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Summary 

There is accumulating evidence that the lower airway microbiota impacts lung health. 

However, the link between microbial community composition and lung homeostasis remains 

elusive. We combined amplicon sequencing and culturomics to characterize the viable 

bacterial community in 234 longitudinal bronchoalveolar lavage samples from 64 lung 

transplant recipients and established links to viral loads, host gene expression, lung function, 

and transplant health. We find that the lung microbiota post-transplant can be categorized into 

four distinct compositional states, ‘pneumotypes’. The predominant ‘balanced’ pneumotype 

was characterized by a diverse bacterial community with moderate viral loads, and host gene 

expression profiles suggesting immune tolerance. The other three pneumotypes were 

characterized by being either microbiota-depleted, or dominated by potential pathogens, and 

were linked to increased immune activity, lower respiratory function, and increased risks of 

infection and rejection. Collectively, our findings establish a link between the lung microbial 

ecosytem, human lung function, and clinical stability post-transplant. 
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Introduction 

Recent studies have shown that diverse bacterial communities are present in the lower 

respiratory tract of healthy humans (Charlson et al., 2011; Dickson et al., 2015, 2017; Pattaroni 

et al., 2018; Segal et al., 2013; Venkataraman et al., 2015). These communities are 

predominated by the same phyla as the oral and gastrointestinal microbiota (Bacteroidetes, 

Firmicutes, Actinoabacteria, Proteobacteria). However, their phylogenetic composition, total 

bacterial load, and temporal-spatial dynamics are distinct owing to the characteristic 

physicochemical, anatomical, and immunological conditions of the lung, which makes this 

organ a distinct microbial habitat with specific host-microbe interactions (Dickson et al., 2015; 

Lloyd and Marsland, 2017). 

Several independent studies have shown that supraglottic taxa (i.e bacteria found in the 

human oropharyngeal area) such as Streptococcus, Prevotella, and Veillonella are major 

constituents of the healthy lower respiratory tract microbiota. These bacteria have been 

proposed to contribute to the immunological development and homeostasis of the human lung, 

as their presence correlates with an increased pro-inflammatory response during postnatal 

immune maturation as well and lung function in  adulthood (Pattaroni et al., 2018; Segal et al., 

2016). Shifts in microbial community composition, characterized by decreased bacterial 

diversity and collectively referred to as "dysbiosis” (Dickson and Huffnagle, 2015; Marsland 

and Gollwitzer, 2014), have been associated with various respiratory diseases such as 

Chronic Obstructive Pulmonary Disease (COPD), Idiopathic Pumonary Fibrosis (IPF) and 

asthma. Together, these findings suggest that the lower respiratory microbiota is linked to the 

health state of the human lung and hence may play important roles for maintaining lung 

homeostasis. 

Formidable challenges are associated with studying the lower respiratory tract microbiota. 

Firstly, the sampling of the human lung, which is best achieved by collecting bronchoalveolar 

lavage fluid (BALF) during bronchoscopy (Carney et al., 2020), is an invasive procedure which 
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implies that it is rarely performed in healthy individuals. Consequently, large datasets from 

healthy individuals - including longitudinal studies that would inform about the dynamics of the 

human lung microbiota - are scarce. Secondly, the relatively low bacterial biomass in the 

human lung increases the risk of describing contaminants as being part of the respiratory tract 

microbiota. This can skew diversity measures of the lower respiratory tract microbiota, in 

particular when solely relying on relative abundance data (Segal et al., 2013). Thirdly, only 

few studies haves attempted to isolate viable bacteria from the human lung (Cummings et al., 

2020; Venkataraman et al., 2015; Whelan et al., 2020), and little is known about their 

physiology and growth characteristics. Therefore, our current understanding of the ecological 

properties of different lung microbiota members and how these are linked to the environmental 

conditions in the lung ecosystem (such as immune state) remains limited. 

Studying the microbiota in the context of lung transplantation can provide important insights 

about the crosstalk between the respiratory tract microbiota and the host (Mouraux et al., 

2017). Lung transplant recipients undergo post-transplant follow-up, in which BALF is 

collected to monitor the health state of the transplanted organ. This offers unique opportunities 

for longitudinal studies on the lung microbiota composition and allows establishing links to the 

host’s immune state and to clinical metadata. Due to different types of clinical complications 

such as infection (Nosotti et al., 2018), acute cellular or humoral rejection (Martinu et al., 2011) 

and Chronic Lung Allograft Dysfunction (CLAD) (Koutsokera et al., 2017), the transplanted 

lung also offers the opportunity to study the respiratory microbiota (Borewicz et al., 2013; 

Charlson et al., 2012; Gregson et al., 2013; Willner et al., 2013) under a wide variety of 

ecological conditions. A better understanding of the dynamics of the lung ecosystem in this 

context can ultimately help limit the burden of morbidity and mortality associated with post-

transplant complications and promote graft survival. 

Recent studies on lung transplants have provided insights about the distribution of the 

microbiota along the conducting and respiratory airways (Beaume et al., 2016), or the 

adaptation of opportunistic pathogens to the lung environment (Beaume et al., 2017). 
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Moreover, there is accumulating evidence that the immune state of the transplanted lung 

correlates with changes in the composition of the lung microbiota (Bernasconi et al., 2016; 

Charlson et al., 2012). High abundance of opportunistic pathogens such as members of the  

Staphylococcus and Pseudomonas genera have been linked to pro-inflammatory responses 

in the transplanted lung (Bernasconi et al., 2016; Erb-Downward et al., 2011), and also found 

in respiratory diseases such as COPD and asthma (Hilty et al., 2010; Mika et al., 2018). These 

bacteria activate macrophages and induce a strong inflammatory response after 

transplantation, reflected by high levels of tumor necrosis factor-α (TNFα) and 

cyclooxygenase-2 (COX2)(Bernasconi et al., 2016). This is in contrast to taxa such as 

Streptococcus, whose abundance has been linked to low inflammation and tissue repair and 

remodeling (Bernasconi et al., 2016). Sustained inflammatory reactions and uncontrolled 

tissue remodeling can eventually lead to irreversible decline in lung function (Hardison et al., 

2009; Todd et al., 2020). These previous data collectively suggest that the lung microbiota 

post-transplant can constitute different compositional states that may be linked to allograft 

function. However, quantitative analysis of these microbiota profiles are currently lacking, 

including the phylogenetic and physiological characterization of viable community members, 

and the links to the lung ecological environment and the clinical outcome post-transplant. 

In this study, we characterized the airway microbiota in 234 longitudinal BALF samples from 

64 lung transplant recipients. We combined culture-independent and -dependent analysis to 

identify the most prevalent lung bacteria post-transplant and to establish a strain collection of 

primary lung bacterial isolates. We linked the identified compositional changes in lung 

microbiota to host gene expression profiles, anellovirus loads and patient metadata to 

understand the importance of the ecological environment of the transplanted lung on clinical 

outcomes. Our findings show that BALF samples can be classified into four distinct 

compositional states (i.e. pneumotypes) similar to the enterotypes identified in the human gut 

(Arumugam et al., 2011). These pneumotypes are distinguished by different community 

characteristics and distinct physiological properties of their predominant members. We show 
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that pneumotypes are differentially associated with anellovirus loads, respiratory function, and 

both local and peripheral host immune responses, including those linked to allograft rejection. 

Taken together, our findings not only illustrate the strong links between lung health and local 

microbiota composition, but pinpoint underlying community characteristics and lung 

environmental conditions as well as provide a large resource of cultured isolates for future 

experimental approaches 

 

Results 

 

Combined culture-dependent and -independent approach identifies the prevalent and 

viable bacterial community members of the human lung post-transplant  

To characterize the bacterial community composition of the lung microbiota post-transplant, 

we performed 16S rRNA gene amplicon sequencing of 234 longitudinal BALF samples from 

64 lung transplant recipients collected over a 49-month period (Figure 1A, Table S1). A total 

of 7,164 operational taxonomic units (OTUs) were identified, excluding OTUs contributing to 

reads in 11 negative control samples (See Methods, Figure S1A, Dataset S1, S2. In 

accordance with previous studies on BALF samples from healthy non-transplant individuals 

(Erb-Downward et al., 2011; Pattaroni et al., 2018; Segal et al., 2013; Venkataraman et al., 

2015), we found that Bacteroidetes and Firmicutes followed by Proteobacteria and 

Actinobacteria are the most abundant phyla in the post-transplant lung (Figure 1B). 

Prevalence analysis across all BALF samples showed that the community composition is 

highly variable with only 22 OTUs shared by ≥50% of the samples (Figure S1B, Dataset S3). 

However, these 22 OTUs constituted 42 % of the total number of normalized reads, indicating 

that they are predominant members of the post-transplant lung microbiota (Figure 1C, Figure 

S1C, Table S2, Dataset S3). They belonged to the genera Prevotella7, Streptococcus, 

Veillonella, Neisseria, Alloprevotella, Pseudomonas, Gemella, Granulicatella, Campylobacter, 

Porphyromonas and Rothia, the majority of which are also prevailing community members in 
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the healthy human lung (Dickson et al., 2015, 2017; Erb-Downward et al., 2011; Segal et al., 

2013), suggesting a considerable overlap in  the overall composition of the lung microbiota 

between the healthy and the transplanted lung. 

 

Differences in bacterial loads between samples can skew community analyses when based 

on relative abundance profiling alone. Therefore, we used qPCR to determine the total copies 

of the 16S rRNA gene as an estimate for bacterial counts, and normalized the abundances of 

each OTU across the 234 samples (absolute abundance). We found that the bacterial counts 

vastly differed between samples, ranging between 101 and 106 gene copies per ml of BALF 

(Figure S1D). The number of observed OTUs increased with decreasing counts (Figure 1D) 

suggesting that a large fraction of the OTUs were detected in samples of low bacterial biomass 

and hence represent either transient or extremely low-abundant community members, or 

sequencing artefacts and contaminations. In turn, 19 of the 7,164 OTUs constituted >75% of 

the total absolute abundances detected across the 234 BALF samples (Figure 1E). This 

included 11 of the 22 most prevalent OTUs (see above) plus eight OTUs that were detected 

in only a few samples but at very high abundance (Staphylococcus ; OTU_2, Corynebacterium 

1; OTU_16 and OTU_24, Anaerococcus; OTU_49 and OTU_234, Haemophilus; OTU_78, 

Streptococcus; OTU_6768, Peptoniphilus; OTU_63, Table S2). It is important to differentiate 

these opportunistic colonizers from other community members with low incidence, as they 

reached very high bacterial counts in some samples with potential implications for lung health. 

 

To demonstrate the viability of prevalent lung microbiota members and to establish a reference 

catalogue of bacterial isolates from the human lung for experimental studies, we 

complemented the amplicon sequencing with a culturomics approach (Figure S2). We 

cultivated 21 random BALF samples from 18 individuals, on 15 different semi-solid media 

(both general and selective) in combination with 3 oxygen concentrations; aerobic, 5% CO2, 

and anaerobic (Dataset S4, Methods), representing 26 different conditions. This resulted in 

a total of 300 bacterial isolates, representing 5 phyla, 7 classes, 13 orders, and 17 families 
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from which we built an open-access biobank of bacterial isolates, called the Lung Microbiota 

culture Collection of bacterial isolates (LuMiCol, Dataset S5)  

 

To examine the extent of overlap between bacteria in LuMiCol and the diversity obtained by 

amplicon sequencing, we included 16S rRNA gene sequences from 215 isolates that passed 

our quality filter into the community analysis, which allowed for the retrieval of OTU-isolate 

matching pairs (Methods). We cultured fresh BALF immediately upon extraction (within 2 

hours), as we observed loss in bacterial diversity upon cultivating frozen samples. We found 

that 213 isolates matched to 47 OTUs (Figure 2A-C, Dataset S6), including 17 of the most 

prevalent and abundant bacteria (Figure 1E, Table S2). As expected, bacteria with high 

abundance in the amplicon sequencing-based community analysis were isolated more 

frequently, with Firmicutes revealing the highest isolate diversity (Figure 2A-C, Datasets S5, 

S6) and being recovered under the most diverse culturing conditions. 

