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ABSTRACT 

Multitask deep neural networks learn to predict ligand-target binding by example, yet public 

pharmacological datasets are sparse, imbalanced, and approximate. We constructed two hold-out 

benchmarks to approximate temporal and drug-screening test scenarios whose characteristics 

differ from a random split of conventional training datasets. We developed a pharmacological 

dataset augmentation procedure, Stochastic Negative Addition (SNA), that randomly assigns 

untested molecule-target pairs as transient negative examples during training. Under the SNA 

procedure, ligand drug-screening benchmark performance increases from R2 = 0.1926 ± 0.0186 to 

0.4269±0.0272 (121.7%). This gain was accompanied by a modest decrease in the temporal 

benchmark (13.42%). SNA increases in drug-screening performance were consistent for 

classification and regression tasks and outperformed scrambled controls. Our results highlight 

where data and feature uncertainty may be problematic, but also show how leveraging uncertainty 

into training improves predictions of drug-target relationships. 
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INTRODUCTION 

Machine learning and deep neural network (DNN) methods have made great strides in scientific 

pattern recognition, particularly for cheminformatics1–7. As larger amounts of training data 

(molecules and their protein binding partners) have become publicly available, ligand-based 

predictions of polypharmacology have expanded from classification of binding (e.g. 

active/inactive) to regression of drug-target affinity scores (e.g., Ki, IC50)3,4,8–12. These models 

exploit the similar property principle of chemical informatics, which states that small molecules 

with similar structures are likely to exhibit similar biological properties, such as their binding to 

protein targets13. Such approaches assume that the principle holds true for large datasets and hinge 

on the expectation that a greater diversity of training examples will increase the likelihood of a 

model finding generalizable patterns relating chemical structure to bioactivity. However, these 

techniques may learn biased patterns from incomplete data for drug discovery and screening14. 

Academic cheminformatic machine learning training sets derive from public bioactivity databases 

such as ChEMBL and PubChem BioAssay (PCBA)15,16. Theoretically, the more researchers who 

deposit their data, the more diverse the database. However, as scientific literature is a major 

contributor to these databases, a publication bias toward molecules with positive binding profiles 

(Figure 1) could skew both the dataset and, consequently, the resulting machine learning models 

predictions, as in Kurczab, et al17. We explore the feasibility of a method that leverages uncertainty 

in unexplored chemical space to augment incomplete public data for small molecule activity 

prediction using deep learning for both classification and regression.  

A substantial literature focuses on correcting the balance of positive to negative examples (here, 

binders to non-binders) in machine learning training datasets as well as addressing dataset 

sparsity12,18–25. These corrections primarily adopt majority- or minority-based approaches. 
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Minority-based approaches oversample underrepresented classes, generally accomplished by 

upweighting or oversampling existing training examples or by adding similar synthetically-

generated ones19,24. Majority-based approaches typically undersample the overrepresented class in 

order to achieve balance. Many class imbalance approaches address situations where positive 

examples were in the minority. This presents a unique problem for cheminformatic datasets where 

binders (<10uM) are frequently the majority class and non-binders are the minority reported class 

(Figure 1), despite binding in comprehensive screens being a rare event26. For cheminformatic 

datasets, undersampling the majority class members would minimize the crucial effort researchers 

have invested to establish the chemical feature diversity upon which similar property principle-

based approaches rely25. Accordingly, De la Vega de Leon et al. found that removing/ignoring 

activity labels can decrease performance in proportion to the amount of data removed22. As non-

binding molecules typically arise from the same series as binders, and consequently share many 

of their chemical features, we suspected that oversampling existing negative examples would 

contribute little to expanding a model’s decision boundaries. It would follow, therefore, that 

oversampling may fail to add diversity to the minority class, whereas methods that rely on synthetic 

interpolation (i.e. generating new fingerprints very similar to existing negatives) increase the 

chance of mislabeling a new ligand in the chemical series and overlook protein targets lacking 

negative pharmacology data19. From a machine learning perspective, this hinders a model’s 

generalizability and the scope of its chemical feature space. In turn, oversampling negative 

examples would seem especially problematic for cheminformatic datasets.  

Random sampling of unassayed chemical space to assert weak but diverse negative examples 

may address these concerns. Others have shown that incorporating random negative data into 

training improves classification performance by SVMs27, potency-sensitive influence relevance 
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voters28, and Bernoulli Naïve Bayes classifiers29. Kurczab et al. assessed the influence of negative 

data on a set of eight targets and found that a ratio of 9:1 to 10:1 of negatives to positives were 

favorable for classification30. In this work, we introduce putative negatives that continuously 

change throughout training, and extend this method beyond classification to regression tasks for 

thousands of protein targets at once. We evaluate prediction performance on screening and 

temporal benchmarks and search for optimal positive-to-negative ratios under both test scenarios.  

We propose an online (continuous) pharmacological training augmentation procedure for 

regression and classification tasks: stochastically oversampling the minority (non-binder) class 

from the pool of unlabeled molecule-to-protein interactions spanning the molecule vs protein 

target training space. We designed Stochastic Negative Addition (SNA) with the challenges of 

ligand-based drug design in mind. SNA adds more molecule-protein pairs to a training set where 

negative examples are otherwise outnumbered and/or unevenly distributed. Paradoxically, 

whereas most molecules do not bind to most proteins, the literature-based pharmacological 

datasets we used contain a preponderance of positive reports (Figure 1): We intended SNA to 

counter this trend without overwhelming training with negative examples. This method encodes 

uncertainty for unstudied, and unlabeled, drug-target pairs. It exploits the observation that, despite 

meaningful cases of unexpected polypharmacology, ligand binding events at ≤10 uM are 

comparatively rare26. This study expands on prior work by investigating the effect of training 

augmentation for large numbers of protein targets in a multitask setting, applying the method to 

regression tasks, and assessing the impact of random negatives on complementary benchmarks. 

