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Abscisic acid (ABA) is an essential plant hormone responsible for plant development and stress responses. Recent structural and
biochemical studies have identified the key components involved in ABA signaling cascade, including PYR/PYL/RCAR receptors,
protein phosphatases PP2C, and protein kinases SnRK2. The plant-specific, Roh-like (ROPs) small GTPases are negative regula-
tors of ABA signal transduction by interacting with PP2C, which can shut off “leaky" ABA signal transduction caused by constitutive
activity of monomeric PYR/PYL/RCAR receptors. However, the structural basis for negative regulation of ABA signaling by ROP
GTPases remain elusive. In this study, we have utilized large-scale coarse-grained (10.05 milliseconds) and all-atom molecular
dynamics simulations and standard protein-protein binding free energy calculations to predict the complex structure of AtROP11
and phosphatase AtABI1. In addition, we have elucidated the detailed complex association pathway and identified the critical
residue pairs in AtROP11 and AtABI1 for complex stability. Overall, this study has established a powerful framework of using
large-scale molecular simulations to predict unknown protein complex structures and elucidated the molecular mechanism of the
negative regulation of ABA signal transduction by small GTPases.

Introduction
The plant hormone abscisic acid (ABA) regulates a variety
of developmental processes and responses to environmental
stresses in plants.1–4 Recently, the core components involved
in ABA signaling network have been identified, including the
family of PYR/PYL/RCAR (PYLs, pyrabactin resistance 1/PYR1-
like/regulatory component of ABA receptor) ABA receptors,
protein phosphatase PP2Cs (clade A serine/threonine protein
phosphatase 2C) and protein kinase SnRK2s (subfamily 3
SNF1-related kinase 2).5 Under non-stress conditions, PP2Cs
bind to SnRK2s and dephosphorylate SnRK2s, resulting in the
inactivation of SnRK2s (Fig. 1A).6,7 Under stress conditions,
plants promote in planta synthesis of ABA molecules and trigger
the negative regulatory ABA signaling network.8 When ABA
binds to PYLs, PYLs undergo pronounced conformational change
to facilitate PYL-PP2C interactions via direct binding.9–12 Upon
being free from inhibition by PP2Cs, SnRK2s activate through
autophosphorylation, and then phosphorylate downstream
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signaling components, eventually triggering a range of ABA
responses (Fig. 1B).13–15 In Arabidopsis thaliana, there are 14
functionally redundant PYLs. PYL4-13 exist as a monomer under
physiological conditions10,11,16,17 and can bind to and inhibit
PP2Cs in the absence of ABA, which would theoretically cause
“leaky" ABA signal transduction in the absence of stimulus.16,18

Genetic and biochemical studies have identified the plant-specific
Rho-like (ROPs) small GTPases as negative regulators of ABA
signaling, which can potentially shut off ABA signaling in the
absence of stimulus.19–23 Li et al. have demonstrated that
expression of a constitutively active ROP11 (CA-ROP11, Q66L),
a member in a family of 11 ROPs, can suppress a variety of
ABA-mediated responses, including seed germination, seedling
growth, stomatal closure and plant responses to drought stress.20

Furthermore, Li et al. have shown that ROP11 negatively regu-
lates ABA signal transduction by stabilizing the activity of ABI1
(a member of PP2C family, Fig. 1B).20,23 Based on these results,
they have proposed a model that can effectively shut off ABA
signal transduction in the absence of ABA (Fig. 1A).23 In this
model, ROPs serve as signaling switches by adopting either a
GDP-bound inactive state or a GTP-bound active state (Fig. 1C).
Under non-stress conditions, monomeric PYLs bind to PP2C
in the absence of ABA with a low affinity. GTP-bound ROPs
can competitively bind to PP2C and interfere with the leaky
repression of PP2C activity by monomeric PYLs (Fig. 1A).20,21,23

Under stress conditions, ABA-bound PYLs bind to PP2Cs with
an enhanced affinity, which would put ROPs at a competitive
disadvantage. Meanwhile, ABA leads to the inactivation of ROPs
by adopting the GDP-bound state.23 As a result, in the presence
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of ABA, PP2Cs are fully inactivated by PYLs, releasing SnRK2s
to induce ABA responses (Fig. 1B). Overall, ROPs, notably
ROP10 and ROP11, play a critical role in regulating ABA signal
transduction, while molecular understanding of how ROPs com-
petitively bind to PP2Cs and stabilize PP2C activity is still lacking.