 

In summary, our results from the combined culture and culture-independent approach show 

that the lung microbiota post-transplant is highly variable in terms of both bacterial load and 

community composition with many transient and low-abundant bacterial taxa. However, a few 

community members display relatively high prevalence and/or abundance suggesting that 

they represent important colonizers of the human lung.  

 

LuMiCol informs on the diversity and metabolic preferences of culturable human lung 

bacteria  

We characterized the culturable community members of the lower respiratory tract contained 

in LuMiCol by testing a wide range of growth conditions and phenotypic properties (Methods). 

The majority of the cultured isolates could taxonomically be assigned at the species level 

based on genotyping of the 16S rRNA gene V1-V5 region. However, the limited taxonomic 
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resolution offered by this method does not allow to discriminate between closely related 

strains, which can include both pathogenic and non-pathogenic members. Hence for 

Streptococcus, we additionally tested for type of hemolysis (alpha, beta, or gamma) and 

resistance to optochin, which differentiates the pathogenic pneumococcus and the non-

pathogenic viridans groups (Figure 2A, Figure S2B, C). This demonstrated that the 16 

matched pairs of Streptococcus OTU-isolate pairs belong to the viridans group of Streptococci 

(VS)(Bowers and Jeffries, 1955). Interestingly, these isolates exhibited the highest genotypic 

and phenotypic diversity throughout our collection and belonged to five OTUs among the 22 

most prevalent community members, with Streptococcus mitis (OTU_11) present in 93.6% of 

all samples.  

BALF from healthy individuals contains amino acids, citrate, urate, fatty acids, and antioxidants 

such as glutathione but no detectable glucose  (Evans et al., 2014), which is associated with 

increased bacterial load and infection (Brennan et al., 2007; Gill et al., 2016; Mallia et al., 

2018). To get insights into basic bacterial metabolism, we assessed the growth of all 47 

isolates matching an OTU under different oxygen concentrations. In addition to the different 

conditions used during isolation on semi-solid media, we also used undefined rich media 

(Todd-Hewitt Yeast extract) and defined low-complexity liquid media (RPMI 1640), for which 

we also used a glucose-free version to mimic the deep lung environment (Methods). Despite 

the presence of oxygen in the human lung, the majority of the isolates were either obligate or 

facultative anaerobes (Figure 2A), including some of the most prevalent members (Prevotella 

melaninogenica (OTU_3), Streptococcus mitis; OTU_11, Veillonella atypica (OTU_6) and 

Granulicatella adiacens (OTU_17). A similar trend was also observed in liquid media under 

anaerobic conditions, with the exception of the genera Prevotella, Veillonella and 

Granulicatella. Most Streptococci from the human lung grew best in complex media containing 

glucose under anaerobic conditions, including the most prevalent bacteria in our cohort, S. 

mitis (OTU_11) (Figure 2B). However, noticeable exceptions were S. vestibularis (OTU_34), 

S. oralis (OTU_3427 and OTU_1567), S. gordonii (OTU_10031), which grew equally well in 
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the presence of oxygen and in low-complexity medium (Figure 2B). Most Actinobacteria grew 

best on rich medium under microaerophilic conditions (5% CO2), with an exception of A. 

odontolyticus (OTU_39), which required anaerobic conditions. Some Actinobacteria grew 

equally well under anaerobic conditions i.e. C. durum (OTU_501), Actinobacteria sp. oral 

taxon (OTU_328 and OTU_228). 

The two most predominant opportunistic bacteria in our lung cohort, P. aeruginosa (OTU_1) 

and S. aureus (OTU_2), grew best in rich media in the presence of oxygen, although the latter 

also grew under anaerobic conditions (Figure 2C). Although in vitro, these results indicate 

towards changes physicochemical conditions in the lung that may favor the growth of aerobic 

bacteria with potentially pathogenic properties. In summary, our insights from the bacterial 

culture collection provide first insights into the phenotypic properties of human lung bacteria 

and will serve as a basis for future experimental work. 

 

Identification of four compositionally distinct pneumotypes post-transplant using 

machine learning based on ecological metrics. 

To detect and characterize differences in bacterial community composition between BALF 

samples from transplant patients, we clustered the samples using an unsupervised machine 

learning algorithm based on pairwise Bray-Curtis dissimilarity (beta diversity, See Methods). 

This segregated the samples into four partitions around medoids (PAMs) at both phylum and 

OTU level (Figure 3A, B, S3A, S3B). We refer to these clusters as "pneumotypes" PAM1, 

PAM2, PAM3, and PAM4 (Table 3). PAM1 formed the largest cluster consisting of the majority 

of samples (n=115) followed by PAM3 (n=76), PAM2 (n=19), and PAM4 (n=24) (Dataset S8). 

Examination of various diversity measures (OTU richness, OTU diversity, Species occurrence, 

Figure 3C-E), distribution of the dominant community members (Figure 3F), and bacterial 

counts (16S rRNA gene copies, Figure 3G) revealed distinctive characteristics between the 

four pneumotypes. 
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PAM1 showed the highest similarity in community composition between samples (Species 

occurrence/Sorenson's Index, Figure 3C), and had intermediate levels of diversity (OTU 

diversity, Figure 3D) and bacterial load (Figure 3F, S3C). Twenty of the 22 most prevalent 

community members were enriched in incidence and abundance in PAM1 when compared to 

the other PAMs (ART-ANOVA, FDR, p< 0.01, Figure 3H, Table S4) with five OTUs occurring 

in >90% of the samples (incidence); P. melaninogenica (OTU_3, 97.4%), S. mitis (OTU 11, 

99.1%), V. atypica (OTU 6, 93.9%), V. dispar (OTU_30, 93%) and G. adiacens (OTU_17, 93 

%). Contrastingly, two OTUs (P. aeruginosa; OTU 1 and P. fluorescens; OTU 15) had neither 

a higher incidence nor a higher abundance in PAM1 (Figure 3H, Table S4). Thus, PAM1 

samples harbor balanced bacterial communities of relatively high similarity composed of the 

most prevalent bacteria across our dataset. Henceforth, we refer to this PAM as the ‘balanced 

pneumotype’ (Pneumotypebalanced).  

 

In contrast to Pneumotypebalanced, PAM2 and PAM4 harbored lower bacterial diversity (Figure 

3D) and OTU richness (Figure 3E), were dominated by a single community member (Figure 

3G), and had higher bacterial loads (Figure 3G). In these two PAMs, the taxa associated with 

Pneumotypebalanced had a low sample incidence and absolute abundance compared to the 

other PAMs (Figure S4A, B). S. aureus (OTU_2), Corynebacterium (OTU_24) and 

Anaerococcus (OTU_49) were enriched in PAM2 (ART-ANOVA, FDR, p< 0.001, Figure S4A), 

while Haemophilus (OTU_78) and P. aeruginosa (OTU_1 & OTU_15) dominated PAM4 (ART-

ANOVA, FDR, p< 0.001, Figure S4B, p< 0.001). We refer to these as ‘PneumotypeStaphylococcus’ 

(PAM2) and ‘PneumotypePseudomonas’ (PAM4), with the major species known to be potential 

pathogens that proliferate rapidly in lung, under a variety of pathological respiratory conditions 

(Cohen et al., 2016; Winstanley et al., 2016). Concordantly, the BALF samples assigned to 

these two pneumotypes were those with the highest bacterial loads. 
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The fourth cluster identified, PAM3, exhibited the lowest between-sample similarity in species 

composition (Figure 3C), the highest OTU diversity and richness (Figure 3D, E), and lowest 

dominance (Figure 3G). The samples in this PAM were characterized by considerably low 

bacterial loads, up to two orders of magnitude below samples in other PAMs (Figure 3F, 

Figure S3C), suggesting a depauperated microbiota that has been associated with dysbiotic 

physiological states of the gut microbiota (Vandeputte et al., 2017). Consequently, the high 

OTU richness detected in PAM3 samples is likely due to over-sequencing of rare or transient 

species, or sequencing artefacts. This is also supported by the fact that the 30 predominant 

microbiota members were significantly reduced in their incidence and abundance in PAM3 as 

compared to the other PAMs (ART-ANOVA, FDR, p< 0.001, Figure 3I). We refer to this PAM 

as the ‘microbiota-depleted pneumotype’ (PneumotypeMD).  

Semi-quantitative culture results obtained from matched BALF and bronchial aspirate (BA) on 

selective media further reinforced the genuine existence of the four pneumotypes (Figure 3J, 

S5, Methods). BALF samples from Pneumotypebalanced had the highest percentage of matches 

to the oropharyngeal microbiota, including many of the bacteria that are predominant in this 

pneumotype (e.g. Streptococcus or Veillonella). Similarly, culture results of BALF samples 

with PneumotypeStaphylococcus and PneumotypePseudomonas were most frequently positive for S. 

aureus/Corynebacterium spp. and P. aeruginosa, respectively, while those obtained for BALF 

samples with PneumotypeMD were often culture negative (Figure 3J, S5A). A similar picture 

was observed for BA (Figure 3J, S5B). Here, however, this sampling site had a higher 

percentage of positive cultures for oropharyngeal flora compared to BALF, especially for 

PneumotypeMD. This reveals different degrees of segregation between the two sample types, 

despite the known topographic continuity of microbial communities in the airways (Charlson 

et al., 2011; Dickson et al., 2015, 2017). Many of the OTUs of PneumotypeMD could not be 

cultured in our culturomics approach (Dataset S4, S5), which together with the low bacterial 

abundance in corresponding samples, questions their relevance/existence as lung microbiota 

members. In contrast, most of the major community members characteristic of the other three 
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pneumotypes were represented by isolates in LuMiCol, including the two opportunistic 

pathogens, P. aeruginosa (OTU_1) and S. aureus (OTU_2), providing the basis for future 

experimental work on the predominant strains in the two corresponding pneumotypes. Taken 

together, we identified four distinct bacterial communities in transplanted lung, which we refer 

to as pneumotypes, and validated them by semi-quantitative culturing of BALF samples. 

 

Bacterial pneumotypes are linked to distinct host gene expression patterns 

The existence of bacterial pneumotypes with distinctive community composition suggests 

differences in the microenvironmental conditions of the human lung post-transplant, which 

could be echoed in other constituents of the lung ecosystem. We compared the median 

expression levels of 31 host genes belonging to 7 functional categories across the four 

pneumotypes. These genes are involved in inflammation, immunoregulation, tissue 

remodeling and detection of bacteria and viruses (Figure 4A, Methods). Based on median 

gene expression, the four pneumotypes showed distinct patterns, with particularly high 

transcriptional activity in PneumotypeStaphylococcus (Figure 4A). To identify the genes with the 

greatest power to discriminate between the four pneumotypes and to distinguish between 

samples differing by bacterial counts, we applied a machine learning approach (Random 

Forest, Methods) based on the host gene expression in 234 BALF samples. The 

Pneumotypebalanced was predicted with highest accuracy (92%), followed by 

PneumotypePseudomonas (83.4%) and PneumotypeMD (81.4 %), while no accuracy was achieved 

for PneumotypeStaphylococcus (Table S5). We identified 6 of the 31 genes to have a particularly 

high predictive power IFNLR1, MRC1, IL10, IL1RN, LY96, IDO (Importance score >10; 99% 

Confidence Interval, Figure 4B). IFNLR1 encodes interferon lambda receptor 1, which is 

involved in antiviral defence and epithelial barrier integrity (Odendall et al., 2017). This gene 

was up-regulated in samples with Pneumotypebalanced compared to the other three 

pneumotypes (Figure 4C). MRC1 (Mannose Receptor C-Type 1, Geijtenbeek and Gringhuis, 

2009) and LY96 (Lymphocyte Antigen 96, Shimazu et al., 1999) encode microbial 
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polysaccharide and lipopolysaccharide recognition proteins, respectively. Compared to 

samples with Pneumotypebalanced, these two genes were up-regulated in 

PneumotypeStaphylococcus and PneumotypeMD, and down-regulated in samples with 

PneumotypePseudomonas (Figure  4D and 4E). Samples with Pneumotypebalanced further differed 

from those linked to the other three pneumotypes by higher expression of genes involved in 

immune modulation and peripheral immune tolerance (IL-10/Interleukin 10 and 

IDO1/Indoleamine 2,3-Dioxygenase 1, Figure 4F, S6), and a lower expression of IL1RN 

(Interleukin 1 Receptor Antagonist, Figure 4G), produced as part of the inflammatory 

response to control the potentially deleterious effects of Interleukin-1 beta (IL-1β) (Arend et 

al., 1998).  

