often built of regulatory-circuits that carry out key functions (47). These 

recurring patterns are very common in Gene Regulatory Networks (GRNs) and are known as 

network motifs. Important regulatory molecules such as miRNA and TFs often follows these 

recurring pattern in co-regulatory networks to control the complex  molecular and cellular 

responses of living cells (48). FFLs are most overrepresented motifs that are found in the co-

regulatory networks (49). They are of two types miRNA-FFLs and TF-FFLs based on the 

interaction between miRNA and TF. If the interaction is of the type that a miRNA dysregulates 

TF and both together regulate target gene than it is called a miRNA-FFL. A type where a TF 

regulates a miRNA and both then regulate a target gene, then its known as TF-FFL.  

Both these regulatory-circuits/FFLs are extracted from miRNA-TF-gene coregulatory 

networks using in-house scripts as discussed in the methodology. The FFLs are provided in a 

tabular format (Figure 3c, 3d) which can be explored and downloaded. Clicking on the miRNA 

would provide a network of the FFL in a pop-up window. Each TF and TG symbol in the FFL 

table are further hyperlinked to the GeneCards(50) database. This would serve as a ready-

reference for the user to get additional details about the gene that includes aliases of genes, 

promoter and enhancer location of gene, protein coded by gene, functional characterization, 

cellular localization, pathway enrichment, gene-gene interaction network, drug-gene 

relationship, tissue specific gene expression profile, orthologs, paralogs, transcript variant etc. 

These regulatory-circuits/FFLs could offer mechanistic insights during complex cellular 

responses and also open new horizons in HA research for identifying potential candidate 

markers for HA acclimatization. 

(iv) Association of miRNA with Drugs, diseases and Tissues:  

This section provides details of the drug, disease and tissue association of the miRNAs. The 

information is represented in three different tables. The first table shows information about 

miRNA and its associated drug compiled from PharmocomiR (Figure 3e). A direct link to the 

corresponding reference in PubMed is provided for ready reference. This information may help 

the user to design/validate miRNA-based drug-targeting/repurposing experiments. Similarly, 

miRNA-disease-associations (Figure 3f) and miRNA tissue-specific-expression (Figure 3g) are 

also provided in tabular formats. Each entry in tissue specific expression table have been 

hyperlinked to the SRA database(51), which provides additional tissue-specific experimental 

details (Figure 3g).This could be important to design experiments which aim to study tissue-

specific expression. These tables are equipped with the integrated “search” option  and tables 

can also be downloaded in Excel/PDF format. 

Association with GO and KEGG pathways:  
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This section presents the functional characterization of the miRNA gene targets. Both 

functional and pathway enrichment are stored and visualized in a tabular format. These tables 

are provided with a “search” option that allows exploring the extensive tables and fetching the 

user-defined information (Gene/GO-term/KEGG pathway)  easily. Figure 3h shows the GO 

table searched with “calcium” keyword to identify specific GO term from the 203 GO entries 

of hsa-let-7b-5p. Similarly Figure 3i the “PI3K” keyword was used to search specific entry 

from KEGG pathway entries of hsa-let-7b-5p. 

 

HAHmiR.DB server also allows user to perform integrated network analysis through “Explore” 

option of the database. In this option, user can select multiple (upto maximum of 4) miRNAs 

from the database. The server then builds a dynamic miRNA-TF-gene co-regulatory network 

between these miRNAs. The network include miRNAs, their targeted TFs, targeted genes, and 

also its interacting miRNAs. The network is presented as an interactive visualization with color 

coding and zoom-in and translation options. (Figure 4). The network image may be saved as 

publication quality images and can also be downloaded. This file can then be used to visualize 

networks offline in visualization software like cytoscape(45), BINA(46), Gephi etc. 

HAHmiR.DB also extracts the FFLs in the complex network and presents them in a tabular 

format. User can click on each miRNA in the row to see its tripartite graph as pop-ups. The 

genes and TFs are hyperlinked to GeneCards database. The integrated search option is provided 

with the table for searching the FFLs using TF/Gene. The FFL table can be downloaded in 

excel and PDF format. 
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Figure 4: “Explore” option of the database. The web image of the section shows complex 

network of four miRNA i.e hsa-let-7b-5p, hsa-let-7a-5p, hsa-let-7b-3p, hsa-let-7d-5p and 

identified FFLs in the adjacent table. 

 

HAHmiR.DB Statistics 

HAHmiR.DB contains 556 associations of 386 miRNAs that are differentially expressed at 

HA. In terms of interactions HAHmiR.DB consist of ~56,000 miRNA target interactions which 

can be further divided into 38,496 miRNA→ gene, 17,974 miRNA→ TF interactions. 