In recent years, a plethora of molecular modeling techniques
have emerged as powerful computational tools for structural
prediction and binding affinity evaluation of protein complexes,
including docking25–27 and molecular dynamics (MD)28–30.
Docking is useful for predicting the molecular assembly of
proteins given their individual structures, while even the state-of-
the-art docking techniques are limited in incorporating protein
dynamics and cofactor-protein interactions. MD simulations can
capture the motion of proteins and their associated cofactors with
atomistic details.31,32 With the rapid advances of computing
power, long timescale MD simulations have been routinely
used in studying protein dynamics and function33–35, such as
protein conformational change36,37, protein-ligand binding38–40

and protein-protein association29,30. We have recently utilized
large-scale all-atom MD simulations to study the molecular
mechanism of ABA-mediated activation of three sub-type ABA
receptors41,42 and predict a near-native complex structure of
ABA receptor PYR143. In contrast to all-atom MD simulations,
coarse-grained (CG) MD simulations are useful in addressing the
challenges of simulating long-timescale protein dynamics44,45,
such as protein-protein association45–47. Generally, proteins
are represented with beads and simulated with less details in
CG MD simulations, where each bead approximates multiple
heavy atoms and their connected hydrogen atoms. To model
protein complex structure, one can perform large-scale CG MD
simulations to sample the vast space of complex configurations,
and subsequently utilize binding affinity evaluation to rank
candidate complexes from simulations.45–47

In this study, we have performed extensive MD simulations to
predict the complex structure of ROP11 and ABI1 in Arabidopsis
thaliana (denoted as AtROP11 and AtABI1) (Fig. 2, Table S1).
Since there is no GTP-bound and active structure available
for ROP11, we have predicted the structure using homology
modeling based on the crystal tructure of active OsRac1 in
rice (with 82.95% sequence identity to AtROP11). In order to
explore the conformational space of ROP11-ABI1, we performed
10.05 ms adaptive CG MD simulations to sample the complex
structural ensemble of ABI1 and a constitutively active ROP11
(CA-ROP11). We analyzed the large-scale CG MD simulation data
using a statistical approach called as Markov state model,35,48

which was used to discretize the ensemble into 600 individual
states along with quantitative estimation of their equilibrium
populations. We chose the top 25 candidate complex structures
that account for more than 80% of total population, and obtained
their atomic structures by aligning the atomic structures of
ROP11 and ABI1 to these complexes. Next, we performed 240
ns all-atom MD simulations to further refine these complex
structures, resulting in 13 complexes that were stable. To further
differentiate the 13 complexes, we performed potential of mean

force (PMF)-based energy calculations to evaluate the relative
stability of these complexes. We obtained 2 candidate structures
which demonstrate relative high stability. Based on the analysis
of residue interaction energies in the predicted complexes, we
identified and characterized the critical residue pairs responsible
for forming the complexes. Overall, this study has elucidated
the structural basis for negative regulation of ABA signaling by
ROP GTPase, which can create new avenues for engineering ABA
signaling network to control ABA-mediated responses in plants.

Results

Homology models of GTP-bound, active ROP11 and ABI1

The GTP-bound, active AtROP11 structure was predicted from
homology modeling using the active OsRac1 in rice (PDB ID:
4U5X49) as the structural template. The crystal structures of
several active GTPase with certain degrees of sequence variation
(currently available in Protein Data Bank) suggested that the ac-
tive structure of GTPase is conserved (Fig. S1), which justifies
the accuracy of our homology model of AtROP11. The modeled
structure was further refined by running 100 ns all-atom MD sim-
ulations. Compared to the crystal structure of GDP-bound and
inactive AtROP9, the major conformational changes are observed
in three regions (Fig. 1C), named as switch I, switch II and
insert region, which are known to be critical for small GTPase
activation.49 Notably, the helix in switch II of the active struc-
ture unfolds in the inactive state. The conformational changes
in switch I and insert region are less pronounced. The confor-
mational changes in ROP11 upon activation may be critical for
protein-protein interaction between ROP11 and ABI1. Based on
this homology model, an atomic structural model of the consti-
tutively active ROP11 (CA-ROP11, Q66L)20,21 was generated by
performing in silico side chain mutation. ABI1 structure was pre-
dicted from the free crystal structure of its homolog ABI2 (PDB ID:
3UJK7), which only deviates from the crystal structure of ABI1 (in
complex with ABA receptor, PDB ID: 3JRQ50) by 1.42 Å (Fig. S1).