 

Similarly, we found 5 genes with high discriminating power (Figure 4I, importance score > 10) 

for bacterial counts, of which two were particularly good predictors: PDGFD and IFNLR1. 

PDGFD encodes the D isoform of platelet-derived growth factor, which promotes the 

proliferation of cells of mesenchymal origin such as fibroblasts (Simon et al., 2002). 

Expression of this gene was negatively correlated (Figure  4J, AIC 62.4, p< 0.001) with  

bacterial abundance. In contrast, IFNLR1 expression positively correlated with bacterial 

abundance (Figure 4K, AIC 35.7, p= 0.0115). Accordingly, PDGFD expression was higher 

while IFNLR1 expression was lower in PneumotypeMD (Figure 4C, H) as compared to the other 

pneumotypes, suggesting a link between the normal presence of bacteria in the lower 

respiratory tract and homeostatic levels of tissue remodeling, epithelial barrier integrity and 

host response to viruses. In summary, these results show that host-specific gene expression 

markers align with distinct bacterial states, highlighting the existence of complex associations 

between different lung ecosystem characteristics.  

 

Anellovirus dynamics is associated with bacterial community and host physiology in 

lung 
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The observed links between pneumotypes and antiviral defence prompted us to look into the 

tripartite interactions between lung bacteria, viruses, and host. To this end, we quantified the 

load of the three genera of anelloviruses identified in humans (Alphatorquevirus, 

Betatorquevirus and Gammatorquevirus) across the 234 BALF samples. In accordance with 

a previous study (Young et al., 2015), we found that the transplanted lung contains high levels 

of anelloviruses, with Gammatorquevirus predominating. Viral loads of the three genera 

peaked between 1.5 and 6 months after transplantation and decreased at later time points 

(Figure 5A). Anellovirus load varied substantially between pneumotypes. Specifically, the load 

of Alphatorquevirus was highest in samples with PneumotypePseudomonas (Figure 5B), while that 

of all three anellovirus genera was lowest in samples with PneumotypeMD (Figure 5B-D). This 

suggested in particular a difference in viral load between PneumotypeBalanced and 

PneumotypeMD, which we confirmed by intra-individual pairwise analysis showing a strong 

decrease in load when transitioning from PneumotypeBalanced to PneumotypeMD and a 

corresponding increase for an inverse transition (Figure 5E,  S8).  We further identified 4 

human genes: TLR3, IGF1, RSAD2, IFITM2, as important predictors of anellovirus loads in 

BALF (Figure 5F, Methods). Of these, Toll-like Receptor 3 (TLR3) was positively correlated 

with total viral load (Figure 5G, AIC 73.9, p<0.001). This is consistent with the low viral load 

observed with PneumotypeMD, where TLR3 was down-regulated (Figure 5H). These findings 

link changes in the lung microbiota composition to changes in viral loads and host gene 

expression indicating possible implications for allograft outcome. 

 

Pneumotypes are linked to differential risk of post-transplant clinical complication  

 A large set of clinical data (Dataset S7) enabled us to associate differences in bacterial 

community composition, host gene expression, and anellovirus load to allograft and patient 

health status. Immunosuppression as well as prophylactic and therapeutic antibiotic usage 

were anticipated as major confounding factors. However, we found no association between 

the different pneumotypes and the main immunosuppressive drugs (ANOVA, prednisone; 
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p=0.76, tacrolimus; p= 0.78) used in our cohort, at the time of BALF sampling (Figure S7A, 

B). In contrast to what has been reported for blood plasma after transplantation (De Vlaminck 

et al., 2013), we also did not observe a correlation between anellovirus load and 

immunosuppressive drug levels (Linear regression, p=0.91, Figure S7C, D , Methods). 

However, we observed a negative relationship between the number of antibiotics administered 

at the time of BALF sampling and the fraction of samples in PneumotypeBalanced and a positive 

relationship with the fraction of PneumotypeMD samples (Fisher's test, p= 0.002, Figure 6A). 

These observations thus suggest a link between intensive antibiotic use and a disturbance of 

the most balanced and compositionally stable lung microbiota profile.  

 

We observed that a clinical diagnosis of infection was rare in the presence of 

PneumotypeBalanced and PneumotypeMD, compared to PneumotypeStaphylococcus and 

PneumotypePseudomonas (Generalized Linear Model, p< 0.001 and p= 0.016, respectively; 

Figure 6B). This confirms the results of our 16S rRNA gene analysis, which showed that 

PneumotypeStaphylococcus and PneumotypePseudomonas are dominated by the opportunistic 

pathogens S. aureus and P. aeruginosa, respectively. It is also consistent with the finding of 

lower numbers of neutrophils (Figure 6C), but not macrophages (Figure 6D), in 

PneumotypeBalanced and PneumotypeMD as compared to PneumotypeStaphylococcus and, to a 

lesser extent, PneumotypePseudomonas, emphasizing that pneumotypes are associated with local 

conditions that differ in terms of recruitment of pro-inflammatory cells. 

 

Lung transplant recipients face risks of allogeneic responses against the graft, notably 

promoted by clinical infection. Our study did not have the statistical power to dissect the links 

between pneumotypes and different types of rejection, limited by the number of samples per 

rejection category in our dataset. Therefore, we grouped 29 samples from 17 patients with 

either CLAD, acute cellular rejection grade ≥2, or the presence of donor-specific antibodies 

(mean fluorescence intensity >1000), as these all indicate a suboptimal control of host immune 

competence and thus an increased probability of allograft injury (Figure 6E, See Methods for 
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clinical definitions). The majority of these samples were associated with 

PneumotypeStaphylococcus (41.7%) and PneumotypeMD (26.2%), followed by 

PneumotypePseudomonas (15.4%) and PneumotypeBalanced (13.1%), suggesting that this latter 

microbiota profile is associated with a lower risk of clinical complications. This was further 

corroborated by the count of circulating B lymphocytes in peripheral blood, suggesting more 

active humoral immunity in the presence of PneumotypeMD, and to a lesser extent for 

PneumotypeStaphylococcus and PneumotypePseudomonas, compared to PneumotypeBalanced (Tukeys 

test, p= 0.027, p= 0.26 and p= 0.12 respectively; Figure 6F). In addition to bacterial 

composition, anelloviruses were also linked to CLAD through a lower load of 

Gammatorquevirus (Wilcox test, p= 0.007, Figure 6G), while no significant association was 

observed with Alphatorquevirus or Betatorquevirus (Wilcox test, p= 0.15 and p= 0.09 

respectively, Figure 6G). 

 

Finally, we used the measurement of ‘Forced Expiratory Volume in one second’ (FEV1) to 

search associations between lung ecology and pulmonary function testing. This assessment 

was made irrespective of the diagnosis of CLAD, which requires an irreversible drop in FEV1 

below 80% of the baseline value, with prior exclusion of alternative confounding diagnosis 

(See Methods). PneumotypeStaphylococcus and PneumotypePseudomonas were associated with 

lower FEV1 values overall, with a frequent substantial decline below 80% predicted (Dunn's 

test, p= 0.03, Figure 6H), while PneumotypeBalanced, along with PneumotypeMD, was linked to 

preserved lung function.  

 

PneumotypeBalanced shows the highest temporal stability and resilience in the 

transplanted lung 

Taking advantage of the longitudinal sampling, we explored the dynamics of pneumotypes 

after transplantation. We analyzed transitions between pneumotypes in up to eight BALF 

samples per transplant, collected within five consecutive time windows (Figure 7A). There 
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was no significant difference in the distribution of pneumotypes across the different time 

windows (Chi-square test, p= 0.60). Although most BALF samples were associated with 

PneumotypeBalanced, transitions between two different microbiota profiles occurred for about 

half of all consecutive sample pairs (Figure S9A). The transition dynamics were explained by 

Markov chain properties, i.e. the pneumotype of a given sample only depends on the state of 

the previous sample in the chain (Chi-square test, p= 0.33, Figure 7B). The transitions were 

irreducible, aperiodic and recurrent, and none of the pneumotypes behaved as an absorbing 

state (See Methods). PneumotypeBalanced exhibited the greatest stability, with the highest 

probability of recurrence (63%), fitting the Markov probabilities, followed by PneumotypeMD 

(42%; Figure 7B). In addition, the large fraction of transitions towards PneumotypeBalanced 

between the first four time windows indicated a substantial resilience capacity for this profile. 

Accordingly, the transitions between PneumotypeStaphylococcus, PneumotypePseudomonas and 

PneumotypeBalanced occurred mainly in the direction of this latter profile (Figure 7B), while in 

contrast to model prediction, PneumotypeStaphylococcus and PneumotypePseudomonas appeared to 

be virtually disconnected. 

 

Finally, we illustrate the relationship between the temporal dynamics of pneumotypes with 

clinical outcomes, using a case study (Figure 7C). Patient 35 diagnosed with pulmonary 

fibrosis received two transplants, providing 12 serial samples and presenting each of the four 

pneumotypes (Figure 7C - bottom histogram). Disruption of the PneumotypeBalanced occurred 

from month 25, followed by transition to PneumotypeStaphylococcus at month 30. This was 

accompanied by a positive culture for Corynebacterium spp. in line with our enrichment 

analysis and clinical culture tests (Figure S4, Figure 3J), increased BAL neutrophilia, and a 

concurrent increase in host immune gene expression (Figure 7C - heatmap). Thereafter, the 

patient was repeatedly exposed to antibiotics, and respiratory function started declining 

irreversibly leading to the diagnosis of CLAD at month 49 with PneumotypeMD. Overall 

decrease in lung bacterial and anellovirus loads in the lung, suggested an increasing selection 

pressure on microbes most likely due to a combination of antibiotic treatment and poorly 
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controlled host immune competence. The second transplant at month 50 was linked to a re-

establishment of PneumotypeBalanced, which aligned with preserved lung function, intermediate 

loads of lung bacteria and anelloviruses, decrease in neutrophil counts and change in host 

immune gene expression. However, a transition to PneumotypePseudomonas was observed later 

until the end of sampling, with increased bacterial counts but no decrease in lung function 

(Figure 7C - barplot). Taken together, these observations highlight the potential of integrating 

pneumotype with clinical and molecular data, with the primary goal of tracking disruption of 

PneumotypeBalanced beneficial to clinical stability. 

 

Discussion 

In the current study, we capitalized on the availability of 234 longitudinal BALF samples from 

64 lung transplant patients. We combined culture-dependent and -independent approaches to 

characterize the composition of the human lung microbiota, to obtain representative cultured 

isolates and test their growth requirements, to assess the temporal dynamics of these 

communities in the lung, and ultimately to establish links with the host health status. In 

summary, our results show that the lung microbiota post-transplant is highly dynamic with a 

few predominant community members, many of which can be cultured, under different 

physiological conditions. We find that the lung microbiota post-transplant can be categorized 

into four compositional states, ‘pneumotypes’, based on distinctive bacterial community 

features. These pneumotypes have different temporal dynamics and bridge the gap between 

lung bacteria, anellovirus loads, host gene expression, and the physiological and 

immunological state of transplant recipients. Altogether, these results provide important 

advances in our understanding of lung bacterial communities, their clinical significance, and 

the experimental tractability of major lung bacteria. 

