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Abstract—Neural language representation models such as
BERT [1] have recently shown state of the art performance in
downstream NLP tasks and bio-medical domain adaptation of
BERT (Bio-BERT [2]) has shown same behavior on biomedical
text mining tasks. However, due to their large model size and
resulting increased computational need, practical application of
models such as BERT is challenging making smaller models with
comparable performance desirable for real word applications.
Recently, a new language transformers based language represen-
tation model named ELECTRA [3] is introduced, that makes
efficient usage of training data in a generative-discriminative
neural model setting that shows performance gains over BERT.
These gains are especially impressive for smaller models. Here, we
introduce a small ELECTRA based model named Bio-ELECTRA
that is eight times smaller than BERT BASE and achieves
comparable performance on biomedical question answering and
yes/no question answer classification tasks. The model is pre-
trained from scratch on PubMed abstracts using a consumer
grade GPU with only 8GB memory. For biomedical named entity
recognition, however, large BERT Base model outperforms both
Bio-ELECTRA and ELECTRA-Small++.

Index Terms—biomedical text mining, language representation,
deep learning

I. INTRODUCTION

Transformers based language representation learning meth-
ods such as Bidirectional Encoder Representations from Trans-
formers (BERT) [1] are becoming increasingly popular for
downstream biomedical NLP tasks due to their performance
advantages [2]. The performance of these models comes at
a steep increase in computation cost both at training and
inference time, For example, we use a BERT based re-ranker
as the final step in our biomedical question answering sys-
tem Bio-AnswerFinder [4] (https://github.com/SciCrunch/bio-
answerfinder), where 60% of the question answering time
latency is due to the BERT classifier with 110 million
parameters. The increased size of the transformer models
is correlated with the increased performance [1]. Since the
computational cost involved at inference time for large models
is a bottleneck in their practical applications in the real world,
new approaches to achieve similar performance on smaller
models are getting increasingly popular. A popular approach
on this end is distilling BERT to a smaller classifier such

as DistillBERT [5], TinyBERT [6] and MobileBERT [7].
However, a small,efficient model without going through the
trouble of training a large model and mimicking it in a smaller
model is more preferable.

BERT uses a masked language modeling (MLM) approach
by masking 15% of the training sentences and learning to
guess the masked tokens in a generative manner. This results
BERT using only 15% of training data. A recent approach
called ELECTRA [3], introduced a new language modeling
approach where a discriminative model is trained to detect
whether each token in the corrupted input was replaced by
a co-trained generator model sample or not. ELECTRA is
computationally more efficient than BERT and outperforms
BERT given the same model size, data and computation
resources. The improvements over BERT is most impressive
at small model sizes, which makes it an excellent candidate in
pursuit of small and efficient language representation models
for biomedical text mining.

In this paper, we introduce a small and efficient ELEC-
TRA based domain-specific language representation model
trained on PubMed abstracts with a domain specific vocabulary
achieving comparable results on question answering related
tasks to BERT Base model having 8 times more parameters
resulting in 8 times decrease in inference time. The model
is trained on a modest consumer grade GPU with only 8GB
RAM which is much lower bar for pre-training of domain-
specific language representation models that BERT and vari-
ants. The performance on biomedical named entity recognition
of small ELECTRA models are not as impressive as in the
question answering related tasks compared to BERT.

II. METHODS

A. Pre-training Bio-ELECTRA

Both ELECTRA and BERT are pre-trained on English
Wikipedia and BooksCorpus as general purpose language
models.

Both BERT and ELECTRA use WordPiece tokenization [8]
which represents words as constructed from character n-grams
of highest co-occurrence to allow out-of-vocabulary (OOV)
words to be represented. Given a vocabulary size, the character
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n-grams (subwords) making up the vocabulary are determined
from the corpus by using an objective similar to the com-
pression algorithms to find the subwords that would generate
each unique word in the corpus. OOV words are generated by
combination of subwords from the subwords vocabulary. Since
the vocabulary of BERT and ELECTRA [3] are generated from
general purpose corpora, a lot of biomedical domain specific
words need to be composed from subwords that does not
convey enough information by themselves. For example the
gene BRCA1 in BERT/ELECTRA vocabulary represented as
B##R##CA##1, mostly formed from single letter embedded
representations. For Bio-ELECTRA, the vocabulary is gener-
ated using SentencePiece byte-pair-encoding (BPE) model [9]
from PubMed abstract texts from 2017. Using this domain-
specific vocabulary BRCA1 is represented as BRCA##1. In
this case, the composition from parts conveys more informa-
tion since the learned vector embedding of BRCA subword is
more like to capture for example its breast cancer relatedness.

