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Figure 2.  TFM of a simulated testing cell without adding noise to the strains.  The resulting 

stress fields are shown as heat maps at a low (a-c) or high (d-f) magnification, or as vector plots 

(g-i).  Traction fields qualitatively similar to the ground truth (a, d, g) are obtained with either 

deep learning (b, e, h) or FTTC (c, f, i).  However, vector plot of FTTC field showed some errors 

(i, red arrows), and a higher background that appears as small dots or short segments (i).  To 

mimic experimental data, each modeling pixel is assumed to represent 1.925 µm and the average 

length of intracellular strains is scaled to 0.4277 modeling pixels, equivalent to 0.823 µm in 

experimental images.   Young's Modulus of the substrate is assumed to be 10,670 Pascals.  Color 

scale is in the unit of Pascals. 
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Figure 3.  Mean normalized errors of traction stress fields as calculated with deep learning TFM 

(red bars) or FTTC at various levels of regularization (λ indicated in parentheses).  Y values 

represent the mean of 28 simulated cells with no noise (left group), a noise of 0.0188 modeling 

pixels (equivalent to the noise in experimental measurements; middle group), or a noise of 

0.0375 modeling pixels (right group) imposed on simulated strains.  Dark solid bars indicate 

errors without applying cutoff filter; light textured bars indicate the corresponding errors after 

applying cutoff filter.  Error bars represent standard deviations.     
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Figure 4.  TFM of the same simulated testing cell as shown in Fig. 2, with a Gaussian noise of 

0.0188 modeling pixels, equivalent to that of experimental measurements, added to the strain 

field.  Stress fields are calculated with deep learning (left column), or FTTC with λ = 6x10-10 

(middle column) or 1x10-9 (right column) for regularization, and are displayed as heat maps at a 

low (a-c) or high (d-f, j-l) magnification, or as vector plots (g-i, m-o), without (d-i) or with (j-o) 

cutoff filtering.  Stress is calibrated as described in Fig. 2.  The corresponding images of ground 

truth are shown in Fig. 2a, 2d and 2g.  
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at 2x the experimental noise and λ = 1x10-9 (Fig. 3 right set, solid red and solid blue bars, p < 

0.02).  However, heat maps showed a loss of fine features and resolution at this level of 

regularization (Fig. 4a, 4c, 4d, 4f; see Fig. 2a and 2d for ground truth), while qualitative features 

were preserved using deep learning TFM (Fig. 4a, 4d, 4j).   

The error for noisy data came at least in part from the background vectors that populated stress-

free regions both inside and outside the cell (Fig. 4g, 4h, 4i).  These vectors may be removed 

with a cutoff filter using the 98th percentile stress outside the cell as the threshold (Fig. 4j, 4m), 

which resulted in a decrease in E   for deep learning TFM, by 43% and 64% respectively at 1x 

and 2x experimental noise respectively.  With cutoff filtering, E  for deep learning TFM became 

smaller than E  for FTTC regardless of regularization (Fig. 3, middle and right set, red textured 

bars; p < 0.001).  Not surprisingly, the filter has the most prominent effect when noise was high 

and negligible effect with noise-free strains (Fig. 3, solid versus textured bars).    

Deep learning traction force microscopy for experimental data  

We applied deep learning TFM to experimental strains measured with NIH 3T3 cells on 

polyacrylamide substrates.  Heat maps showed a qualitative similarity between the stress field 

generated with deep learning TFM and FTTC without regularization (Fig. 5a-f).  However, some 

structures appeared much more prominently in FTTC than in deep learning TFM (Fig. 5b, 5e, 

arrows).  The application of regularization to FTTC at λ = 6x10-10 diminished these differences 

(Fig. 5b, 5h).  However, more aggressive regularization at λ = 3x10-9 caused a serious loss of 

resolution (Fig. 5j-l).     

Due to the lack of ground truth for experimental stress field, the accuracy of TFM was assessed 

quantitatively based on the deviation between measured strains and strains calculated from the 
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calculated stress field, using an error equation similar to that for evaluating stress.  The mean 

normalized error for deep learning TFM was 60% that for FTTC over a wide range of λ (Fig. 5m, 

p < 0.002), then decreased at λ = 3x10-9 (p < 0.03).   
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Figure 5.  TFM of an NIH 3T3 cell plated on a polyacrylamide substrate of 10,670 Pa, 

embedded with fluorescent beads as strain markers.  Stress fields are calculated with deep 

learning (a-c), or FTTC with λ = 0 (no regularization; d-f), λ = 6x10-10 (g-i), or λ = 3x10-9 (j-l), 

without applying cutoff filter.  Heat maps of stress fields at a low magnification (a, d, g, j), or 

high magnification focusing on the frontal region (b, e, h, k), show a similar distribution of stress 

between deep learning TFM (a-c) and FTTC without regularization (d-f).  However, some 

structures appeared much more prominently in FTTC than in deep learning TFM (e, arrows).  

Regularization at λ = 6 x10-10 diminishes these structures (d-i), while a high value of λ = 3x10-9 

causes a serious loss of resolution (j-l).  Mean normalized errors from 15 cells show a higher 

error for FTTC over a wide range of λ (m, blue bars) than deep learning (m, green bar).  Error 

bars represent standard deviation.  Scale bar, 20 µm (a, b) or 2 kPa (c, lower right). 