 

Our analyses show that the human lung microbiota post-transplant predominantly consists of 

oropharyngeal taxa similar to the microbiota of healthy lungs (Erb-Downward et al., 2011; 

Segal et al., 2013; Venkataraman et al., 2015). Hence, the presented results are not only 
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relevant in the context of lung transplantation, but also provide general insights into the 

microbial ecology of the lower respiratory tract. Besides the high variability in taxonomic 

composition, we find that the total bacterial biomass in the lung can considerably vary between 

samples. Such quantitative differences in lung microbiota composition have also been found 

in previous studies in the lung. We find that a relatively small number of OTUs accounted for 

a large part of the total bacterial biomass detected across all samples (19 OTUs contributing 

>75% of the biomass), despite the detection of more than 7000 OTUs. These included not 

only prevalent oropharyngeal taxa but also potential pathogens that outgrew in a few samples. 

These findings, and the fact that a key characteristic of PneumotypeMD is its association with 

low bacterial biomass, highlight the importance of considering absolute bacterial counts 

instead of relying only on proportional data in microbiome studies (Kešnerová et al., 2020; 

Vandeputte et al., 2017). This is further evidenced by the fact that bacterial biomass can be 

predicted by host gene expression. 

 

In addition to considering total bacterial biomass, demonstrating the viability of bacteria taxa 

detected by sequencing can provide further insights about their biological relevance of specific 

community members. Previous studies have shown that bacteria from the human lung can be 

cultured with the majority growing under oxic conditions (Cummings et al., 2020; 

Venkataraman et al., 2015; Whelan et al., 2020). Our large-scale culturomics approach, which 

included a wide array of culturing conditions, substantially expands the availability of bacterial 

isolates from the human lung and provides important new insights about their phylogenetic 

diversity, physiological preferences, and metabolic potential. For instance, we show that many 

isolates, including prevalent community members, preferred to grow under anaerobic or 

microaerophilic conditions, suggesting the presence of regions with low oxygen concentration 

in the deep lung. Also, the culturing allowed us to phenotypically describe specific isolates in 

more detail and identify closely related pathogenic and non-pathogenic strains of 

Streptococcus, which otherwise could not have been discriminated based on amplicon 

sequencing alone. Notably, the genus Streptococcus had the highest genetic, metabolic, and 
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phenotypic diversity among all isolates, which may explain its presence throughout the human 

respiratory tract including sites with very different physicochemical properties (Dickson et al., 

2017). We acknowledge that the presented culture collection is not exhaustive and several 

major community members have not yet been isolated. We believe that this is most likely due 

to the high variability of the lung microbiota and the fact that we have cultured a relatively small 

number of BALF samples, rather than the inability of some community members to grow in 

vitro or non-viability in the lungs. 

 

The high variability in community composition and bacterial load between BALF samples may 

suggest that the human lung microbiota is highly erratic. However, our unsupervised machine 

learning approach identified four compositional states, PneumotypeBalanced, PneumotypeMD, 

PneumotypeStaphylococcus and PneumotypePseudomonas, with distinct community properties. In a 

previous study on the lung microbiota of healthy individuals, a similar approach was used 

which resulted in the identification of two pneumotypes (Segal et al., 2013). Strikingly, one of 

these previously identified pneumotypes was enriched in supraglottic taxa, i.e. mainly 

Prevotella, Streptococcus, and Veillonella resembling the PneumotypeBalanced from our study. 

The other pneumotype described by Segal et al. had similar characteristics as PneumotypeMD 

i.e. very low bacterial counts and a highly variable taxonomic composition. As with 

PneumotypeMD in our study, many of the taxa in this other pneumotype were considered to 

represent contaminations (or so-called background taxa). In contrast, PneumotypeStaphylococcus 

and PneumotypePseudomonas were not detected in this previous study probably because it was 

based on smaller cohort size and exclusively included samples from healthy individuals. 

Interestingly, Staphylococcus, the major community member of PneumotypeStaphylococcus, has 

been shown to dominate in neonatal lower airways, indicating potential early adaptation to 

human lung (Pattaroni et al., 2018). Together, these studies provide independent evidence for 

the existence of distinct compositional states of the human lung microbiota in different 

contexts. Moreover, the fact that the four pneumotypes are linked to differences in host gene 

expression, bacterial and anellovirus loads, and allograft function and health state highlights 
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their relevance and suggests the existence of distinct ecological conditions in the lower 

respiratory tract, which are further discussed in the following sections. 

 

We propose that PneumotypeBalanced is primarily associated with lung homeostasis, because it 

is characterized by a diverse bacterial community, with a moderate bacterial and viral load, 

and shows a human gene expression profile leaning towards immune modulation and 

peripheral immune tolerance. A striking characteristic of PneumotypeBalanced was also the clear 

association with high expression of Interferon-λ receptor 1 (IFNLR1), which suggests a link 

between the bacterial community and the maintenance of the epithelial barrier integrity 

(Odendall et al., 2017) and antiviral defense (Broggi et al., 2020). Moreover, 

PneumotypeBalanced showed down-regulation of Interleukin-1 receptor antagonist (IL1RN), 

produced in response to pro-inflammatory cytokines (Arend et al., 1998) and up-regulation of 

Interleukin-10 (IL-10), a tolerogenic cytokine (Ng et al., 2013). This along with the previously 

reported association with Th17 immune response (Segal et al., 2016), indicates a possible 

role of PneumotypeBalanced in development of regulatory T cell and the maintenance of immune 

surveillance, as seen in case of gut bacteria (Atarashi et al., 2013; Ivanov et al., 2008). In line 

with this, individuals with PneumotypeBalanced had the lowest risk of clinical complications at the 

time of sampling. Moreover, transitions from PneumotypeBalanced to other pneumotypes were 

the least frequently observed. Overall, these observations corroborate the steady state 

associated with this pneumotype, suggesting that it is indicative of lung health and clinical 

stability after transplantation. 

We show that the gene expression of a hallmark of M2-like macrophages, Mannose receptor 

C-type 1 (MRC1) (Geijtenbeek and Gringhuis, 2009) and an important contributor to airway 

remodeling, Platelet-derived growth factor-D (Simon et al., 2002), were increased in 

PneumotypeMD. The low microbial load and the associated loss of a steady-state inflammatory 

level could be the underlying cause for the increased expression of these genes resulting in 

unrestrained host cell proliferation and increased deposition of extracellular matrix, as 

observed in CLAD (Verleden et al., 2020). Another striking feature of this pneumotype was 
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the low expression of TLR3, a host gene involved in virus detection, which was consistent with 

the low loads of anelloviruses observed in the lung in the presence of this pneumotype. 

Virtually all lung transplant recipients carry anelloviruses, mainly in the plasma but also in lung, 

with viral load fluctuating over time (De Vlaminck et al., 2013; Young et al., 2015). Previous 

reports have shown that anellovirus counts in plasma are associated with host 

immunecompetence, infection and alloimmune rejection (Abbas et al., 2017; Blatter et al., 

2018; Görzer et al., 2017; Jaksch et al., 2018; Segura-Wang et al., 2018; De Vlaminck et al., 

2013), indicating a stronger selective pressure imposed by the host immune system in 

PneumotypeMD on viruses and bacteria in the lung. This was confirmed by low risk of infections 

and substantial risk of poorly controlled immune activity, which was evident from the high 

number of circulating B lymphocytes and either donor-specific antibodies, acute cellular 

rejection or CLAD.   

 

A strongly contrasting pattern was observed for samples with either PneumotypeStaphylococcus or 

PneumotypePseudomonas, tightly bound to an inflammatory background. Here, viral and bacterial 

loads were increased relative to samples with PneumotypeBalanced and PneumotypeMD. This 

was accompanied by a higher risk of infection and a consistent recruitment of neutrophils into 

the lung, ultimately leading to impaired pulmonary function. Notably, PneumotypePseudomonas 

was associated with low expression of Lymphocyte antigen (LY) 96 / Myeloid Differentiation 

protein (MD2), an essential component of the human TLR4 complex (Shimazu 1999). 

Although it is tempting to associate the importance of P. aeruginosa in this pneumotype with 

a lack of engagement of the TLR4 pathway in the host (Awasthi et al., 2019; Faure et al., 

2004), we cannot conclude about a causal link. In line with evidence that infection activates 

alloimmune responses (Chong and Alegre, 2014), samples with either PneumotypeStaphylococcus 

or PneumotypePseudomonas were also associated with a significant risk of poorly controlled 

immune activity and rejection. 
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Our study lacked sufficient statistical power required to explore the links between 

pneumotypes and different types of rejection (acute cellular rejection, antibody-mediated 

rejection, CLAD). However, grouping these samples allowed us to associate the 

PneumotypeBalanced with the lowest risk of poorly controlled immune activity. Furthermore, we 

could not assign causality to the observed links between the different constituents of the lung 

ecosystem. This was due to both the non-interventional nature of our approach and the 

multiplicity of confounding factors and their variability across the cohort. In particular, the 

underlying therapeutic treatments were expected to significantly modulate lung ecology, in 

addition to the effects due to infection and alloimmune response. This was illustrated by the 

observed link between PneumotypeBalanced and samples collected in the absence of ongoing 

antibiotic treatment, as opposed to the association between pneumotypes with disrupted 

bacterial communities and ongoing antibiotic therapy. Finally, follow-up studies are required 

to extend the knowledge gained by our single-site BAL sampling, which would not capture 

potential variability in ecological conditions across different regions of the lung (Jorth et al., 

2015) or between the lung and the upper respiratory tract (Dickson et al., 2015; Simon-Soro 

et al., 2019).  

 

In conclusion, our work provides a foundation for understanding the need for a balanced lung 

ecosystem along the bacterial community-viruses-host physiology axis, to maintain respiratory 

function and health. Overall, we propose that the four pneumotypes seem to follow the “Anna 

Karenina principle”, where healthy communities vary little around a stable state, while 

perturbed communities in dysbiotic individuals are much more variable with unstable states 

(Zaneveld et al., 2017). We propose that the integration of multi-omics data analyzed using 

ecological principles will assist in the management and follow-up of lung transplant recipients, 

particularly with respect to CLAD prediction and supportive interventions. An important next 

step will be to establish causal links between lung ecology and allograft health by identifying 

the microbiota and host-related factors underlying pneumotype transitions. To this end, our 
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strain collection LuMiCol provides a highly valuable resource that will serve as a foundation 

for future experimental studies using animal or cell culture models. 

 

Methods 

Statistical analysis and Software used 

Various statistical approaches and tests were used depending on methods, as detailed in the 

appropriate sections. Significant differences between groups are denoted by letters. All 

analyses were performed on R version 3.5.2, python v 2.6 and bash on macOS Mojave v 

10.14.6. 

Citations were included for all softwares used except for packages available via CRAN 

Repository and tools that are available via downloads from public database. For sequencing 

quality control and curation FastQC; 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ and FASTX-Toolkit; 

http://hannonlab.cshl.edu/fastx_toolkit/index.html were used. A custom pipeline for 

sequencing analysis was build using QIIME v1.9 (Caporaso et al., 2010), vsearch v 2.3.4 

(Rognes et al., 2016),  ampvis2 v 2.3.2 (Andersen et al., 2018), phyloseq 1.26.1 (McMurdie 

and Holmes, 2013) and vegan package version 2.5-6. Alignment and taxonomic classification 

were obtained using SINA aligner; https://www.arb-silva.de/aligner/ was used on the local 

computer. Phylogeny was performed by FastTree v 2.1.10 and visualized using iTOL; 

https://itol.embl.de. K-medoid-based unsupervised machine learning was performed on 

Genocrunch;  www.genocrunch.epfl.ch. Differential abundances was tested using ART-

ANOVA from ARTool package version 0.10.7. Machine learning classification and regressions 

were performed randomForest package and its wrapper algorithm Boruta for feature selection. 