 We assessed DNN model performance on two external test sets: First, we created a Time Split 

hold-out to address a drug discovery scenario with the understanding that this test set would be 

skewed toward having fewer negatives. Second, we created a complementary “screening” use-case 
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benchmark, with a preponderance of negatives. For it, we used the densely assayed Drug Matrix 

collection31,32, and removed all of its protein-molecule interactions that intersected with the 

training set to avoid data leakage. To determine how much pre-existing negative examples 

contributed to performance, we trained alternative DNNs where we removed negatives from the 

training dataset. We explored whether SNA could rescue performance in this scenario where actual 

negatives were absent. We compared these models to an unaugmented, standard training regime 

and appropriate adversarial control studies33. We then explored whether different ratios of binders 

to non-binders affected performance. Finally, we evaluate whether SNA improves classification 

to the extent that it does regression. We find using SNA with a one-to-one positive-to-negative 

ratio improves performance on screening scenarios with minor penalty to temporal benchmarks. 

RESULTS 

Adding stochastic negatives improves regression performance 

We posited that existing sparse public datasets omit much of the chemical diversity of negative 

bioactivity space. To address this, we developed a machine learning training procedure to 

transiently add likely negative examples: unstudied pairs of small molecules and protein targets 

that we assert to not bind. Using a Stochastic Negative Addition (SNA) procedure, model 

predictions on a screening scenario benchmark dataset (Drug Matrix) improved with minimal loss 

to performance on a temporal test benchmark (Time Split) (Figure 2). 

DNN models trained with five-fold cross validation using SNA (hereafter denoted in italics as 

SNA) outperformed conventionally-trained models (standard; STD) on the screening (Drug Matrix) 

benchmark (Figure 2(g,h); Table 1; Supplementary Table 1; Supplementary Figures 9-10, 17-18) 

with little effect on training or random test performance (Figure 2(a-d); Table 1; Supplementary 
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Table 1; Supplementary Figures 9-10, 17-18). SNA performance increased 122% in R2 over the 

STD model on Drug Matrix affinity pAC50 values (see Methods). As with most screens, much of 

the data within the screening benchmark consisted of first-pass “primary” observations assessed 

only at the single dose of 10 μM. Regression could not be performed on these observations, as no 

dose-response curve had been collected. To assess the effect of the proposed SNA training 

procedure on classification tasks, which would include these cases as well, we used two analyses: 

classification and regression-as-classification. The former consisted of training equivalent DNN 

architectures with classification loss functions -- see dedicated section below. For the latter, we 

evaluated the output of the original regression models as classifiers post hoc, by thresholding 

affinity into positive and negative assignments according to pAC50 for the underlying truth values 

and constructing AUPRCr and AUROCr metrics over a range of affinity thresholds instead of 

confidence thresholds. Thus, we calculated regression-as-classification AUPRCr and AUROCr by 

combining primary negatives with secondary (dose-response) negatives from the Drug Matrix 

screen versus secondary positives (see Methods). This analysis on Drug Matrix showed a 196% 

increase in AUPRC, and 14% increase in AUROCr for models trained using SNA over STD (Figure 

2(i,k); Table 1; Supplementary Table 1; Supplementary Figures 9-10, 17-18). 

By contrast, SNA performance on the temporal (Time Split) benchmark decreased slightly, with 

SNA models decreasing by 13% in R2 and 3% in AUPRCr compared to STD (Figure 2 (e-f,l); Table 

1; Supplementary Table 1; Supplementary Figures 9-10, 17). STD and SNA models generalized 

similarly on cross-validation test sets (Figure 2(c-d), Table 1; Supplementary Table 1; 

Supplementary Figures 9-10, 17-18), whereas standard models more precisely recapitulated their 

exact training examples ((Figure 2(a-b)), Table 1; Supplementary Table 1; Supplementary Figures 

9-10, 17-18) than the equivalent SNA model, as expected. 
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SNA brings scrambled control models closer to theoretical random for regression 

To evaluate whether the models withstood adversarial controls33, we trained models on 

molecules whose annotations to protein targets had been randomized (y-randomization)34–36. SNA 

scrambled and STD scrambled models were trained with and without SNA procedures, 

respectively. Our goal was to verify that these intentionally scrambled models would underperform 

equivalent non-scrambled models on actual benchmarks. Thus, as in previous sections, we 

evaluated these models on screening, temporal, and 5-fold cross validation (Test) sets. 

As intended, scrambled models greatly underperformed those trained on actual data (Figure 3; 

Table 1; Supplementary Table 1; Supplementary Figures 17-18). However, some empirically-

scrambled models using standard training exceeded expected theoretical performance for balanced 

models (Figure 3 (e-h); Table 1; Supplementary Table 1; Supplementary Figures 17-18). 