  

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 22, 2020. ; https://doi.org/10.1101/2020.05.20.107128doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.20.107128
http://creativecommons.org/licenses/by-nc/4.0/


 
20 

 

Discussion 

TFM belongs mathematically to an ill-posed inverse problem (17), where a unique solution may 

not exist and the solution is sensitive to noise.  Conventional TFM relies on regularization to 

address this challenge (17), with the caveat that regularization may decrease the resolution and 

increases the deviation between measured strains and strains calculated from predicted stresses.  

In addition, it is difficult to define the optimal weight parameter λ for regularization (18).   

Deep learning has emerged as an appealing approach for solving ill-posed inverse problems (19).  

Although deep learning also applies regularization, it was limited to the training process for the 

purpose of minimizing over-fitting (20), which suppresses the error for training at the expense of 

error for subsequent applications.  When making predictions, deep learning works without 

regularization thereby avoiding the associated compromises.  Interestingly, a higher accuracy 

with deep learning TFM than FTTC was also observed when processing noise-free strains 

without regularization.  A possible cause is the difficulty in handling the singular central element 

of Green's tensors in TFFC (14), while the effect of varying its value appeared small for deep 

learning.   

The application of deep learning hinges on two major requirements, a network architecture 

compatible with the problem, and the availability of a sizeable training dataset.  We have adapted 

UNet for processing 2D fields of stress and strain vectors (22), using different z planes in a 3D 

matrix to represent different orthogonal vector components.  In addition, since the strain field 

along a given direction is determined by stresses along both orthogonal directions, it is essential 

to replace 2D convolution with 3D convolution in order to generate the required linear 

combinations.   
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For the training dataset, we have adapted a simulation model for cell migration to generate 

unlimited pairs of stress and strain fields (21), under the assumptions that all stress vectors point 

toward the cell center and have a magnitude proportional to the net signal that determines 

protrusion or retraction activities.  While these assumptions may represent oversimplifications, 

they allowed the generation of simulated fields that resembled cellular stress fields for successful 

training, as evidenced by the similar predictions of deep learning TFM and FTTC where the 

fundamentally different mathematical approaches argued for the validity of both methods. 

Simulated data, with their known ground truth stress fields, further allowed rigorous analysis of 

the performance of deep learning TFM under defined noise conditions.  We observed a small 

mean normalized error of 3.2% for stress fields generated from noise-free strains.  In addition, all 

the qualitative features were preserved even when the noise of strains was twice that of 

experimental measurements.  A visible effect of noise was the generation of small background 

stress throughout the image, which may be removed by applying a cutoff filter without affecting 

the resolution or structural features.  Similar background also appeared in stress fields generated 

with FTTC, which may be suppressed either by regularization, with a loss of resolution and 

features, or using a similar cutoff filter.  With cutoff filtering, deep learning TFM showed a 

better accuracy than FTTC under all the tested conditions.    

While other conventional TFM methods may yield a better accuracy and/or resolution than 

FTTC as tested in the present study (25, 26), the speed of deep learning TFM at < 1 ms for 

104x104 modeling pixels, is comparable to that of the fastest conventional TFM methods.  In 

addition, a neural network pre-trained for a given Poisson ratio may be scaled easily for different 

Young's moduli and magnifications.  Additional advantages of deep learning include its ability to 

generate stress fields without prior knowledge of the location of cell border or focal adhesions.  

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 22, 2020. ; https://doi.org/10.1101/2020.05.20.107128doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.20.107128
http://creativecommons.org/licenses/by-nc/4.0/


 
22 

 

While deep learning does not enforce the balance of total forces, the small normalized error as 

demonstrated with simulated testing data argues for its general reliability.  In summary, we 

showed that deep learning TFM can serve as an appealing alternative to conventional 2D TFM 

for characterizing cell-substrate mechanical interactions at a high speed, resolution, and 

accuracy.   
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Supplemental Information 

 

 

 

 

 

 

 

 

 

 

Supplemental Figure 1.  Modified UNet neural network for deep learning TFM, showing 51 

layers with 'enN' denoting encoding levels and 'deN' decoding levels where N is level number.  

Each level contains two 3D convolution layers (denoted as convN), except for the bottom level 

where there is an additional convolution layer before the output regression layer.  Each decoding 

level ends with a layer of transposed 3D convolution (denoted as transconv) for up-sampling.  

Other layers perform batch normalization (denoted as bnN), rectified linear unit operation 

(denoted as reluN), and max pooling (denoted as maxpool), where N is level number.   Three 

skip connections are indicated as vertical shunts that concatenate matrices of compatible 

dimensions from encoding and decoding levels, for the purpose of preserving the resolution.  The 

neural network exits with a regression output layer. 
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Supplemental Figure 2.  Typical training progress of the neural network for deep learning TFM.  

The training dataset consists of 708 images, divided into minibatches of 64 images each with 

random shuffling at each epoch.  Thus, each epoch (upper number along the x-axis) consists of 

11 minibatch iterations (lower number along the x-axis).  Y-axis shows the root mean squared 

error, calculated as the square of error at each modeling pixel summed over the entire area of 

104x104 modeling pixels before taking the square root and averaged over the images in the 

minibatch.   
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