LuMiCol isolate sequences were curated using Geneious Software v 10.2.6., New Zealand. 

All graphical illustrations were made using BioRender Web Application, Canada.  
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Data and code availability 

We have deposited the raw data from all samples used in the study to Short Read Archive, 

NCBI under the BioProject PRJNA632552 and BioSample accession SAMN14911405. All 

Datasets and codes are available for access on the cloud drive below. Details of Datasets and 

Tables are mentioned in the Supplementary Data summary. 

https://drive.switch.ch/index.php/s/hch0EoA5QyjBPR8 

Das_et_al_2020_analysis_pipeline_1: Sequencing analysis pipeline using python (QIIME) 

and bash (vsearch, FastXToolkit, SINA, FastTree). Code from raw data processing, merging 

cultured sequences (LuMiCol), OTU picking and phylogeny. 

Das_et_al_2020_analysis_pipeline_2: R markdown with BALF community analysis with 

starting OTUs from pipeline 1 with phyloseq, ampvis2 and vegan. Random Forest algorithms, 

Markov chain analysis and all statistical analysis and visualization plots. 

All_BAL_samples_raw_fastqc: FastQC reports for raw sequencing data after merging all 

samples. 

All_BAL_samples_processed_fastqc: FastQC reports for trimmed and curated merged 

data. 

 

Study Population, Sampling and Ethics Statement 

Study design 

In this prospective longitudinal study, we used a cohort of 64 consecutive lung transplant 

recipients from our center. We collected 234 BALF samples (n=1-12 per recipient, mean 3.7) 

between 2 weeks and 49 months post-transplantation, during routine surveillance or clinically 
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indicated bronchoscopies, from October 2012 to May 2018. Details on BALF collection and 

processing are provided below.  

 

Ethics statement 

The study was approved by the local ethics committee (“Commission cantonale (VD) d'éthique 

de la recherche sur l'être humain – CER-VD”, protocol number 2018-01818), and all subjects 

gave written informed consent. Samples were anonymized according to local ethics committee 

requirements. 

 

Patient sample collection 

Patients underwent transoral bronchoscopy. For BALF collection, the bronchoscope was 

wedged either in the middle lobe or lingula of the allograft and 100-150 ml of normal saline 

were instilled in 50 mL aliquots that were pooled. BALF recovery was measured and the 

sample was submitted to cell differential determination according to routine clinical 

procedures. Two fractions of 3 ml were stored at 4°C and centrifuged within 3 h at either 2,000 

or 14,000 x g for 10 min, for future isolation of BALF cellular RNA and total DNA, respectively. 

Pellets were snap frozen, either after cell lysis in RLT buffer (Qiagen, Hilden, Germany) to 

preserve RNA integrity, or directly, and were stored at minus 80°C until further processing. A 

negative control obtained upon washing a ready-to-use endoscope with sterile saline was 

prepared following the same procedure. 

 

Bacterial culturomics and establishment of Lung Microbita culture Collection (LuMiCol)  

 

BALF cultivation and archiving 

A volume of 100 microliters of BALF was spread per plate of 15 different media (Table 5) 

within 2 to 3 hours following endoscopy. The plates were then immediately incubated at the 

desired combination of oxygen and temperature conditions; aerobic (AE), microaerobic (MI; 

O2: 17%, CO2: 5%, Relative Humidity: 85%) and anaerobic (AN; H2: 8%, N2: 72%, O2: 40 ppm, 
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CO2: 20%) at a temperature range between 35-37oC (Dataset S4). Plates were incubated 

between 1-5 days.  Bacteria were collected from plates by adding RPMI 1640 liquid medium 

supplemented with 15% Glycerol and scraping using a Drigalski spatula and finally transferred 

into 96-well plates. Plates were made in triplicates for back up stocks. Each isolate was given 

a plate identifier (plate number - Px and well number - A1-H12) and a unique isolate code 

made with a combination of sample number, oxygen condition (AN/MI/AE), Media used and 

isolate number (Dataset S4 and S5).   

 

Genotyping of bacteria 

Genotyping and species determination were based on PCR amplification of either Universal 

16S rRNA gene (V1-V5 region) or specific marker genes, respectively. Staphylococcus aureus 

was identified by the presence of nuc gene encoding staphylococcal thermonuclease. 

(Dataset S7. The sequences were aligned using two well curated databases containing high 

quality 16S rRNA sequences to resolve species:  SILVA SSU rRNA database and wherever 

SILVA failed to provide species identification we used the extended Human Oral Microbiome 

Database; eHOMD, http://www.homd.org. Phylogeny was performed by FastTree v 2.1.10 and 

visualized using iTOL. 

 

Bacterial growth determination by optical density 

Undefined rich media was represented by Todd-Hewitt (CM0189, Oxoid, UK) supplemented 

with yeast extract (0.5g/L, LP0021, Oxoid, UK). RPMI 1640 medium with (11875085, 

ThermoScientific, USA) and without Glucose (11879020, ThermoScientific, USA) represented 

low complexity defined media. RPMI1640 without Glucose was chosen as a proxy for lung 

deep lung fluids since it contains free amino acids, physiological salts, Glutathione and no 

Glucose, which are properties similar to lung epithelial lining(Evans et al., 2014). 

One representative of each 47 phylotypes was revived on its individual isolation media (Table 

5), and bacterial biomass was scraped off the plates using 1X PBS. Bacterial suspension was 

diluted into 200 μL medium of appropriate media in 96-well non-tissue culture treated 
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transparent flat-bottom plates (CytoOne®, CC7672-7596, Starlab, Germany). The plates were 

then immediately incubated at the desired combination of oxygen and temperature conditions; 

aerobic (AE, 37oC), microaerobic (MI; O2: 17%, CO2: 5%, Relative Humidity: 85%, 37oC) and 

anaerobic (AN; H2: 8%, N2: 72%, O2: 40 ppm, CO2: 20%, 34oC) (Dataset S4). Optical density 

was measured at 600 nm using a BioTeK Synergy H1 Hybrid Multi-Mode Reader starting from 

time Day 0 (0 minutes) and everyday (24 hours) up to Day 3 (72 hours). Growth at each time 

point was calculated by the change in optical density from Day 0 (ΔOD). The experiment was 

repeated three times and the median ΔOD for each day was used to create a heatmap.  

 

Species identification by phenotypic assays 

 

To differentiate staphylococcal and streptococcal species, primarily S. aureus from other 

Staphylococci, and Viridans Streptococcus from Pneumococcus, bacteria were screened for 

multiple phenotypes. As controls, Staphylococcous aureus ATCC 25904, Streptococcus 

pneumoniae strain D39; NCTC 7466 (pneumococcus control) and Streptococcus mitis 

NTCC10712 (viridans Streptococcus control, provided kindly by the group of Dr. Jan-Willem 

Veening, Lausanne, Switzerland) were used. For general overnight culture, Streptococci were 

grown in Todd-Hewitt (CM0189, Oxoid, UK) supplemented with yeast extract (0.5g/L, LP0021, 

Oxoid, UK) at 37oC with 5% CO2, 85% Relative Humidity and Staphylococci were grown in 

Tryptic Soy Agar (CM0131B, Oxoid, UK) at 37oC. 

 

Hemolysis detection on semi-solid agar  

For detection of hemolysis, bacteria were grown on Columbia agar (CM0331B, Oxoid, UK) 

supplemented with 5% Defibrinated Sheep Blood (SR0051E, Oxoid, UK) and incubated at 

37oC under aerobic conditions or with 5% CO2, 85% Relative Humidity and lysis of blood was 

observed after 24 hours. After which complete hemolysis (beta-hemolysis) can be observed if 

any and then the plates were transferred to 4°C for partial hemolysis alpha-hemolysis) to be 

more prominent. 
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High salt growth and Mannitol fermentation test for Staphylococci 

The ability of Staphylococci to grow on high salt and ferment Mannitol was tested by cultivation 

on Mannitol Salt Agar (MSA, 7.5% Sodium Chloride and D-Mannitol, CM0085B, Oxoid, UK) 

and incubation at 37oC under aerobic conditions. This resulted in few combinations: Growth 

or no growth in MSA, growth in MSA but no fermentation of Mannitol, growth in MSA and also 

fermentation of Mannitol (designated by the conversion pink Phenol red to yellow color).  

 

DNase activity assay 

Staphylococcal Thermonuclease activity was tested by growing Staphylococci on DNase agar  

(CM032, Oxoid, UK), as previously described (Fusillo and Weiss, 1959). Briefly, bacteria 

grown overnight on and a single colony was streaked using a disposable plastic inoculation 

loop across in a straight line at the center of the agar plate.  Plates were incubated at 37oC 

under aerobic conditions for 24 hours, before flooding with 1N HCl. After a dwell time of 30 

seconds, acid was drained out and a halo around the bacterial biomass indicated a positive 

result for DNase activity.  

 

Optochin resistance test 

For differentiating between viridans Streptococci from Streptococcus pneumoniae, an 

Optochin resistance test was performed (Bowers and Jeffries, 1955). Briefly, Streptococci 

were spreaded throroughly on Columbia agar (CM0331B, Oxoid, UK) supplemented with 5% 

Defibrinated Sheep Blood (SR0051E, Oxoid, UK) with a cotton swab before placing Optochin 

disks (74042, Sigma-Aldrich, Germany) on the center of the plates and incubated at 37oC 

under microaerophillic conditions i.e. 5% CO2 for 24 hours. Inhibition zones were observed the 

next day for S. pneumoniae but not in case of S. mitis. 

 

BALF microbiota community analysis 
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Bacterial 16S rRNA Amplicon sequencing  

The 16S content of BALF DNA was characterized either by quantitative PCR using previously 

reported primers specific to pan bacteria (See Dataset S7, which includes references), and 

Illumina MiSeq sequencing using primers targeting the V1-V2 region was performed as 

previously described (See Dataset S7). Briefly, the V1-V2 region was amplified with barcoded 

primers and then sequenced on the Illumina MiSeq platform using paired-end chemistry, 

generating 250 x 2 read lengths.  

 

Data processing and OTU picking   

Data curation and analysis was performed using a custom pipeline (See Code availability). 

The major packages used are described in the Statistical analysis and Software section. 

Primers were removed and reads were joined fastq-join with a minimum overlap of 10 base 

pairs, demultiplexed and quality filtered (PHRED score Q> 28 in 75% of read length). 

Sequence quality was assessed using FastQC and first 75 bases were trimmed using 

fastx_trimmer. Both raw (All_BAL_samples_raw_fastqc) and processed 

(All_BAL_samples_processed_fastqc) sequence quality analysis are available for open 

access online.  

 

Singletons were removed using vsearch. Prior to OTU picking, taxa were clustered into 

centroids with >98% identity, chimeras removed and the data was mapped to the centroids 

with >97% coerced into a single OTU. The sequences obtained after OTU picking were further 

used for alignment and taxonomy using SINA aligner using SILVA 

SSURef_NR99_132_SILVA_13_12_17 release as reference database. Phylogeny was 

performed by FastTree v 2.1.10 and visualized using iTOL. 

 

In conventional practice, low abundance samples are excluded but we elected to retain them 

if sequencing was successful (≥104 reads). However, as this increases the risk of obtaining 
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spurious taxa, we removed OTUs with ambiguous taxa i.e. NA and any samples that had less 

than 104 reads and no information on bacterial abundance. Due to low biomass, it was 

important that we analyzed the negative controls, which included Bronchoscope pre-wash, 

DNA extraction reagents and no-template PCR reaction. We found that negative control 

samples contained 1015 OTUs, including those from family Enterobacteriaceae and genera 

Limnohabitans, Fodinicola, Staphylococcus, Flavobacterium, Cutibacterium, Acidovorax, 

Tepidimonas and Variovorax. After quality filtering and normalization, we ended up with 7164 

OTUs at 97% identity in 16S rRNA gene. These OTUs belong to 37 phyla with the most 

abundant phyla being Bacteroidetes, Firmicutes, Proteobacteria and Actinobacteria. 