Additionally the database contains 47,115 TF→ gene and 1500 miRNA→ TF interactions. The 

database also contains 449 unique miRNA-disease associations and 77 miRNA-drug 

associations. In the database, 52% miRNAs are downregulated and 48% are upregulated. The 

556 miRNA entries can also be divided into three categories based on the duration of 

experiment, 43% of studies had the duration of experiment ranging in months, 40% of studies 

ranging in days and rest 17% were studies related to HA natives. 

For the genes in the database, two different types of functional characterizations were 

performed i.e GO and KEGG pathway enrichment. The GO enrichment shows the ‘mitotic cell 

cycle regulation’, ‘regulation of apoptosis process’, ‘cellular response to oxygen levels’, etc. 

as the top biological processes (Figure 5a). ‘Cell cycle regulation’ is an important cellular 
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mechanism induced by the hypoxic stress that governs the cell fate from cell proliferation to 

apoptosis and is widely reported and studied biological process during hypoxic environments 

(52).  The ‘cellular response to oxygen level’ is governed by Prolylhydroxylases (PHD) oxygen 

sensors of cells that controls the activation of HIF during low oxygen condition which further 

regulates hypoxic stress adaptative responses (7,52-54).  Similarly ‘transcription factor 

binding’, ‘protein kinase binding’, ‘cell adhesion molecule binding’, etc. and ‘nucleoplasm 

(nucleus & cytoplasm)’, ‘nucleolus’, etc. are the top molecular functions and cellular 

components respectively (Figure 5b and 5c). These pathways have been reported as hallmark 

responses to HA stress. Literature shows that protein kinases present in both nucleus and 

cytoplasm are signal transducers that play important roles in transducing hypoxic stress signals 

from the cytoplasm to the nucleus for the activation of hypoxic stress-responsive transcription 

factors like HIF1, NFKB1 p53 etc(52).  Also the downregulation of cell adhesion proteins like 

PECAM-1, ZO-1 during hypobaric hypoxia has been correlated as a signal for vascular leakage 

and (High Altitude Pulmonary Edema) HAPE(55).  

The KEGG pathway enrichment shows ‘metabolic pathway’ as most enriched in the miRNA-

targets (Figure 5d). Metabolic pathways are responsible in maintaining body-weight 

homeostasis during HA adaptation/acclimatization (56). 

The functional annotation of miRNAs target genes in database shows correlations of biological 

processes, molecular functions and pathways with hallmark responses to hypobaric-hypoxic 

stress and other HA stress conditions (7,52-54). Hence this supports the comprehensive 

biomolecular structure of the database. Thus HAHmiR.DB is a comprehensive, user-friendly 

repository of human miRNAs, TFs and genes to study HA stress responses at molecular level. 
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Figure 5: Functional characterization of differentially expressed HA miRNA-targets a) 

GO: Biological processes. b) GO: Molecular functions c) GO: Cellular Compartment and 

d) KEGG Pathway Enrichment. 

 

DISCUSSION 

HAHmiR.DB is an interactive resource for HA associated Human miRNAs. The collection has 

been stored in the MongoDB database that can be updated from time to time. JSON helps in 

easy and smooth transferring of the data between the server and API. Currently, there is only a 

single database for HA species genome dataset “The Yak Genome Database” that provides 

information on genomic sequence related of YAK (HA resident animal species) (57). 

HAHmiR.DB is the only database that has a collection of manually curated DE high altitude 

specific human miRNAs that are fetched and manually curated from the literature. The 

expression profile of a miRNA from different publications are compiled at one place so that it 

can be compared, analysed and retrieved at ease. The portal enables the user to browse miRNAs 

individually or allows batch retrieval based on different query filters.  It also provides 

information about the association of these miRNAs in other diseases, its tissue-specific 

expression and its pharmacological relation with other drugs. It identifies miRNA-target 

interactions (MTIs) of each miRNA constructs directed tripartite miRNA-TF-gene co-

regulatory network.  Subsequently, HAHmiR.DB identifies regulatory-circuits/FFLs in each 

miRNA-TF-gene coregulatory network using in-house scripts. The database also performs 

integrative analysis with user-defined miRNAs and constructs directed miRNA-TF-gene 

a) b)

c) d)
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coregulatory network of input miRNAs. These miRNA-TF-gene co-regulatory networks 

contain regular interaction miRNA-gene, miRNA-TF, TF-gene and TF-miRNA with additional 

miRNA-miRNA interactions. This complex network would help understand the biological 

mechanisms underlining a molecular trait during HA ascent. The database is the first database 

that provides miRNA-TF-gene co-regulatory networks and its regulatory-circuits in a 

pathophysiological stress condition.   
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