Scrambled models converged during training and achieved high performance on their scrambled 

train datasets (Supplemental Table 1; Supplementary Figures 13-14, 17-18), consistent with 

potential dataset memorization rather than generalization37. Unsurprisingly, the R2 for scrambled 

models neared 0.0 for screening, temporal, and cross-validation sets (Supplementary Figures 13-

16). While models trained on actual data outperform their scrambled controls, these controls 

exceeded frequently used, theoretical baselines such as 0.5 for AUROCr and the positive-to-

negative ratio random baseline for AUPRCr in regression-as-classification analyses. STD 

scrambled models outperformed the 0.5 theoretical-random in AUROCr (Drug Matrix screening 

set: 0.5538±0.0099; Time Split temporal set: 0.6340±0.0033) (Figure 3(e,f); Supplementary Table 

1). We also found these STD scrambled models performed better than the random prevalence line 

in AUPRCr for Drug Matrix (random prevalence: 0.0711; AUPRCr: 0.0816±0.0046) and temporal 

benchmarks (random prevalence: 0.8604; AUPRCr: 0.9057±0.0010) (Figure 3 (g,h); 
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Supplementary Table 1). SNA scrambled models exhibited AUROCr and AUPRCr nearer the 

expected theoretical random baselines in both the Drug Matrix benchmark (AUROCr: 

0.4842±0.0134, AUPRCr: 0.0687±0.003) and temporal benchmark (AUROCr: 0.4664±0.0106, 

AUPRCr: 0.8540±0.0032) (Figure 3; Supplementary Table 1). 

SNA improves performance for classification models  

To evaluate whether the SNA training procedure was stable beyond regression and regression-

as-classification uses, we developed and evaluated DNN classifiers with similar architectures. As 

with regression models, SNA classifiers saw increased model performance for the Drug Matrix 

screening benchmark, with a minor decline on the TimeSplit temporal benchmark (Supplementary 

Table 2; Figure 4; Supplementary Figures 17-18). In 5-fold cross-validation, SNA improved 

screening benchmark performance by 151% AUPRC and 13% AUROC (Supplementary Table 2; 

Supplementary Figures 17-18). Consistent with regression models, classification networks trained 

with SNA exhibited minor (4% AUROC and a 1% AUPRC) decreases on the Time Split 

benchmark (Supplementary Table 2, Supplementary Figures 17-18). As before, both models 

outperformed their scrambled baselines. Classifier DNNs showed less performance gain over 

random controls in the temporal benchmark than regressor DNNs (Figure 4 (e,f)). 

SNA improves regression models trained without negatives 

As SNA improved performance on a training set where negatives are not guaranteed to be 

distributed across the benchmark sets in the same manner as the train set, we were curious whether 

SNA would improve cases where there are no true negative training data for ligand-binding 

prediction. To address this question, we evaluated two training regimes. First, we trained a DNN 

model solely on positive ligand-target examples (Negatives Removed). Second, we trained the 

equivalent Negatives Removed model, corrected by the SNA procedure (Negatives Removed 
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+SNA). To compare model performance, we maintained the same benchmarks as before 

(screening/Drug Matrix, temporal/Time Split, and cross-validation). We hypothesized that 

removing all training negatives would damage model performance across the board, while 

incorporating SNA might partially rescue this effect. Additionally, we hypothesized classification 

models would be more sensitive to the removal of training negatives than regression models.  

Broadly, regression models trained without negative examples underperformed by regression-

as-classification metrics, while achieving similar or better R2 to standard (STD) for Drug Matrix 

and Time Split (Figure 5; Supplementary Table 1, 2). The R2 difference between Negatives 

Removed and STD models was minimal for the Drug Matrix screening benchmark (Negatives 

Removed R2: 0.1973±0.0176; STD R2: 0.1926±0.0186) (Figure 5(a); Figure 2 (g); Supplementary 

Table 1, Supplementary Figures 9, 11). However, we observed larger differences in AUROCr and 

AUPRCr where the STD model outperformed the equivalent Negatives Removed model for Drug 

Matrix (Negatives Removed AUROCr: 0.6120±0.0076 vs STD 0.6886±0.0094; Negatives 

Removed AUPRCr: 0.1039±0.0025 vs STD AUPRCr: 0.1490±0.0077) (Figure 5 e; Supplementary 

Table 1; Supplementary Figures 23-24). Removal of negatives from training harmed the Time 

Split temporal benchmark performance (-2.2% AUROCr and -0.5% AUPRCr change from STD) 

(Figure 3f; Supplementary Table 1), but these models showed minor improvements in R2 (9.3% 

increase from STD models) (Figure 5 (c,f)). For cross-validation (Test) and training-data 

benchmarks, removal of negatives during training uniformly decreased performance, by 5% (Test) 

and 15% (Train) in R2 (Supplementary Table 1). 