 

Extraction of OTU-isolate match pairs 

In order to identify, exact OTU-isolate match pairs a combinatorial hybrid sequence pipeline 

to merge 215 high quality 16S rRNA sequences obtained by Sanger sequencing for LuMiCol 

isolates (phred score: Q30 > 90%) with the 16S amplicon sequencing dataset and performed 

OTU picking and taxonomic identification for the retrieval of OTU-isolate matching pairs. This 

was possible due the common forward primer (UV-27F) used in both genotyping and illumina 

sequencing. LuMiCol isolates sequences were trimmed to match the length of Illumina reads 

and dereplicated using vsearch. This set of sequences were merged with the dereplicated 

Illumina reads resulting in merged uniques. The merged fasta file was used for generation of 

centroids (98% identity), chimera detection and mapped to the whole dataset.  

 

Prevalence and absolute abundance analysis  

Prevalence was informed by the incidence of each OTU across all samples in the cohort. This 

was calculated by using the function amp_core from ampvis2 v 2.3.2. Output table consists of 

serial number, OTU number, Frequency (overall), frequency at 1% relative abundance 

(freq_A), Abundance (mean relative) followed by Taxonomy. Absolute abundance was 

calculated by using the phyloseq object with relative abundance OTU table and multiplying 
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each OTU in each sample by the 16S rRNA gene copies detected per millilitre of BALF sample, 

quantified using quantitative real-time PCR, using the function: 

For each OTU in each sample: 

Absolute abundance table = relative abudance table x  16Scopynumber 

 

Alpha diversity analysis 

Alpha diversity indices was obtained from Rényi diversity and corresponding Hill numbers 

using the function 'renyi' from vegan package in R. The Hill numbers, H0 (Number of species), 

H1 (exponent of Shannon diversity), H2 (Inverse Simpson) and Hill∞ (Berger-Parker index i.e. 

1/max pi (inverse of diversity of order infinity). Proportion of dominant OTUs (max pi) was 

calculated by 1/ Hill∞ (maximum proportion of species i).  

 

Beta diversity analysis  

Beta diversity was calculated by applying the ‘distance’ function on the phyloseq object. 

Presence/absence of OTUs was calculated by using Sørenson’s index, which was 

interchangeably used with the term Bray Curtis distance (binary = TRUE, calls for function 

‘vegdist’ from vegan package). For species abundances, Morista-Horn distance measure 

(calls for function ‘vegdist’ from vegan package and uses the distance measure ‘horn’) was 

used.  Statistical analysis of beta diversity was peformed by PERMANOVA with adonis 

function in vegan package in R and multiple comparison was performed by using the wrapper 

function pairwise.adonis. We used 10000 permutations as standard for all our comparisons.  

 

Enrichment analysis of OTUs  

Similar to prevalence analysis across the entire cohort, enrichment analysis of OTUs was 

repeated for individual PAMs. The amp_vis object was split into PAM groups, and the 

incidence percentages were then calculated by using the function amp_core in ampvis2 
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package. Prevalence of each OTU in individual PAMs was compared to the entire cohort and 

30 most prevalent and/or abundant microbiota members were plotted as described in Table 

S2.  

 

For enrichment analysis of OTU abundances, each PAM was compared to a file containing 

absolute abundances of the other 3 PAMs. Statistical analysis was performed by ART-

ANOVA, with a two factorial design (group= single PAM vs other 3 PAMs, variable = OTU 

IDs).  Marginal means were calculated by using the emmeans R package. Pairwise differences 

were calculated followed by Benjamini-Hochberg multiple testing for False Disovery Rate 

(FDR). Plotting was limited to the 30 most prevalent and/or abundant microbiota members as 

described in Table S2.  

 

Quantitative analysis of host gene expression and anellovirus load in BALF 

 

BALF cellular RNA extraction and real-time quantitative PCR for gene expression analysis 

BALF cell lysates were transferred into a QIAshredder column (Qiagen) for homogenization 

and total RNA was extracted using RNeasy Mini Kit (Qiagen) according to the manufacturer’s 

instructions. RNA concentration was determined using a Nanodrop ND-1000 

spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) and reverse transcription 

was performed using iScript cDNA Synthesis Kit (Bio-Rad, Hercules, CA, USA). 

Characterization of BAL fluid cell gene expression profiles was based on multiplex real-time 

PCR analysis using custom oligonucleotide primers and probes (Microsynth, Balgach, 

Switzerland) for a set of 31 genes (Dataset S7). We used guanine nucleotide-binding protein, 

beta polypeptide 2-like 1 (GNB2L1) gene as a reference gene, given its high expression 

stability in BALF cells in both health and disease(Ishii et al., 2006). Amplification was carried 

out using iQ Multiplex Powermix Master Mix and a CFX96 Real-Time detection system.  
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For radar chart visualization, the samples were sorted according to their association with one 

of the four pneumotypes, and the median expression values for each gene were determined 

within each group. For each gene, the highest median was then arbitrarily set to 1 and plotted 

as the maximum value in the corresponding chart. The median values obtained within the 

other groups were normalized accordingly. 

 

Quantification of anellovirus load 

Based on the tropism of Anelloviridae for hematopoietic cells, we quantified the load of this 

virus family starting from the DNA extracted from total BAL fluid cellular pellet. Absolute 

quantification of pan-Anelloviridae, Alpha-, Beta- and Gammatorquevirus (See Dataset S7) 

was performed using the CFX96 Real-Time detection system (Bio-Rad) based upon values 

obtained with a set of purified amplicons used as standards. 

 

Machine learning and statistical modelling 

Unsupervised learning for Pneumotype discovery 

Pneumotypes were obtained by running k-medoid-based unsupervised machine learning 

using Bray-Curtis dissimilarity matrix (binary = FALSE) using Genocrunch (See Section - 

Statistical analysis and softwares. The program utilizes the ‘pamk’ function of the R package 

‘fpc’ version 2.1.10 to cluster samples while optimizing the number of clusters based on the 

average silouhette width (Reynolds et al., 2006; Schubert and Rousseeuw, 2019). 

Random Forest classification and regression based machine learning  

Random forest analysis was performed using median normalized expression of 31 genes in 

Figure 4A from all 234 samples, as predictors. For classification based analysis, the 

pneumotypes were used as responses.  For regression based analysis, bacterial and total 

anellovirus copy numbers were used as responses. These models were optimized for best 

accuracy and sensitivity using different combinations of sub-sampling (mtry) and number of 
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decision trees (ntrees) constructed at each step. In each analysis, random forest cross-

validates results 10 times by creating random shuffled copies of the data. After each analysis, 

random forest provides results in terms error rate (out-of-box error) and matrix for the 

predictions for classifications (See Table S5) and percentage variance explained for 

regressions (See Figure 4I and 5F). Importance of predictors was calculated by Boruta, which 

creates random shuffled copies of the data of all features (shadow features: minimum, mean 

and maximum). At every iteration, it checks whether the real feature has a higher importance 

than the best of its shadow features (i.e. whether the feature has a higher Z score than the 

maximum Z score of its shadow features) and constantly removes features which are deemed 

highly unimportant. Finally, it assigns predictors with an Importance score and categorizes as 

Confirmed, Tentative or Rejected.  

 

Correlations of gene expression with predicted features by random forest regression 

Gene predictors from random forest analysis with importance scores more than 10 were 

further fitted into additive linear model with either bacterial or viral copy numbers i.e. lm(copy 

number ~ gene A + gene B). The best models were selected 'stepAIC' function from MASS 

package in R, which performs a stepwise model selection by AIC (Akaike Information Criteria). 

 

Clinical measurements and definitions 

 

Determination of the cell differential in the BALF, B-cell count in peripheral blood by mass 

cytometry, and bacterial culture for diagnostic purposes were performed according to in-house 

routine clinical procedures. 

 

Definition of acute bacterial infection 
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Acute bacterial infection was defined as positive BALF culture with dedicated antibiotic 

treatment, associated with clinical signs and symptoms such as a decrease in FEV1, new or 

progressive infiltrate on standard chest radiography or CT-scan, fever, positive pulmonary 

auscultation, cough, dyspnea, hemoptysis, pleuritic pain, purulent sputum. 

In contrast, a BALF culture positive for a pathogen, but not associated with the administration 

of antibiotic therapy and without clinical signs and/or symptoms, was considered as a bacterial 

colonization and not as an acute bacterial infection. 

Definition of Chronic Lung Allograft dysfunction (CLAD) 

CLAD was defined as a loss of more than 20% of the expiratory volume in 1 second (FEV1) 

of the mean of the two best values (i.e. the baseline FEV1) since transplantation, without other 

obvious cause and without reversibility, in accordance with the diagnostic criteria specified by 

the Pulmonary Council of the International Society for Heart and Lung Transplantation 

(Verleden et al., 2020)  
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Figure 1. Combining BALF amplicon sequencing and culturomics to deduce the 

microbial ecology of deep lung microbiota.  

(A) Schematic of longitudinally obtained Bronchoalveolar lavage fluid (BALF) from lung 

transplant recipients over time (months post-transplant, See Methods). (B) Median relative 

abundances (%) of most abundant phyla across BALF samples are plotted as box plots. (C) 

Prevalence (≥50% of samples - grey dashed line) vs contribution to total normalized reads 

(dot size) across samples for most abundant phyla and genera (colored dots).  (D) Correlation 
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between number of OTUs and bacterial counts detected per BALF sample (E) Bacterial taxa 

(genera; OTU IDs) contributing ≥ 75% of total bacterial counts (%) plotted as bar chart. Venn 

diagram inset shows overlap (yellow) between the most prevalent (≥50% incidence, light blue) 

and the most abundant (≥75% total count, red) taxa in the transplanted lung. Bar colors denote 

the categories to which represented taxa belong. Errors bars indicate median ± interquartile 

range. Bacterial count / sample was obtained by quantifying 16S rRNA gene copies with 

qPCR.  R2 was given by linear regression, p< 0.05. Contribution of OTUs to total bacterial 

counts across all samples was obtained as the Bacterial counts / sample x n i.e. 234. 
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Figure 2. A lung microbiota culture collection (LuMiCol) reveals extended diversity and 

phenotypic characteristics of the lower airway bacterial community.  

(A) Phylogenetic tree of the 47 OTU-isolate matching pairs inferred with FastTree (See 

Methods). Branch boot strap support (size of dark grey circles) ≥80% is displayed.  (B) Growth 

characteristics of each OTU-isolate matching pair in three different oxygen conditions 

(Anaerobic - light brown, microaerophilic-yellow, aerobic-light blue, n= 3). Column with pie 

charts shows growth on semi-solid agar. Heatmap shows median change in Optical Density 

(OD) at 600 nm growth in three different liquid media (THY, RPMI, RPMI without glucose) over 

three days. (C, D) Cumulative counts of each OTU-isolate matching pair across all BALF 

samples (grey) and the number of isolates in Lumicol (black) are plotted as bars. Taxa are 

labeled as genus ; OTU ID, with an indication of whether they are prevalent (grey rectangle) 

or opportunistic (magenta rectangle) in the lower airway community. The names of the closest 

hit in databases: eHOMD and SILVA are used as species descriptor. 
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Figure 3. Bacterial communities of the lung post-transplant fall into four ‘pneumotypes’ 

with distinct community characteristics.  

(A, B) Principal component analysis shows Partition around medoids (PAMs) at phylum and 

OTU level respectively (See also Figure S3) generated by K-medoid-based unsupervised 

machine learning using Bray-Curtis dissimilarity (occurrence and abundance). (C-G) Violin 

plots (with inset boxplots) showing pairwise species occurrence (Sorenson's index), OTU 

diversity, OTU richness, proportion of most dominant OTUs and total bacterial counts, 

respectively, across 4 pneumotypes  (one-way ANOVA with Tukey's post hoc test or Kruskal-

Wallis test with Dunn's post hoc test, p< 0.05).  (H and I) Enrichment analysis of prevalence 

(See methods, ≥50% - green dotted line) and absolute abundance across all samples of the 

30 most dominant taxa (i.e. OTUs) in Pneumotypebalanced and PneumotypeMD respectively, 

when each was compared to the other 3 combined (grey, See also Figure S4). (J) Heatmap 
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shows relative percentage of taxa (right colored panel) cultured from paired samples of 

Bronchial aspiration (BA) and Bronchoalveolar lavage fluid (BALF) from each pneumotype 

(left colored panel). Oropharyngeal flora mainly corresponds to Pneumotypebalanced (i.e. 