Extensive CG MD simulations capture the conformational
space of ABI1/CA-ROP11 complex

We sought to perform large-scale explicit solvent CG MD simu-
lations using available ABI1 and CA-ROP11 structures, in order
to sample possible configurations of ABI1 and ROP11 complex.
We simulated CA-ROP11 to mimic the interactions between ABI1
and GTP-bound, active ROP11. Martini coarse-grained force
field for proteins was used in our CG MD simulations, which has
been used extensively in mesoscale modeling of biomolecule and
soft matter.51,52 The atomic structures of ABI1 and CA-ROP11
were converted to the bead representation using the four-to-one
mapping strategy required by the Martini force field (Fig. S2).
Generally, the heavy atoms in the backbone of each amino acid
are mapped to one bead, and the heavy atoms in the side chain
of each amino acid are mapped to 1 or more beads of various
types (e.g. polar, non-polar, apolar, and charged). In total, 5
rounds of CG MD simulations were performed, resulting in 10.05
ms aggregate simulations including 950 independent trajectories
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Fig. 1 Schematic of negative regulation of ABA signaling by ROP GTPase and atomic structures of ABI1 and ROP11. (A) Under normal conditions,
ROP GTPase competitively binds to PP2C and prevents ABA-independent inhibition of PP2C, leading to no stress responses. Under stress conditions,
ABA binds to PYR/PYL/RCAR receptors and results in high-affinity binding between ABA-bound receptor and PP2C, triggering downstream ABA
responses. Molecular structures of (B) ABI1 and (C) GTP-bound active ROP11 (homology model from PDB ID: 4U5X) and GDP-bound inactive ROP9
GTPase (PDB ID: 2J0V 24). The three regions in ROP11, including insert region and switch I and II, that undergo major conformational changes upon
activation are highlighted in pink (active) and green (inactive).

of 10 or 21 µs each (supplementary methods, Table S2). We have
observed that ABI1 and CA-ROP11 mostly reached a relatively
stable configuration within 10 or 21 µs of each trajectory.

In order to identify the near-native complex from the coarse-
grained conformational ensemble of ABI1 and CA-ROP11, we
then utilized Markov state models (MSMs) to analyze the sim-
ulation data. MSMs is a powerful tool for analyzing large-scale
MD simulation data on protein dynamics.35,48 It characterizes
protein dynamics by discretizing entire protein conformational
space into a certain number of states and the inter-state transition
probabilities between these states.35,48 The discretization step
is usually achieved by clustering the conformations according to
their structural similarities and kinetics. The transition probabil-
ities between different clusters are estimated statistically based
on the inter-cluster transitions captured from CG MD trajectories.
The equilibrium populations of individual clusters can then be
estimated from the transition probability matrix of MSMs, which
serve as a metric to rank the likelihood of each cluster as the
native complex. In our study, we have defined six metrics for
clustering ABI1 and CA-ROP11 conformations, including the
center-of-mass distance between two proteins and five angles
or dihedral angles that measure the relative orientation and
position of two proteins (Fig. S3). We have further employed
time-lagged independent component analysis (tICA)53 on the
six metrics to generate the slowest relaxing degree of freedoms
(denoted as tICs) in ABI1/CA-ROP11 association processes.
We then clustered all the snapshots into 600 states based on 4
tICs, and an MSM was constructed using a lag time of 800 ns

(supplementary methods, Fig. S4).

Using the MSM, we obtained 600 representative configurations of
ABI1/CA-ROP11 along with the probabilities of observing these
states at equilibrium. We have also generated the conforma-
tional free energy landscape to characterize complex thermody-
namic stability (Fig. S5A,B). The minima on the landscape corre-
sponding to relative stable complex conformations (Fig. S5A,B).
We then focused our further analysis on the top 25 states with
the highest equilibrium populations. The sum of the populations
of these 25 states is greater than 80% of total populations (Fig.
S5C). In addition, the 25 states cover all the minima of the free
energy landscape (Fig. S5A,B), suggesting that the native com-
plex is likely among these 25 states. Overall, large-scale CG MD
simulations and MSM analysis have generated the top 25 candi-
date complex structures of ABI1 and CA-ROP11.