We had anticipated that the SNA training procedure would partially mitigate the absence of true 

negatives during model training. Surprisingly, the Negatives Removed +SNA procedure yielded 

models with performance nearly indistinguishable from SNA models trained with full data, SNA 
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(Figure 5 (e,f); Supplementary Table 1; Supplementary Figures 1-4). As with STD compared to 

SNA, Negatives Removed +SNA substantially improved the Drug Matrix screening benchmark 

performance while slightly decreasing that of the Time Split benchmark compared to a model 

trained with Negatives Removed alone. We observed 28%, 331%, and 115% increases to AUROCr, 

AUPRCr, and R2, respectively, for the Drug Matrix screening benchmark by adding SNA training 

to Negatives Removed models (Figure 5; Supplementary Table 1; Supplementary Figure 1). By 

contrast, we observed that the Negatives Removed +SNA model training decreased temporal 

benchmark R2 performance 24% to 0.1774±0.0018 compared to the Negatives Removed alone 

(Figure 5 (d,f); Supplementary Table 1, Supplementary Figure 2). We found little to no change in 

mean AUC metrics for regression of Negatives Removed or Negatives Removed +SNA models, 

suggesting that neither stochastic nor true negatives improve performance on the temporal 

benchmark. Under these performance metrics, the impact of stochastic negative data on model 

training could not be distinguished from that of true negatives. However, we did not find that 

stochastic negatives yielded any greater performance than true negatives, despite the greater 

diversity of chemical examples covered by the former. To address whether there was an advantage 

from reported negatives, we performed an alternative training analysis wherein we upweighted 

existing negatives during training to reach parity between positives and negatives (Supplementary 

Methods: Negatives Upweighted; Supplementary Table 1) and found little improvement to the 

Time Split benchmark.  

SNA training corrects for absence of true negatives in classification nearly as well as in 

regression 

 As with the regression models, removal of true negatives when training classification models 

damaged performance on most benchmarks. SNA predominantly rescued performance for 
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classification Negatives Removed models. The removal of true negatives from classification DNN 

training so adversely impacted performance on holdout benchmarks that these models failed to 

exceed random baselines (Supplementary Table 2, Supplementary Figures 21-22). This was 

consistent with the expectation that classification models trained solely on positive data would 

overwhelmingly predict positive outcomes. Therefore, we expected that incorporating 

stochastically-imputed negatives during training (Negatives Removed +SNA) would improve 

classification. Drug Matrix screening benchmark performance improved markedly for Negatives 

Removed +SNA training compared to Negatives Removed models (48% increase in AUROC; 

291% in AUPRC) (Supplementary Table 2, Supplementary Figures 21-22). Negatives Removed 

+SNA only slightly improved Time Split AUROC and AUPRC (3% to AUROC and 1% to 

AUPRC), although this was in contrast to regression models, where SNA had decreased 

performance in this scenario (Supplementary Tables 1,2, Supplementary Figures 21-22). Overall, 

we observed that the Negatives Removed regression model and its derived regression-as-

classification interpretation outperformed the classification model on the screening benchmark. 

This was true as well for Negatives Removed +SNA training with the exception of AUROCr for 

Drug Matrix. 

Restricting SNA by molecular similarity does not dramatically improve the procedure 

To decrease the likelihood that SNA may assign true-but-unreported ligands to be negatives 

during training, we blacklisted potential molecule-target pairs by a separate cheminformatic 

method. This blacklist was created using the Similarity Ensemble Approach (SEA) to predict likely 

binders (Supplementary Information). We assessed the networks trained with the SEA blacklist 

(SNA +SEA blacklist) similarly to the base SNA model procedure for both classification and 

regression. As with SNA networks, the SNA +SEA blacklist DNNs outperformed STD models on 
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Drug Matrix with minor decreases to Time Split for regression (Supplementary Table 1; 

Supplementary Figures 1-2) and classification (Supplementary Table 2; Supplementary Figures 5-

6). The performance differences between SNA and SNA +SEA blacklist were minimal; typically 

within a 1% difference (Supplementary Table 1; Supplementary Figures 1-4). The exceptions were 

AUPRCr and R2 where SNA +SEA blacklist outperformed SNA on Drug Matrix by 2.8% and 3.3%, 

respectively. The same was true for classification networks, with SNA +SEA blacklist performing 

within a 1% difference to SNA for all but AUPRC, where SNA +SEA blacklist induced an increase 

in the mean across cross validated models of 3% (Supplementary Table 2, Supplementary Figures 

5-8).  

The optimal SNA ratio for DNN performance centers on 1:1 positive:negative examples 

To assess the impact of the class balance ratio chosen for the SNA training procedure, we trained 

14 networks with SNA minimum-ratios (i.e. minimum ratio of negatives-to-positives per protein 

target, below which negatives are added until the ratio is achieved) extending from no negatives 

added to the training (0% added) to 93%, as assessed on each protein target represented within a 

minibatch. We applied this procedure to regression and classification DNNs trained with STD and 

Negatives Removed contexts. 

We found that the region between 40% to 60% added-negative ratio was the best tradeoff of 

performance across all benchmarks (Figure 6, Supplementary Tables 5,6). Consistent with 

established class-balance training procedures, a 50% or 1:1 addition of SNA appears ideal, for 

both classification and regression scenarios. We note that the Drug Matrix screening benchmark 

improvement is steepest between 10% and 30% negative-addition; while the Time Split 

benchmark suffers some decreases in this regime, they are far less pronounced than the 

improvements to the screening benchmark.  
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The most exaggerated difference between classification and regression occurred for Negatives 

Removed models (Figure 6, Supplementary Tables 5,6). Regression models trained using the 

Negatives Removed +SNA method almost entirely rescued the all-data SNA model performance by 

a 40% negative-addition ratio for Drug Matrix (Figure 6 d). However, classification Negatives 

Removed +SNA could not match the AUPRC Drug Matrix screening performance of STD (Figure 

6 c). The screening benchmark performance difference between SNA and Negatives Removed 

+SNA models was less pronounced by AUROC. For the Time Split benchmark, stochastic 

negatives were less effective at closing the performance gap between Negatives Removed and STD 

classification models (Figure 6 a) than they were for regression models (Figure 6 b). From this, we 

conclude classification tasks perform much better when trained on true negatives than when trained 

with stochastically imputed negatives. Regression models appear to see less gain from reported 

negatives as compared to stochastically imputed ones. However, as both classification and 

regression performed better with the addition of random negatives, we believe SNA can 

productively augment true negatives in the case when there are insufficient negatives and in the 

case when there are no negatives to speak of in the training set. 