Streptococcus, Prevotella, Veillonella). Alpha diversity calculated using Renyi diversity with 

corresponding Hill numbers (See Methods). Pneumotypes are color coded: Balanced (red), 

Staphylococcus (green), Microbiota-depleted (MD, blue), and Pseudomonas (orange). 

Different letters denote signficant differences between groups. Differential abundances were 

analyzed by ART-ANOVA, FDR< 0.05, only non-significant (NS) changes are marked, rest 

were significant.  
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Figure 4. Host gene expression in the lung differs according to pneumotype and 

bacterial load.  

 (A) Radar plots show median-normalized expression of 31 host genes (radial axes) in the cell 

fraction of all BALF samples (See Methods) split into four pneumotypes. Circular distribution 

of genes in the plot was colour-coded according to 7 functional categories. Ticks (grey 

shading) show increase in expression from the inside to outside of circle (B) Boxplots show 

importance (99% Confidence Interval) of host genes as predictors of pneumotypes analysed 

by Random Forest and Boruta feature selection (See Methods, See also Table S5). (C-H 

Violin plots (with inset boxplots) showing log2 expression for 5 of the 6 host genes with 
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Importance scores >10 plus PDGFD across the colour-coded pneumotypes.  (I) Boxplots show 

host gene predictors  (99% Confidence Interval) of bacterial counts. (J and K) Scatter plots 

show correlation of PDGFD and IFNLR1 expression (log2 fold) with bacterial counts across 

samples. Boruta provides importance scores to host gene expression predictors and 

categorizes into Confirmed (Green), Tentative (Yellow) and Rejected (Orange). ntrees = 

number of decision trees constructed and splits per try = number of random predictors that 

were sub-sampled at each step and in case of regression provides percent explained variance 

(See Methods). The most significant model of correlation was selected  by stepwise regression 

(stepAIC; AIC: Akaike Information Criteria) with integrated ANOVA, p< 0.05.  Differences 

between pneumotypes were analysed using either one-way ANOVA with Tukey's post hoc 

test or Kruskal-Wallis test with Dunn's post hoc, with different letters denoting significance. 
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Figure 5. Anellovirus loads differ according to pneumotype and correlate with host 

physiology in the transplanted lung.   

(A) Line plots show longitudinal progression of Anellovirus load (log 10 pan-Anelloviridae 

genome copies, salmon pink) and its three major genera: 𝛼-torquevirus (Apple green), 𝛽-

torquevirus (turquoise) and 𝛾-torquevirus (violet) over 5 time windows after transplantation (x-

axis). Statistical significance is shown for total viral loads against time windows (one-way 

ANOVA, p< 0.05). (B-D) Violin plots (with inset boxplots) show genome copies for individual 

genera: 𝛼-torquevirus, 𝛽-torquevirus and 𝛾-torquevirus across pneumotype (plot colors). (E) 

Intra-individual pairwise analysis of 𝛾-torquevirus loads upon transition from 

PneumotypeBalanced (Red) to PneumotypeMD (Blue) and vice-versa. (F) Boxplots show 

importance of host genes as predictors (99% Confidence Interval) of anellovirus load analysed 

by Random Forest and Boruta feature selection (For details and gene function categories, See 

Methods, Figure 4). Scatter (G) and Violin (H) plots show TLR3 expression correlating with 

total anellovirus genome copies, and across the four colour-coded pneumotypes, respectively. 
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The most significant model of correlation was selected  by stepwise regression (stepAIC; AIC: 

Akaike Information Criteria) with integrated ANOVA, p< 0.05.  Differences between 

pneumotypes were analysed using either one-way ANOVA with Tukey's post hoc test or 

Kruskal-Wallis test with Dunn's post hoc, with different letters denoting significance. 
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Figure 6. Association of post-transplant pneumotypes with pulmonary environment, 

local and peripheral host immunity and clinical status.  

(A) Stacked bar plots showing proportion of samples associated with the four pneumotypes 

relative to the number of antibiotics administered. (B) Bar plots show the proportion of infected 

samples in association with the four pneumotypes. (C and D) Violin plots showing numbers of 

Neutrophils (C) and Macrophages (D) in lung (log 10 cells per ml BALF) linked to pneumotypes 

(plot colors). (E) Risk of rejection  associated with each pneumotype (bar colors) was 

assessed by the cumulative percentages (%) of samples associated with given conditions 

(See Methods):  Chronic Lung Allograft Dysfunction (CLAD), presence of Donor-specific 

antibodies (DSA, Mean Fluorescence Intensity > 1000) or Acute cellular rejection (Biopsy 

score A2) (F) Violin plots showing number of B-lymphocytes in the blood  associated with the 

four pneumotypes (plot colors). (G) Boxplots show burden of three major anellovirus genera: 

𝛼-, 𝛽- and 𝛾-torquevirus (log10 genome copies) in samples associated with CLAD (Yes or No). 
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(H) Violin plot show comparison of lung function (% compared to baseline) measured by 

Forced Expiratory Volume in 1 second (FEV1) across four pneumotypes (plot colors). 

Differences between pneumotypes were analysed using either one-way ANOVA with Tukey's 

post hoc test or Kruskal-Wallis test with Dunn's post hoc, and difference relative to CLAD was 

shown by paired Wilcoxon Rank sum test (Mann-Whitney test). Different letters denote 

significance.  
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Figure 7. Longitudinal analysis of lung microbiota post-transplant and dynamics of 

pneumotype transitions.  

(A) Sankey diagram showing transition of paired samples between pneumotypes (colors) 

across 5 Time Windows. (B) Markov chain model (See Methods) fitted to the observed 

pneumotype transitions (n = size of circle). Model was initiated with equal probabilities for each 

pneumotype (0.25, 100 bootstraps, left panel) and given transition matrix. Pneumotypes are 

represented by colored arrows/boxes and direction of a transition is indicated by a colored 

arrow of a thickness denoting the probability. (C) A patient case study showing transition of 

pneumotypes with clinical characteristics across two transplantation events. Heatmap shows 
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host gene expression with functional categories (See also Figure 4A, right vertical colored 

bars), neutrophil counts, bacterial and anellovirus loads in BALF across time and 

pneumotypes. Taxa obtained in routine clinical culture were abbreviated with letters. Samples 

positive for infection, ongoing antibiotic treatment or CLAD (black boxes) are presented above 

bar plots showing % lung function (See also Figure 6G), across transplantation events and 

time post-transplantation (months) and pneumotypes (bar colour). (D) Scheme of bimodal 

disruption in lung ecosystem (colored arrows in a x-y plot) leading either to (i) a microbiota-

depleted pneumotype with ambigous bacterial diversity (brown), low counts of bacteria (black) 

and viruses (grey), high lung cellular proliferation and chronic decline in lung function leading 

to rejection (purple), or ii) pneumotypes dominated by opportunists (Staphylococcus and 

Pseudomonas) with loss in bacterial diversity, high infection rate and inflammation (red), acute 

decline in lung function and rejection. Best-case scenario is defined by a middle ground with 

a balanced pneumotype consisting of the most prevalent bacteria in a homogenous 

composition with intermediate bacterial diversity, bacterial and viral abundance, high immune-

modulatory activity and best preserved lung function. 
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Figure S1. Relative abundance and prevalence analyses of OTUs detected in the 

negative controls as well as of the most abundant OTUs across all 234 BALF samples.  

(A) Box plot showing number of reads per BALF samples contributed by ambiguous OTUs 

also detected in negative control samples, which included Bronchoscope pre-wash, DNA 

extraction reagents and no-template PCR reaction. (B) Incidence plot showing the frequencies 

of OTUs across all BALF samples (%, y-axis) in our cohort (x-axis). Colored points show 

genera and OTU IDs of the taxa present in ≥50% of BALF samples (red dotted line), while 

grey points show OTUs with incidences ≤ 50%. (C) Box plot showing relative abundances (%) 

of the most abundant OTUs (denoted by genera and OTU IDs, median abundance) across all 

BALF samples. 
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Figure S2. Workflow of our combined approach of BALF amplicon sequencing and 

culturomics to deduce the microbial ecology of deep lung microbiota. (A) Amplicon 

sequencing of the 16S rRNA gene was carried out for 234 bronchoalveolar lavage fluid (BALF) 

samples from 64 recipients post-lung transplant. The resulting reads were clustered into 

operational taxonomic units (OTUs) to determine the community composition of each sample. 

For a subset of the samples, bacteria were cultured on 15 different media and 3 oxygen 

conditions. Single colonies were picked, genotyped, and arrayed into a bacterial strain 

collection referred to as LuMiCol. 16S rRNA gene sequences of these isolates were included 

into the community analysis based on the culture-independent 16S rRNA gene amplicon 

sequences to identify which isolate belongs to which OTU (OTU-isolate matching pairs). (B 

and C) Phenotypic tests to differentiate bacteria species. Taxa are denoted by genera and 
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OTU IDs and phyla are shown with colored highlights and were also assigned if they are 

prevalent (grey rectangle) or opportunists (magenta rectangle) of the lower respiratory 

community. Streptococci were confirmed by their characteristic hemolysis (C). Viridans 

Streptococci were differentiated from Pneumococcus by Optochin resistance test and the 

presence of ply gene encoding Pneumolysin toxin. Staphylococcus aureus was differentiated 

from other Staphylococci (D) by its ability to grow in high salt concentration and fermentation 

of Mannitol (Mannitol Salt Agar), characteristic hemolysis, presence of nuc gene encoding for 

Staphylococcal Thermonuclease and extracellular DNase activity assay.  
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Figure S3. Principal component analysis based on the bacterial community 

compositions and bacterial loads of the 234 BALF samples. (A and B) Clustering of 

samples based on genus level (A) and OTU level (B) along principal components 1 to 5. 

Samples are colored according to PAM designation. Line graph shows total variance 

explained per principal component. (C) Bacterial count as determined by qPCR on the 16S 

rRNA gene. Samples are sorted according to load and colors correspond to PAM designation. 

PAM1, PAM2, PAM3, and PAM4 correspond to red, green, blue, and orange colors, 

respectively. 
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Figure S4. Prevalence (i.e % of samples present) and absolute abundance across all 

samples of the 30 most dominant bacterial community members (i.e. OTUs) in PAM2 

(A) and PAM4 (B) as compared to the other 3 PAMs.  