Top 13 complexes obtained after structural refinement by all-
atom MD simulations

We then converted the CG models of top 25 states into atomic
representations, which was achieved by inverse one-to-four
mapping followed by short MD simulations to equilibrate the
atomic structures (supplementary methods). Due to the possible
inaccuracy of inverse mapping, we have aligned the initial atomic
structures of ABI1 and GTP-bound, active ROP11 to the converted
atomic complex structures. In this way, we have obtained 25
candidate complex structures with GTP bound to ROP11. By
visually inspecting these structures, we observed that ABI1 and
ROP11 in three states (top 3, 7 and 11 states in Fig. S5B) share
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Fig. 2 Overview of the computational workflow for predicting ABI1-
ROP11 complex structure.

similar conformations. For further analysis, we combined the
three states as a single state and also summed their equilibrium
populations.

To further refine the interfacial interactions for the 23 candi-
date complexes, we have performed two independent all-atom
MD simulations starting from each complex structure for 240 ns.
We have characterized the center-of-mass distance r between two
proteins and the root mean square deviation (RMSD) of complex
from initial structure with respect to simulation time (Figs. S6
and S7). For each of these states, if large fluctuation of either r or
RMSD (>5 Å) is observed in either trajectory, it suggests that the
complex structure is not stable in all-atom MD simulations. Using
this criteria, we ruled out 10 candidate complexes, leading to 13
remaining candidate complexes as shown in Fig. 3. Among the
13 states, the binding of ROP11 in several states would exclude
the binding of ABA receptor to ABI1, whereas, in the other states,
the binding site of ROP11 does not significantly overlap with the
binding site of ABA receptor (Fig. 3). Overall, extensive all-atom
MD simulations have further refined the structural models from
CG MD simulations and helped downselect the 13 complex struc-
tures from 23 candidate complex structures.

Potential of mean force calculations for quantitative charac-
terization of the relative stability of candidate complexes

In order to further differentiate the 13 atomic structural mod-
els of ABI1 and ROP11, we sought to perform free energy
calculations to evaluate the thermodynamic stability of 13
complexes. In this part, we utilized potential of mean force
(PMF) calculations to evaluate the free energy profile to separate
each candidate complex structure from bound state to a fully
unbound state (supplementary methods).54–56 By checking
the PMF depth between the bound state and the unbound
state, we can quantitatively characterize the relative stability
of these complexes. For each complex, we separated ABI1 and
ROP11 along a vector r, which connects the center of mass
of two proteins, in the presence of geometrical restraints (Fig.
4A). To determine the separation PMF, we selected a series of
complex conformations with r evenly distributed in a certain
range from the associated state to the fully dissociated state.
Replica-exchange umbrella sampling (REUS) MD simulations
were started from these complex conformations, with a harmonic
potential acting on r to restrain the distance between ABI1 and
ROP11 (Table S3). From these simulations, the separation PMF
can then be estimated using the statistical free energy method,
multistate Bennett acceptance ratio (MBAR).57 The purpose
of applying these geometrical restraints was to accelerate the
convergence of separation PMF, including the conformational
restraints (BABI1, BROP11) and the restraints on the relative
position (Θ, Φ) and orientation (ψ , φ , θ) of two proteins (Fig.
4A). Using this protocol, we have obtained the separation PMFs
for the 13 complexes (Fig. S8) and the PMF depths are indicated
in Fig. 3.

From the PMF depths, we have identified 3 states (third, sixth
and eleventh states in Fig. 3, denoted as state 160, state 240,
state 3 according to their cluster numbers in the MSM) with PMF
depths greater than 40 kcal/mol (Fig. 4B), which indicates their
higher stability as compared to the other 10 complexes. This
suggests that the three candidate complexes are more likely to
be the native complex of ABI1 and ROP11. We further sought to
determine standard protein-protein binding free energy (∆Go)
for the three candidate complexes (supplementary methods).
∆Go includes the contribution from the integration of separation
PMF and the contributions from the applied conformational
and angular restraints during separation PMF calculations. The
contribution of separation PMF to ∆Go (RT ln(S∗I∗Co), including
the contributions of applied restraints) can be calculated by
numerical integration of separation PMF. To obtain ∆Go, the
contributions of applying the restraints in the bound state and
removing them in the unbound states should also be calculated.
We thus have determined a series of PMFs relating to each
individual restraints (Fig. S9) and calculated their contributions
to ∆Go (Fig. 4C). Take altogether, ∆Go for state 160, state
240 and state 3 are -34.31 ± 0.04 kcal/mol, -40.6 ± 0.06
kcal/mol, and -26.05 ± 0.04 kcal/mol. Overall, these free energy
calculations suggest that state 160 and state 240 are the most
probable complexes of ABI1 and ROP11.
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Fig. 3 Snapshots of the top 13 candidate complex structures after structure refinement by all atom MD simulations. ABI1 and ROP11 are shown in
lime and blue, respectively. ABA receptor PYL1 (orange) is also shown to indicate PYL1-ABI1 binding site. The equilibrium populations and the PMF
depths for these complex structures are shown. The three states highlighted in black boxes are state 160, state 240, and state 3, as named according
to their cluster numbers in the MSM.