DISCUSSION 

In this study, we set out to investigate the impact of stochastic negative addition to DNN training. 

We evaluate DNN regression performance on small-molecule-to-protein target affinities, as well 

as thresholding the regressed values analogously to classification networks to obtain a regression-

based AUROCr and AUPRCr performance metrics, which frequently agree with conventional 

classification task training and performance trends. We find that adding stochastic negatives to 

DNN training improves predictive performance on a full screening (Drug Matrix) hold-out 

benchmark for both classification and regression networks. We observe that this performance 
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boost has minimal impact on a temporal evaluation scenario. We compare the results to scrambled 

baselines, which suggest the method does not solely rely on memorization for performance 

improvement. 

Experimental screens and studies often focus on novel binders, optimizing for sensitivity and 

precision. Indeed, the literature-derived annotations mined from ChEMBL skew the training set 

toward positive examples, with 73% representing binding affinities at 10 uM or lower, 55% of 1 

uM or lower, and 34% of 100 nM or lower. The remaining 27% of the training examples are 

explicit negatives—molecules that failed to inhibit the tested protein target by at least 50% at 10 

uM. A surprising 6% of targets (138 proteins) have zero reported non-binders weaker than 10 uM. 

For training purposes, no targets have zero reported binders weaker than 10uM as outlined in 

Methods. We believe the dearth of negatives in training data derived from studies incentivized to 

publish positive results could contribute to poor machine learning model precision, such that false 

positives could flood the potential testing space in some cases. With this in mind, we hypothesized 

that adding transient random negative examples during training would improve model precision 

more than it would degrade model sensitivity. We find SNA improves the rate of negative 

assignments in exchange for a minor hit to performance on temporal splits (Figure 2). We consider 

this to be an acceptable trade-off in most applications, as false positives dilute search spaces for 

screening follow-up and manual review of promising binding candidates. 

Ultimately, the comparative value of different test sets and measurement statistics are use-case 

specific choices that must be set by the researcher. The Time Split and Drug Matrix datasets 

represent two sides of a similar problem. Time Split attempts to approximate challenging and 

desired prospective validation performance across a broad range of models, where chemical 

novelty is foremost. As comprehensive negative data are so rarely publicly available, Drug Matrix 
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represents a complementary scenario where a full matrix of molecules and proteins are provided 

which incidentally results in a higher ratio of negatives in the evaluation set. Inclusion of the Drug 

Matrix dataset is an attempt to quantify performance on highly imbalanced but realistic testing 

scenarios.  

The SNA data augmentation procedure improves both regression and classification deep neural 

network performance when compared to a standard model (STD) (Figure 4, Supplementary Tables 

1-2). Here, we define success as better performance on a screening-scenario benchmark, Drug 

Matrix, with a small relative hit to the Time Split benchmark. We find a balanced training dataset 

of positive and negative examples performs well (Figure 6, Supplementary Tables 5-6). The 

performance improvement consistently exceeded scrambled benchmarks, consistent with learning 

beyond simple memorization for each model.  

While we find SNA improves Drug Matrix at a cost to Time Split performance, we note that the 

models contain negatives within the training set which may be unevenly distributed across tasks. 

This distribution may artificially boost performance for certain tasks with additional negative data. 

To address this, we train a model in the absence of negative data and without stochastic negatives 

as a sanity check where we expect reduced performance due to loss of relevant information. We 

find this Negatives Removed model improves generalizability for Time Split and depletes 

performance on Drug Matrix. One potential explanation for this performance gain may be a 

positive-reporting bias for novel molecules in the ChEMBL database underlying the temporal-split 

benchmark (71% positive, n=116929, Supplementary Table 4), which is derived from the literature 

and could reward models that are more likely to predict positive binding activity for a novel 

molecule, although we have not attempted to test this theory. We find Negatives Removed 

classification DNNs (Supplementary Table 2, Supplementary Figures 21-22) perform worse than 
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Negatives Removed regression DNNs (Figure 5 e,f; Supplementary Table 1, Supplementary 

Figures 23-24). We hypothesize this may be due to regression models learning continuous 

relationships between chemical structure and bioactivity that may extrapolate into low-affinity 

regimes, whereas classification models entirely lack the negative categorical data and features 

around which to construct a binary decision boundary 

Regression models trained with Negatives Removed exhibit performance losses which SNA can 

rescue (Figure 5). These data suggest that stochastic negatives may usefully supplement true 

negative data, but due to lack of clearly better performance; we do not believe that SNA should be 

used to supplant the use of true negatives in model training. SNA failed to completely rescue 

classification Negatives Removed performance. This may reflect fundamental differences between 

the aim of regression versus classification or the forms of the loss functions in question, and 

exploration of ranked molecule choice between regression and classification models should be 

interesting for future in silico analyses. One explanation may be that underlying dataset biases 

(such as molecular similarity) may have consequences for classification DNNs that are different 

for regression models. Regardless, the data showing Negatives Removed +SNA rescuing model 

performance suggests it is reasonable to consider adding random negatives when none are 

available in the literature. 