19.2 million most recent PubMed abstracts (having PMID
greater than 10 million) as of March 2020 are used for Bio-
ELECTRA pre-training. Sentences extracted from the paper
title and abstract are used to build the pre-training corpus of
about 2.5 billion words. Using the PubMed abstract corpus and
2017 PubMed abstracts generated SentencePiece vocabulary
ELECTRA-Small model (14M trainable parameters) with a
maximum sequence size of 256 and batch size of 64 is pre-
trained from scratch on a RTX 2070 8GB GPU in four stages
for 24 days for 1.8 million steps. Original ELECTRA Small
was trained on a V100 32GB GPU in 4 days with a batch
size of 128 for one million steps. However, the distributed
ELECTRA Small++, which was used for our comparison
experiments, was trained on the XLNet [10] corpus (about 33
billion subword corpus) with maximum sequence size of 512
for 4 million steps. Since the batch size of Bio-ELECTRA
half the size of the ELECTRA Small due to our GPUs
memory size, two million steps are equivalent to one million
ELECTRA training steps. ELECTRA Small++ is trained four
times more than Bio-ELECTRA and trained on much larger
corpus.

B. Fine-tuning for Biomedical Text Mining Tasks

The syntactic and semantic language modeling information
latently captured in the pre-trained weights of transformer
models combined with a classification layer were found to
provide state-of-the-art results in many NLP tasks [1], [3].
We fine-tune Bio-ELECTRA, ELECTRA Small++ and BERT
Base for biomedical question answering, yes/no question an-
swer classification and named entity recognition (NER) tasks.

For biomedical question answering, we used BERT and
ELECTRA architectures for SQuAD citesquad for SQuAD
v1.1. Similar to Wiese et al and Lee et al. [2], [11], we have
combined our BioASQ 8b training set generated factoid and
list questions based training test with out-of-domain SQuAD
v1.1 data set to increase performance over much smaller
BioASQ data.

The biomedical yes/no question answer classification task
is similar to sentiment (hedging for biomedical literature)
detection where the polarity (positive/negative) of a candidate
sentence needs to be detected in the context of a question. For
ELECTRA and BERT, we have used their official codebase
from GitHub slightly extended for our specific classification
task.

Named entity recognition involves detection of names of
biomedical entities in sentences and usually used for down-
stream tasks such as information extraction and question an-
swering. For ELECTRA and Bio-ELECTRA, we have used the
ELECTRA architecture for entity level tasks adapted for BIO
annotation scheme. For BERT, we have used HuggingFace
Transformers library single output layer entity classification
architecture.

For each fine-tuning experiment, ten randomly initialized
models are trained and average testing performances and stan-
dard deviations are reported. Default BERT and ELECTRA
hyperparameters including the number of epochs (two for
QA task and three for classification/NER tasks) are used
for corresponding experiments. More performance can be
squeezed out of the fine-tuning models by hyperparameter
tuning. However, since the main goal is comparing different
models under similar conditions, this was not attempted. All
of the ELECTRA based fine-tuning trainings are conducted on
a GTX 1060 6GB GPU, while 8x larger BERT model required
training on our RTX 2070 8GB GPU. For BERT experiments
cased BERT Base is used.