Green and orange graphs correspond to values for PAM2 and PAM4, respectively, while grey 

graphs correspond to values for the entire dataset. Incidence of 50% is indicated by the green 

dotted line. Enrichment analysis was performed on both incidences and abundances of 

specific bacteria in individual PAMs compared to the other 3 PAMs. Differential abundances 

were analyzed by ART-ANOVA followed by Benjamini-Hochberg multiple testing for False 

Discovery Rate (FDR) (only NS = Not significant are shown).  
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Figure S5. Comparison of culturing results from BALF and Bronchial aspirate (BAs) 

samples belonging to different pneumotypes (as based on BALF community analysis) 

confirms the presence of distinct microbial communities. (A and B) Stacked bar plots 

shows relative percentage of specific taxonomic groups (colored bars) isolated from paired 

Bronchial aspirates (BA) and Bronchoalveolar lavage fluid (BALF) samples, plotted according 

to the Pneumotype designation of each sample pair. 
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Figure S6. Gene expression differences of peripheral immune tolerance gene IDO1 

across the four pneumotypes. Violin plots showing median normalized expression of IDO1 

(log2 fold)  relative to reference gene (GNB2L1, Methods) across the four pneumotypes (plot 

colors). The functional category is shown at the bottom of the plot according to the color 

scheme used in Figure 4A. For statistical analysis between groups, data normality was 

checked by Levene's test followed by either one-way ANOVA followed by Tukey's post hoc 

test or Kruskal-Wallis test followed by Dunn's post hoc test.  
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Figure S7. Association of Immunosuppresant drugs with pneumotypes and anellovirus 

load in BALF. (A and B) Violin plots showing levels of immunosuppresants: Prednisone 

dosage (mg/day) and Tacrolimus concentration in blood (ng/ml) (y-axis) in BALF samples from 

four pneumotypes (plot colors and x-axis). (C and D) Scatter plot showing correlation between 

levels of immunosuppresants: Prednisone dosage (mg/day) and Tacrolimus concentration in 

blood (ng/ml) (y-axis) and Total anellovirus burden (log 10 genome copies per ml BALF per 

sample (x-axis). R2 indicates the proportion of explained variability with significance given by 

p value. 
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Figure S8.  Burden of major anellovirus genera in BALF differ between pneumotypes 

Intra-individual pairwise analysis of ⍺- and β-torquevirus loads (log 10 genome copies per ml 

BALF) for the samples transitioning from PneumotypeBalanced (Red) to PneumotypeMD (Blue) 

and from PneumotypeMD to PneumotypeBalanced. Statistical analysis was performed by 

paired Wilcoxon Signed Rank sum test. Different letters denote signficant differences between 

the two pneumotypes. 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 21, 2020. ; https://doi.org/10.1101/2020.05.21.106211doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.21.106211
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S9. Longitudinal analysis of lung microbiota post-transplant to investigate 

pneumotype transitions.  

(A) Longitudinal BALF sampling from patients with given IDs and integrated pneumotype 

information across time (months post-transplant).  
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Supplementary Tables and Datasets 

Larger Tables are provided as Datasets are available online on the cloud drive. 

https://drive.switch.ch/index.php/s/hch0EoA5QyjBPR8 

Dataset S1: 16S rRNA amplicon sequencing full table with sample-wise information OTUs 
relative abundance and taxonomy, without negative controls. 

Dataset S2: Negative controls sequencing full table with sample-wise information OTUs 
abundance and taxonomy. 

Dataset S3: Detailed table showing frequency of all OTUs detected across the 234 BALF 
samples in terms of their abundance and prevalence across samples. 

Dataset S4: Overview of the different combinations of culture conditions used in our 
culturomics approach and source or references for each media.  

Dataset S5: Lung microbiota culture collection (LuMiCol) isolate list with detailed information 
about sample number, culture conditions, taxonomy. This is an uncurated list containing 
approx. 300 isolates including 215 isolates used for analysis.  

Dataset S6: OTU-isolate match summary including the isolates that match OTUs in 16S 
rRNA and information about number of representative isolates in LuMiCol, with at least one 
representative isolate name, prevalence, and oxygen and media preferences 

Dataset S7: Primer sequences and qPCR specifications for each primer pair used to 
analyze host gene expression, anelloviruses in BALF and genotyping of bacterial species.  

Dataset S8: Detailed metadata table associated with all patients and samples. 
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Table S1: BALF sample characteristics and patient demographics. 
 
Patients/Samples Total (n) 64/234 

 Male / Female 25 (39.1%)/39 
(60.9%) 

 Age at transplant (yr) 54 (36-60) 

 Sampling time point (months post-
transplant) 6 (2-12) 

Type of transplant Bilateral lung 61 (95.3%) 
 Single lung 3 (4.7%) 
Pre-transplant diagnosis Interstitial lung disease 17 (26.6%) 
 Cystic fibrosis 14 (21.9%) 
 Chronic obstructive pulmonary disease 17 (26.6%) 
 Pulmonary hypertension 4 (6.3%) 
 Alpha-1 antitrypsin deficiency 4 (6.3%) 
 Other 8 (12.5%) 
Transbronchial biopsiesa,b  224 (95.7%) 
 A0 182 (77.8%) 
 A1 21 (9.0%) 
 A2 5 (2.1%) 
 B0 148 (63.2%) 
 B1 39 (16.7%) 
 B2 2 (0.9%) 
Immunosuppressiona Tacrolimus 231 (98.7%) 
 Cyclosporin 2 (0.9%) 
 Everolimus 1 (0.4%) 

Antibioticsa,c PCP prophylaxis 
(TMP/SMX/Atovaquone) 218 (93.1%) 

 Inhaled (colistin, ambisome, tobramycin) 24 (10.3%) 

 Oral or IV route (miscellaneous, including 
azithromycin) 71 (30.3%) 

Clinical infectiona,d  33 (14.1%) 
Abbreviations: IV=intravenous; PCP=pneumocystis, pneumonia; 
TMP/SMX=trimethoprim/sulfamethoxazole.  
Data presented as n (% of patients or samples) or median (interquartile range)  
a  at sampling  
b  grading of pulmonary allograft rejection according to guidelines of the International Society 
for Heart and Lung Transplantation 
c  antibacterial and antifungal antibiotics 

d  BALF positive culture requiring treatment 
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Table S2: Incidences and abundances of 30 most prevalent and/or abundant microbiota 

members of human lower respiratory tract 

 

OTU_ID Genera I (%) 
Ai 

(%) 

Mean 

abundance 

(relative %) 

Cumulative 

abundance 

(absolute, %) 

Present in 

LuMiCol 

OTU_11 Streptococcus 93.6 54.1 5.1 2.0 Yes 

OTU_3 Prevotella 7 87.6 57.9 10.3 9.1 Yes 

OTU_6 Veillonella 84.1 49.8 3.7 1.6 Yes 

OTU_15 Pseudomonas 78.1 19.3 2.5 1.1 No 

OTU_30 Veillonella 75.1 37.3 1.8 0.9 Yes 

OTU_20 Rothia 70.4 21.0 1.5 0.3 Yes 

OTU_8 Alloprevotella 67.8 27.5 3.3 1.0 No 

OTU_17 Granulicatella 67.4 21.5 1.3 0.6 Yes 

OTU_4 Prevotella 7 66.5 30.5 4.4 1.7 No 

OTU_7 Neisseria 65.7 24.5 3.8 6.0 Yes 

OTU_39 Actinomyces 64.8 25.3 1.5 1.1 Yes 

OTU_1 Pseudomonas 62.2 10.3 7.0 7.5 Yes 

OTU_41 Gemella 61.4 14.2 1.0 0.1 Yes 

OTU_27 Prevotella 6 59.7 31.8 2.3 0.7 Yes 

OTU_34 Streptococcus 59.7 18.9 1.2 0.1 Yes 

OTU_107 Veillonella 59.2 10.3 0.8 0.3 Yes 

OTU_57 Streptococcus 58.8 19.3 0.9 0.4 Yes 

OTU_26 Granulicatella 57.1 9.9 1.1 0.3 No 

OTU_42 Streptococcus 54.5 11.2 1.1 0.2 Yes 

OTU_69 Streptococcus 52.8 12.9 0.9 0.1 Yes 

OTU_21 Porphyromonas 52.4 16.3 2.3 1.4 No 
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OTU_46 Campylobacter 50.2 10.3 0.6 0.3 No 

OTU_2 Staphylococcus 44.2 6.0 5.6 22.0 Yes 

OTU_6768 Streptococcus 17.6 1.3 0.8 1.1 No 

OTU_24 
Corynebacterium 

1 
16.3 2.1 5.4 3.3 No 

OTU_78 Haemophilus 16.3 1.3 3.0 1.3 No 

OTU_16 
Corynebacterium 

1 
6.9 1.3 4.4 9.3 No 

OTU_49 Anaerococcus 5.2 1.3 4.4 2.9 No 

OTU_234 Anaerococcus 4.7 1.2 1.02 0.9 No 

OTU_63 Peptoniphilus 4.7 1.2 2.4 0.9 No 

 
I   Overall incidence of OTUs (% of samples). 
Ai   Incidence of OTUs at 1% relative abundance. 
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Table S3: Beta diversity summary and statistics of four Partition around medoids 

(PAMs) formed by samples from the human lower respiratory tract 

 
 

Pairs p value adj. p value Significance Beta diversity measure 
PAM1 vs PAM2 0.001 0.0012 ** Sorenson Index 
PAM1 vs PAM3 0.001 0.0012 ** Sorenson Index 
PAM1 vs PAM4 0.001 0.0012 ** Sorenson Index 
PAM2 vs PAM3 0.001 0.0012 ** Sorenson Index 
PAM2 vs PAM4 0.067 0.067 ns Sorenson Index 
PAM3 vs PAM4 0.001 0.0012 ** Sorenson Index 
PAM1 vs PAM2 0.001 0.0012 ** Unweighted UniFrac 
PAM1 vs PAM3 0.001 0.0012 ** Unweighted UniFrac 
PAM1 vs PAM4 0.001 0.0012 ** Unweighted UniFrac 
PAM2 vs PAM3 0.001 0.0012 ** Unweighted UniFrac 
PAM2 vs PAM4 0.091 0.091 ns Unweighted UniFrac 
PAM3 vs PAM4 0.001 0.0012 ** Unweighted UniFrac 
PAM1 vs PAM2 0.001 0.0015 ** Weighted UniFrac 
PAM1 vs PAM3 0.001 0.0015 ** Weighted UniFrac 
PAM1 vs PAM4 0.001 0.0015 ** Weighted UniFrac 
PAM2 vs PAM3 0.002 0.0024 ** Weighted UniFrac 
PAM2 vs PAM4 0.021 0.021 * Weighted UniFrac 
PAM3 vs PAM4 0.001 0.0015 ** Weighted UniFrac 
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Table S4: Statistical evaluation of bacteria composition of PAM1 
 

Taxonomy Incidence 
(%) 

Abundance 
(Enriched/Reduced) 

Significance 
(Abundance) 

Present 
in 

LuMiCol 
Streptococcus ; OTU_11 99.1 Enriched *** Yes 

Prevotella 7 ; OTU_3 97.4 Enriched *** Yes 

Veillonella ; OTU_6 93.9 Enriched *** Yes 

Veillonella ; OTU_30 93 Enriched NS Yes 

Granulicatella ; OTU_17 93 Enriched ** Yes 

Actinomyces ; OTU_39 89.6 Enriched NS Yes 

Rothia ; OTU_20 88.7 Enriched *** Yes 

Granulicatella ; OTU_26 84.3 Enriched *** No 

Gemella ; OTU_41 83.5 Enriched *** Yes 

Neisseria ; OTU_7 82.6 Enriched *** Yes 

Prevotella 7 ; OTU_4 81.7 Enriched *** No 

Prevotella 6 ; OTU_27 81.7 Enriched NS Yes 

Streptococcus ; OTU_57 81.7 Enriched ** Yes 

Pseudomonas ; OTU_15 80.9 Reduced *** No 

Alloprevotella ; OTU_8 79.1 Enriched *** No 

Streptococcus ; OTU_34 79.1 Enriched *** Yes 

Veillonella ; OTU_107 76.5 Enriched *** Yes 

Streptococcus ; OTU_69 76.5 Enriched *** Yes 
Campylobacter ; 
OTU_46 75.7 Enriched *** No 

Streptococcus ; OTU_42 73.9 Enriched *** Yes 
Porphyromonas ; 
OTU_21 67 Enriched NS No 

Pseudomonas ; OTU_1 59.1 Reduced *** Yes 
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Table S5: Random forest confusion matrix for prediction of pneumotypes using host 

immune gene expression. 

 

Pneumotypes Balanced Staphylococcus Microbiota-

depleted 

Pseudomonas Accuracy 

(%) 

Balanced 103 0 8 1 92% 

Staphylococcus 5 0 13 0 0% 

Microbiota-

depleted 

13 0 61 1 81.4% 

Pseudomonas 5 0 0 19 83.4% 
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