Structural analysis of the candidate complexes predicted from
MD simulations

We further sought to examine the three candidate complex
structures and see if each of these structures agree with known
experimental data. Due to the nature of competitive binding
between ABA receptor and ROP11 to ABI120–23, the binding of
one to ABI1 would theoretically exclude the binding of the other
to ABI1 and therefore their binding site would likely partially
overlap. However, the binding of ROP11 should not block the
catalytic site of ABI1 since ROP11 stabilizes ABI1 activity.20–23

In addition, only GTP-bound and active ROP11 can interact with
ABI1 and the conformational changes in ROP11 upon activation
are observed in switch I, switch II and insert region, suggest-
ing that the three regions are likely to be involved in the interface.

As shown in Fig. 3, the binding site of ROP11 in the state 160
(the third snapshot in Fig. 3) has partial overlap with the binding
site of ABA receptor PYL1. In PYL1-ABI1 structure, W300 is

docked into the binding pocket of ABA receptor, whereas W300
is involved in forming the interface between ABI1 and ROP11
(Fig. 5A,B). These results suggest that the binding of ROP11
in the state 160 would exclude the binding of PYL1 to ABI1,
which is consistent with the previous experimental results.20–23

ROP11 adopts a significantly different binding pose compared to
PYL1, which leaves the catalytic site exposed to solvent. This is
consistent with the fact that ROP11 stabilizes ABI1 activity.20–23

The switch I in ROP11 interacts with the catalytic site of ABI1,
which is similar to that the activation loop of SnRK2 interacts
with the catalytic site in ABI1 (Fig. 5B,C). The key interaction
involved at the interface is through electrostatic interaction
between Mg2+ in the catalytic site of ABI1 and D36 in switch I of
ROP11 (Fig. 5D,E). In addition, K32 and K163 in ROP11 forms
electrostatic interaction with D278, D351 and D282 near the
catalytic site of ABI1. N301 in ABI1 forms polar interaction with
GTP and polar interactions are formed between W300-D127,
Q408-N44, and R409-T29 in ABI1 and ROP11. The bulky side
chain of W300 stabilizes the hydrophobic interaction between
the loop in ABI1 and insert region of ROP11. We have performed
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Fig. 4 Determination of standard binding free energies for three candidate complex structures. (A) Snapshot of ABI1 and ROP11 and the collective
variables used in separation REUS MD simulations. The center of mass distance between ABI1 and ROP11 (r, P1-P

′
1 distance), and the Euler angles

φ (P1-P
′
1-P

′
2-P

′
3) and θ (P1-P

′
1-P

′
2) defines the relative position between two proteins. The Euler angles, Θ (P

′
1-P1-P2), Φ (P

′
1-P1-P2-P3), and ψ (P

′
2-P

′
1-

P1-P2), relate the relative orientation between the two protomers. In addition, the conformations of ABI1 and ROP11 are restrainted by RMSDs of the
two proteins (BABI1, BROP11) from the initial strutcures. (B) Potential of mean force (PMF) profiles for the separations of ABI1 and ROP11. The error bars
on the PMFs are shown. (C) Free energies associated to the components of ∆G◦bind for three different complexes. The error bars for all components
are less than 0.04 kcal/mol.

∼520 ns MD simulation on the state 160, and the complex
remains highly stable within the simulation timescale (Fig. S10).
Finally, the GTP binding site of ROP11 in the state 160 remains
largely exposed, allowing for GTP/GDP exchange catalyzed by
guanine-nucleotide exchange factor (GEF) enzyme.22,23 We
identified the association pathway between ABI1 and CA-ROP11
as captured in our CG MD simulations (Fig. 6). The insert
region in CA-ROP11 initially recognizes the loop in ABI1 through
electrostatic interactions between the charged residue pairs
in ABI1 and ROP11. CA-ROP11 then adapts its orientation to
finally assume the binding pose in the state 160. The association
pathway also highlighted the essential role of switch I and insert
region of ROP11 in forming the complex. Overall, this candidate
complex structure has relatively large equilibrium population and
separation PMF depth, and agrees with the competitive binding
between ROP11 and ABA receptor as well as the activation

process of ROP11.