III. RESULTS

A. Datasets

For biomedical question answering and yes/no answer clas-
sification tests, we have generated training and testing data
sets from the publicly available 2020 BioASQ [12] Task B
(8b) training data set. BioASQ 8b training set consists of
3243 questions together with ideal and exact answers and
gold standard snippets. The questions come in four categories
(i.e. factoid, list, yes/no and summary). Factoid and list
questions are usually answered by a word or phrase (multiple
word/phrases for list questions) making them amendable for
extractive answer span detection type exact question answer-
ing for which general purpose question answering data sets
are available such as SQUAD [13]. Snippets matching their
corresponding exact answer(s) are selected for the bio-medical
question answering labeled set generation. For about 30% of
the factoid/list questions no snippet can be aligned with their
corresponding ideal answers. We analyzed those cases and
were able to recover additional 152 questions after manual
inspection for synonyms and transliterations to include in our
labeled data set. The labeled data set is split into 85%/15%
training/testing data sets of size 9557 and 1809, respectively.

For yes/no answer classification, the ideal answer text of
each BioASQ yes/no questions is used as the context and
the exact answer (i.e. ’yes’ or ’no’) as label for binary
classification. The ideal answers are cleaned up to remove the
exact answer (yes or no) that sometimes occur at the beginning
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TABLE I
BIMEDICAL NAMED ENTITY RECOGNITION DATA SETS

Dataset Entity Type # training/testing entities
BC4CHEMD [15] Drug/Chemical 29478/25346
BC2GM [16] Gene/Protein 15197/6325
NCBI Disease [17] Disease 5134/960
LINNAEUS [18] Species 2119/1433

of the ideal answer. The labeled data is split into 85%/15%
training/testing data sets of size 729 and 129, respectively.
BioASQ yes/no questions are skewed towards yes answers
where about 80% of the answers were yes.

For named entity recognition tests, we have used publicly
available datasets used by Crichton et. al [14]. Four com-
mon biomedical entity types are considered, namely disease,
drug/chemical, gene/protein and species. For each entity type
one data set is selected for training/testing as summarized in
Table I.

B. Effect of amount of pre-training on the Bio-ELECTRA
performance

The effect of the increased number of training steps on
the BioASQ question answering task is shown in Figure 1
on exact-match evaluation measure where the 95% confidence
intervals are also shown, Even at 880K (or 440K in terms
of ELECTRA Small++ pre=training with doubled batch size)
training steps the performance of the Bio-ELECTRA is strong
relative to BERT Base as shown in Table II. Similar to what is
observed in general purpose downstream question answering
tasks [1], [3], more pre-training improves downstream perfor-
mance in biomedical question answering.

Fig. 1. Change in the exact match performance for BioASQ question
answering as a function of increased pre-training of Bio-ELECTRA

TABLE II
BIOMEDICAL QUESTION ANSWERING TEST RESULTS

Model Exact Match F1

Bio-ELECTRA (1.8M) 57.51 (0.88) 66.87 (0.63)
ELECTRA Small++ 57.78 (0.64) 67.10 (0.55)
BERT 59.98 (0.66) 70.25 (0.48)

C. Experimental Results

The biomedical factoid/list question answering results are
shown in Table II. We have used official SQUAD evaluation
measures exact answer span match percentage and F1 mea-
sure. While BERT Base model had slightly better performance,
taken into account their 8 times smaller size and 45 times less
training time [3], the performance of both Bio-ELECTRA and
ELECTRA Small++ models are impressive. With one fourth
of the training of ELECTRA Small++, Bio-ELECTRA has
nearly same performance as the ELECTRA Small++.

BioASQ yes/no question answer classification task results
are shown in Table III. We have used the official BioASQ
yes/no question evaluation measure of precision, recall and
F1 applied on both yes and no questions separately. Here,
Bio-ELECTRA outperforms BERT Base. The high standard
deviations for Bio-ELECTRA and BERT Base are due to one
random run in each case being stuck in a local minimum
where the classifier always answers yes (since BioASQ yes/no
questions are highly unbalanced towards yes answer (80%
yes/20% no)).

The test results for biomedical NER experiments are shown
in Table IV. Similar to BioBERT [2], we have used precision,
recall and F1 as evaluation measures. Here, large BERT Base
language representation model shows, the largest benefit over
smaller models at the cost 8 times longer inference time.
Bio-ELECTRA was slightly better (in terms of mean F1
performance) than ELECTRA Small++ in three of the four
NER entity types, while ELECTRA Small++ was slightly
better than Bio-ELECTRA on Disease entity type.