 We also briefly explore the possibility that the method of choosing potential negative pairs 

assigned by SNA may have unintended consequences for ligands which are topologically similar 

to existing ligands. We included an option to blacklist potential molecule-target negative pairs 

using an alternative ligand-target prediction method, the Similarity Ensemble Approach (SEA)8. 

We expected this procedure, SNA +SEA blacklist, to reduce the probability of incorrectly assigning 

a likely ligand to be a negative example (Supplementary Information). We found that SNA +SEA 
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blacklist models performed similarly to SNA, but leave the exploration of negative choice open for 

further study. 

We created scrambled DNN models (STD scrambled; SNA scrambled) to serve as low-

performance adversarial baselines for our experiments and evaluate them against the same hold-

out benchmarks. The empirically-scrambled baseline control studies analyses yield two key 

observations. First, as both STD and SNA outperformed their relative scrambled controls, the DNN 

models here do not rely solely on memorization for their performance. Second, as SNA decreases 

the baseline down to the frequently used value for scrambled-model performance and improves 

performance of models on actual data, we find the SNA training procedure widens the predictive 

gap between actual and random models.  

Finally, we ask, “If stochastic negatives improve model performance, how many should we 

impute?” Would a balanced ratio of positives-to-negatives as is common in the literature yield the 

highest performance, or would one more closely approximating the ligand-binding prevalence 

experimentally observed in comprehensive drug discovery screens produce better results? We find 

that for SNA and Negatives Removed +SNA models, a training dataset comprising approximately 

40-60% negatives per target maximizes performance for Drug Matrix and Time Split, in support 

of the standard 50% negative ratio. Considering that the bulk of the improvement on Drug Matrix 

occurs between 10% and 40% stochastic negatives, we hypothesize that even a future Time Split 

with many negatives will not be drastically different from best performance ratios found with Drug 

Matrix. 

This study is not without caveats. As noted in Methods, data from ChEMBL is biased by both 

researcher and assay and we have made several assumptions in aggregating datasets. We took 

aggregate values (median) for duplicated molecule-protein pairs to avoid over-sampling 
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particularly well-studied pairs. We made further bulk assumptions about our dataset by asserting 

a single negative binding threshold (pAC50=5.0; 10 uM) when evaluating performance, agnostic 

to protein target. For certain proteins, a hit weaker than 10 uM may be desirable for a researcher, 

and for other proteins, a hit stronger than 1 nM may be the minimum affinity necessary to describe 

a hit. This remains an unexplored avenue of research and has interesting implications for future 

AUROCr and AUPRCr regression-as-classification analyses. Our models are additionally limited 

by the representation of our datasets. We did not add any structural protein information. This limits 

the total variance we could expect to derive from such a dataset, but we believe our method has 

uses where protein structural information is unavailable or where a phenotype-based readout is 

desired. Furthermore, our choice of the conventional ECFP4 molecular feature representation38 

does not include information that could be obtained from 3D fingerprints or graph convolutional 

methods1,39,40. 

This method is intended as an interim measure to supplement datasets while quality in vitro 

negative data may be collected and reported by experimental researchers. It is not intended as a 

cure-all for the lack of negative data, although it may be informative to evaluate at a finer level 

where experimental negatives most effectively impact model predictions, and where stochastically 

asserted ones are sufficient. Analysis for the particular protein target profiles that benefit under 

SNA conditions remain as an avenue for future study. For example, although SNA and SNA +SEA 

blacklist models perform similarly, highly promiscuous targets may suffer under SNA, and may 

suffer less under SNA +SEA blacklist. We note that SEA is a ligand-based approach and may not 

be a sufficiently orthogonal blacklist when considering that our neural networks are trained on 

ligand topology. Future studies may address this concern by incorporating biophysical models as 

a blacklisting methodology.  
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CONCLUSION 

The Stochastic Negative Addition (SNA) approach is a pharmacological data-augmentation 

procedure for DNNs designed to randomly assert untested negatives for public datasets where 

negative data are otherwise lacking. At each training epoch, new negatives are drawn to ensure 

that any particular negative choice does not heavily influence the model. We evaluated SNA at 

multiple ratios of positives-to-negatives and found that a ratio around 1:1 is optimal. We compared 

SNA training for both classification and regression networks trained on ChEMBL20. We found 

that, generally, SNA improved predictions on a held-out screening-like benchmark (Drug Matrix) 

with minimal effect on a 20% Time Split hold-out. Effectively, this resulted in a lower false 

positive rate for the screening scenario. Our random selection of negative data involved minimal 

computational overhead. Supplementation of DNN training with stochastic negatives provides an 

interim augmentation measure for datasets lacking diverse negative data until more experimental 

data becomes publicly available.  