For both state 240 and state 3, the binding of ROP11 would not
directly impact the binding of PYL1 to ABI1 as shown in Fig. 3
(the sixth and the eleventh snapshots). In the state 240, the GTP
is directly involved at the interface between ABI1 and ROP11
(Fig. S11A). Also, the switch I, switch II and insert region in
ROP11 are directly involved in the interaction between ABI1 and
ROP11 (Fig. S11A). At the interface, there are several charged
residue pairs (R189-D127, E190-K128 and K372-D16) that form
strong electrostatic interactions between ABI1 and ROP11. No-
tably, K404 in ABI1 directly interact with the phosphate group in
GTP of ROP11 (Fig. S11B), which could be the key interaction
that promotes the formation of such complex. However, the GTP
is largely blocked by the complex, which would not be exposed to
GTP/GDP exchange by GEF enzyme. We also identified the associ-
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Fig. 5 ABI1-ROP11 candidate complex structure (state 160). Molecular structures of (A) PYL1 and ABI1 (PDB ID: 3JRQ 50), (B) ROP11 and ABI1
(predicted), and (C) SnRK2 and ABI1 (homology model from PDB ID: 3UJG 7). (D) ROP11 GTPase binds to ABI1 through the switch I region, and
leaves the catalytic site of ABI1 and GTP binding site of ROP11 exposed to solvent. (E) D36 in ROP11 GTPase interacts with Mg2+ at the catalytic site
of ABI1, promoting ABI1-ROP11 interactions. Polar interactions between ABI1 and GTP/ROP11 are highlighed.

ation pathway to form the state 240 from our CG MD simulations
(Fig. S12). For state 3, the switch I, switch II and insert region
are not involved in the ABI1-ROP11 interface. In addition, both
N-terminal and C-terminal of ROP11 interact with ABI1, which is
unlikely to be physical (Fig. S13). Take altogether, the state 3 is
less likely to be the true complex compared to the state 160 and
the state 240.

Residue interaction energy and protein energy network anal-
ysis reveal the key residue pairs in state 160 and state 240

We further sought to identify the key residue pairs with signifi-
cant contributions to the interaction energy between ABI1 and
ROP11 in both the state 160 and the state 240. We computed the
ensemble-average non-bonded interaction energies between the
residue pairs in ABI1 and ROP11 from MD trajectories according
to the force field parameters used in the MD simulations.58 After

we obtained the mean interaction energies (MIE), we computed
the residue-residue MIE and correlation matrix for both the state
160 (Fig. 7A,B) and the state 240 (Fig. S14A,B). In addition,
protein energy network (PEN) was constructed by considering
individual residues as nodes and MIEs between residue pairs
as the ‘weight’ for the edges that connect these residue nodes.
Using PEN, node-based network metrics including degree and
betweenness-centralities (BC) were obtained to assess the
importance of each residue in terms of protein stability (Fig. 7C
and Fig. S14C,D). Specifically, degree measures the number of
edges connected to a respective residue and BC measures how
frequently this residue occurs in all shortest paths between all
other residues. Using the metrics including MIE, correlation,
degree and BC, we can identify the residues in ABI1 and ROP11
that are important in forming the complexes in the state 160 and
the state 240.
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Fig. 6 The association pathway between ABI1 and CA-ROP11 to form state 160 predicted from CG MD simulations. The initial interaction between
ABI1 and CA-ROP11 is mediated by the charged residues (E291-K128, K296-D133) in ABI1 and the insert region of CA-ROP11. Next, CA-ROP11
adapts the orientation to rotate around ABI1, facilitated by the interaction between R304 in ABI1 and D36 in the switch I of CA-ROP11. Finally, D36
recognizes the Mg2+ in the catalytic site of ABI1, and CA-ROP11 binds to ABI1. This pathway was captured in continuous trajectory from CG MD
simulations. The atomic complex structures were converted from the snapshots in CG MD trajectory.