IV. CONCLUSION

In this paper, we have shown that small domain-specific
language representation models that make more efficient use
of pre-training data can achieve comparable downstream per-
formance on several biomedical text mining tasks to BERT
Base with eight times more parameters. A domain-specific
biomedical language representation model based on recently
introduced ELECTRA architecture named Bio-ELECTRA is
pre-trained on a consumer grade GPU with only 8GB memory.

While, Bio-ELECTRA performance is highly competitive to
BERT Base for question answering and classification tasks, its
performance lags behing BERT Base for NER tasks. To further
improve the performance of Bio-ELECTRA, we are currently
in the process of further pre-training with extended biomedical
corpus of full papers from PMC open access initiative.
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TABLE III
BIOMEDICAL YES/NO QUESTION ANSWER CLASSIFICATION TEST RESULTS

Model P (Yes) R (Yes) F1 (Yes) P (No) R (No) F1 (No)
Bio-ELECTRA (1.8M) 87.99 (2.95) 97.94 (1.35) 92.66 (1.56) 77.14 (26.47) 46.92 (16.39) 58.18 (19.91)
ELECTRA Small++ 88.18 (0.71) 94.31 (1.74) 91.14 (1.00) 69.92 (7.34) 50.38 (3.19) 58.40 (3.61)
BERT Base 87.02 (2.57) 95.49 (2.64) 90.99 (1.00) 65.15 (22.99) 43.46 (15.20) 51.71 (17.49)

TABLE IV
BIOMEDICAL NAMED ENTITY RECOGNITION TEST RESULTS

Type Dataset Metrics ELECTRA Small++ Bio-ELECTRA BERT
Disease NCBI disease P 76.14 (0.73) 74.51 (0.57) 85.43 (0.62)

R 84.83 (0.71) 81.94 (0.68) 87.08 (0.76)
F1 80.25 (0.60) 78.04 (0.38) 86.24 (0.55)

Drug/chem. BC4CHEMD P 80.06 (0.40) 80.66 (0.51) 91.36 (0.13)
R 81.88 (0.16) 84.37 (0.58) 89.46 (0.22)
F1 80.96 (0.19) 82.47 (0.14) 90.40 (0.11)

Gene/protein BC2GM P 67.56 (0.57) 68.12 (0.48) 83.95 (0.27)
R 76.27 (0.39) 76.00 (0.33) 84.30 (0.31)
F1 71.65 (0.38) 71.84 (0.32) 84.13 (0.23)

Species LINNAEUS P 91.18 (0.59) 91.35 (1.33) 96.01 (0.31)
R 93.64 (0.81) 94.23 (0.67) 93.90 (0.17)
F1 92.39 (0.53) 92.76 (0.87) 94.94 (0.17)
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T. Can, A. Usié, R. Alves, I. Segura-Bedmar, P. Martı́nez, J. Oyarzabal,
and A. Valencia, “The chemdner corpus of chemicals and drugs and its
annotation principles,” Journal of Cheminformatics, vol. 7, no. 1, 2015.
[Online]. Available: https://doi.org/10.1186/1758-2946-7-S1-S2

[16] L. Smith, L. K. Tanabe, R. J. n. Ando, C.-J. Kuo, I.-F. Chung,
C.-N. Hsu, Y.-S. Lin, R. Klinger, C. M. Friedrich, K. Ganchev,
M. Torii, H. Liu, B. Haddow, C. A. Struble, R. J. Povinelli,
A. Vlachos, W. A. Baumgartner, L. Hunter, B. Carpenter, R. T.-H.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 23, 2020. ; https://doi.org/10.1101/2020.05.20.107003doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.20.107003


Tsai, H.-J. Dai, F. Liu, Y. Chen, C. Sun, S. Katrenko, P. Adriaans,
C. Blaschke, R. Torres, M. Neves, P. Nakov, A. Divoli, M. Maña-López,
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