METHODS 

Data Description 

We filtered the ChEMBL20 database15 by small molecule-target affinities with a binding type 

“B” and reported affinity values of type IC50, EC50, Ki, or Kd. Adapting the ontology from Visser 

et al., we treat all Ki, Kd, IC50, EC50, and related values equivalently and broadly refer to the 

resulting annotations as “activity concentration 50%” (AC50) values16. We removed molecules 

with MW ≥ 800 Da and protein targets with fewer than 10 positive interactions. We addressed 

over-weighting of well-studied molecule-to-target pairs by taking the median across repeated 

target-molecule pairs. ChEMBL qualifies affinity using the “Relation” parameter that reports 
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whether the true value is greater than, less than, or equal to the reported value. For all relations 

except “equals,” we added random noise to the values to express uncertainty (Supplementary Table 

3). We transformed all AC50 values by –log10 to arrive at pAC50 values for training, such that pAC50 

> 10 (i.e., < 0.1 nM) would be considered a strong binder and pAC50 < 5 (i.e. > 10 uM) would be 

considered inactive. For classification tasks, we used pAC50 >= 5.0 to establish positive/active 

class identity. 

Inputs are represented as a 4096-bit RDKit Morgan Fingerprint with a radius of two38. Predicted 

values are the log transforms of affinity as described above (pAC50) at 2038 protein targets for 

each molecule. 

Data Splits 

The evaluation benchmarks -- which assess two distinct use cases -- draw on Drug Matrix 

[CHEMBL1909046] and a 20% Time Split hold-out,41 and are excluded from the train and cross-

validation sets. For the Time Split hold-out, we set aside approximately the final five years of 

ChEMBL activities, as assessed by the first reported publication date for a given interaction 

between molecule and protein target (see Code). Like ChEMBL, the Time Split hold-out is 

sparsely populated by negative data, but unlike a randomly split ChEMBL hold-out it contains 

more unique structures. Drug Matrix is a dataset produced by Iconix Pharmaceuticals that reports 

in vitro toxicology data for 870 chemicals across 132 protein targets42. Of these 132, we used the 

84 targets that passed filtering steps defined in Data Description, in our training set from Drug 

Matrix as a way to measure how we perform on a set containing a higher ratio of negative data to 

positive data. Descriptions of positive and negative attributes for each split are available in 

Supplementary Table 4. 
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Stochastic Negative Addition 

Stochastic Negative Addition (SNA) for multi-task deep neural network training is added in an 

online fashion where new negative training examples for molecule-protein pairs are generated at 

each epoch to achieve a desired ratio of positives to negatives for each target. For the baseline SNA 

model, negatives are selected at random from all unlabeled pairs in the dataset to fulfill the desired 

ratio of positives to negatives at the target of interest. To evaluate the impact of potentially mis-

assigning hidden positive examples during training, we developed a second method using the 

Similarity Ensemble Approach (SEA)8 to blacklist potential interactions during the sampling 

procedure (SNA +SEA blacklist). For this method, we excluded from consideration (“blacklisted”) 

all otherwise unlabeled pairs that achieved a positive SEA prediction with pSEA ≥ 5. We tested 

SNA at the following positive-to-negative ratios to find an optimal balance beginning at the 

baseline positive prevalence in Drug Matrix: [0.07, 0.5, 0.6, 0.75, 0.85, 0.95, 1.0, 1.33, 1.54, 2.0, 

2.86, 4.0, 6.66, 10.0] .  

Negatives Removed 

To assess the impact of training on purely positive data, we scrubbed all negative data (pAC50 < 

5) from the training set (Negatives Removed) and evaluated it on Time Split and Drug Matrix as 

we did for training regimes including negatives such as STD and SNA. We applied SNA to the 

training regime as above to evaluate the impact of stochastic negatives on the model’s predictive 

ability (Negatives Removed +SNA). Each of the 14 ratios listed above were tested for SNA applied 

to models trained on the negatives-removed dataset to evaluate the impact of positive-to-negative 

ratios on performance. 
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Software 

This project was built with Python 2.7. All deep neural networks were implemented and trained 

in Lasagne43 and Theano44. We used RDKit for all handling of molecular structures45. We used 

NumPy46 and Scikit-learn47 for performance measures and numerical analyses, and visualizations 

were made with Matplotlib48 and Seaborn49.  

Multi-task deep neural network model hyperparameters and architecture 

As multitask DNN performance is sensitive to architecture and hyperparameter choice, we 

optimized hyperparameters and architecture by considering retrospective performance on a 

random 20% holdout of the training dataset. We performed a grid search over varied architectures 

and manually explored for optimal hyperparameters. Although this optimization is not exhaustive, 

we focused this study on a simple representative architecture with three fully connected hidden 

layers with 1024, 2048 and 3072 nodes, respectively. We used an input layer of 4096 nodes, the 

length of our input fingerprints, and an output layer with 2038 target nodes. We use leaky rectified 

linear unit (leaky-ReLU) activation functions50 for all hidden layers and L2 weight regularization 

with a penalty of 5x10-5 and mean squared error for the loss function. We employed Stochastic 

Gradient Descent (SGD) with Nesterov momentum51 using a fixed learning rate of 0.01 and 

momentum of 0.4. Additionally, the hidden layers were subject to dropout52 with probabilities of 

0.1, 0.25, 0.25 respectively. 

Model Training and Classification Accuracy Assessment 

R-Squared. We square the correlation coefficient (r_value) from scipy.stats.linregress. 