For the state 160, the MIE matrix (Fig. 7A) highlights the residue
pairs with favorable (negative MIE) and unfavorable (positive
MIE) contributions to form the complex. The top 20 residue pairs
with the lowest MIE and their MIE values are summarized in Ta-
ble S4. Notably, the three residues in ROP11, including K32, K163
and D36, strongly interact with ABI1 and have the largest contri-
butions to binding energy (Fig. 5E). We note that D36 also inter-
acts with Mg2+ at the catalytic site of ABI1, which is expected to
have even stronger interaction compared to residue-residue inter-
actions (Fig. 5E). In addition, the three residues and their neigh-
boring residues are correlated with the residues in ABI1 (Fig.
7B), and have relative higher degrees and BCs (Fig. 7C). For the
state 240, the charged residue pairs, including R189-D127, E190-
K128, K372-D16, K391-D133, and K371-D68, have the largest
contributions to form the complex (Table S5, Fig. S14). In addi-
tion, K404 in ABI1 interacts with the phosphate groups of GTP in
the state 240, which is expected to have favorable interaction en-
ergy. Overall, residue interaction energy and protein energy net-
work analysis enables the identification of key residue pairs that
are involved in forming the state 160 and the state 240, which
can be further validated experimentally.

Discussion
Protein-protein interactions (PPIs) play a vital role in plant
hormone signal transduction and other biological processes in
plants. The majority of PPIs are specific in both their binding

targets and the binding sites. It is therefore critical to elucidate
the binding partner of a target protein and the molecular details
of their interaction, in order to better understand and engineer
these biological processes. Despite recent advances in a variety
of experimental techniques for determining three-dimensional
structures of proteins and complexes, it remains, in many
cases, challenging to obtain high-resolution protein complex
structures. In particular, high-quality structural information for
plant proteins and complexes is scarce.

Molecular modeling techniques are powerful computational tools
to complement experiments for structural modeling of PPIs.
With the rapid progress in high-performance computing and
MD software, one can perform microsecond- to millisecond-long
timescale MD simulations to study complex protein dynamics
and function at a high spatial-temporal resolution. In contrast
to protein-protein docking, MD simulations can capture the
dynamic nature of proteins as well as protein interactions with
organic ligands and cofactors. However, the application of MD
simulations in accurate modeling of PPIs remains to be limited by
available computational power and inherent complexity of PPIs
due to vast configuration space of protein complexes.

In this study, we have integrated long timescale coarse-grained
and all-atom MD simulations for predicting the complex struc-
ture of ABI1 and ROP11, which are involved in ABA signaling
network. Combining CG MD simulations and Markov state
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Fig. 7 Identification of critical residue-residue pairs in state 160. (A) Mean interaction energy (MIE) matrix and (B) residue correlation matrix for the
residue-residue pairs between ABI1 and ROP11. (C) Network analysis reveals the degree and betweenness-centrality (BC) of the residues in ROP11.
The residues K32, D36 and K163 in ROP11 have the highest degree and BC, indicating their critical role in stabilizing the state 160.

model analysis, we were able to adequately sample the complex
configuration space and identify a small number of candidate
configurations. The candidate complexes were further refined
through all-atom MD simulations and differentiated through
binding free energy evaluation. We obtained two candidate
complex structures, both the state 160 and the state 240, that
require experimental information to validate. By performing
the residue interaction energies and protein energy network
analysis on all-atom MD trajectories, we identified the critical
residues in both ABI1 and ROP11 which contribute favorably
to forming the state 160 and the state 240, respectively. From
our CG MD simulations, we reported not only the near-native
structure of ABI1 and ROP11 but also the association pathway
to form the native complex. Overall, this study demonstrates
the powerful framework of integrating a range of molecular
modeling techniques for predicting protein complex structures.

In conclusion, our study has provided key structural insights into
negative regulation of ABA signaling through molecular inter-
actions between protein phosphatase PP2C and small GTPase.
The structural information unraveled in this study helps improve
molecular understanding of ABA signal transduction mechanism,
and can potentially create new avenues to engineer ABA signal-
ing pathway to regulate ABA-mediated responses. From a broad
perspective, our computational framework used in this study can
be extended to study other PPIs involved in a variety of biolog-
ical processes. As MD methodology continues to develop, in-

cluding improved force field accuracy and integration of sequence
co-evolution59–61 and experimental information43,62, we expect
that molecular simulations can be increasingly useful in under-
standing and engineering plant proteins and complexes.
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