Area Under the Curve. Area under the curve (AUC) was analyzed for both the precision-recall 

curve (AUPRC) and the receiver operating characteristic curve (AUROC). For classification 

models, AUC was implemented as in sklearn, with a ground-truth positive threshold set to 5.0 as 
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in training. While AUPRC and AUROC are traditionally reported for classification models, we 

also reported these metrics for thresholded regression models and denote these with AUROCr and 

AUPRCr for clarity. This usage has two underlying assumptions: 1) chemical screens are 

performed to assess hit rates past a certain biological threshold (e.g. p(AC50 in molar) >= 5), and 

2) higher ranking predictions from a regression model are more likely to be tested first by 

researchers. Given these assumptions, we post-hoc assessed regression models as classification. 

Prediction thresholds were chosen over the max and min of the predictions for a given model in 

stepsizes of 0.05 and true values were thresholded at 5.0. At each prediction threshold, true positive 

rate/precision, false positive rate, and recall were calculated, then the area under the curve 

generated from points. 

Source Code 

All code necessary to reproduce this work is available at https://github.com/keiserlab/stochastic-

negatives-paper under the MIT License. 
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Figure 1. Protein targets are biased for positive interactions in a ChEMBL20 training set. 

Target-wise distribution of binding (ligand) vs non-binding molecules in the training set. Each 

point represents a single protein target drawn from ChEMBL20. A 1:1 ratio of binders (positives) 

and non-binders (negatives) would fall along the dotted line. 
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Figure 2. SNA markedly improves screening performance at minimal cost to temporal 

benchmarks. Predictions from a regression-based deep neural network model trained on available 
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data (STD; red; a,c,e,g) and the same model trained with the addition of stochastically-chosen 

negative examples during each epoch (SNA; blue; b,d,f,h) show R2 improvements on Drug Matrix 

(e,f) with minimal cost to Time Split (g,h) performance. Drug Matrix screening benchmark 

improvements translate to regression-as-classification AUROCr (i) and AUPRCr (k) plots where 

the SNA DNN (blue) outperforms the STD DNN (red). Time Split AUROCr (j) and AUPRCr (l) 

plots show small decreases to performance on temporal hold out predictions from SNA models 

(blue). Performance on both hold-out datasets outperform scrambled controls (STD scrambled - 

grey; SNA scrambled - purple), with SNA models showing greater gains over their random 

counterparts. SNA scrambled models (i-l; purple) move the baselines for regression-as-

classification closer to 0.5 for AUROCr and the positive-to-negative ratio (dotted line) for 

AUPRCr.  
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Figure 3. Empirically scrambled control models using SNA more closely match expected 

random baselines. R2 plots of a representative fold from 5-fold cross validation (a-d) illustrate 

the predictive behavior of unmodified DNN models trained with y-randomized data (STD 

scrambled; grey; a,b) and the equivalent networks trained with the stochastic negative procedure 

(SNA scrambled; purple; c,d). Baselines for regression-as-classification AUROCr (e,f) show the 

SNA scrambled random line (purple) is closer to 0.5 (dotted line) than STD scrambled (grey). This 

is true for both Drug Matrix (e) and Time Split (f). Regression-as-classification for AUPRCr (g, h) 

shows a similar trend where SNA scrambled baselines (purple) approach the ratio of positives-to-

negatives in the Time Split hold out (dotted line) especially when compared to STD 

scrambled(grey). 
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Figure 4. Classification DNN models show similar, but not identical trends to regression-as-

classification evaluation on regression models. AUPRC on 5-fold cross-validated classification 

networks (b,d,e,f) versus equivalent regression networks (a,c,e,f). For both classification (a,e) and 

regression tasks (b,e), networks trained with SNA (SNA; blue) improved Drug Matrix AUPRC 

compared to DNNs trained without SNA or other data augmentation (STD; red). However, SNA 

models (blue; solid - regression, hashed - classification; c,d) did not improve or even decreased 

Time Split performance compared to STD (red; solid - regression, lightened and hashed - 

classification; c,d). AUROC and AUPRC bar plots for Drug Matrix (e) and Time Split (f) illustrate 

differences between classification (lighter, hashed bars) and regression models (solid bars) for 

SNA models (blue, green), their equivalent networks without SNA (red, orange), and y-

randomized controls (grey, purple, sienna, chartreuse). All DNN models but the Negatives 

Removed classification model (e,f; light orange; hashed) outperformed the scrambled benchmarks 
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(e,f; sienna; hashed). Regression STD models (red; solid) underperformed classification STD 

models (light red; hashed) for Drug Matrix (e) and Time Split (f), but regression Negatives 

Removed models (orange; solid) outperformed classification Negatives Removed models for the 

same test cases. Regression (solid) models for SNA (blue) outperformed classification (light blue, 

hashed) AUROC and AUPRC for Time Split (f) and AUPRC for Drug Matrix (e), but 

underperformed for Drug Matrix AUROC. 
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Figure 5. The SNA procedure rescues models trained without negative data. R2 plots (a-e) of 

the same fold from 5-fold cross validation show Negatives Removed +SNA models (green; b, d) 

rescue Drug Matrix predictive capability. Models trained with SNA in place of actual negatives 

suffer under the Time Split benchmark when compared to a model trained without negatives or 

SNA (Negatives Removed; gold; a, c). This Drug Matrix performance boost is consistent across 

regression-as-classification AUPRCr and AUROCr metrics on k-fold cross validated networks (e). 

For Drug Matrix, SNA models (e; blue, green) outperform equivalent DNNs with no stochastic 

negatives added (e; red, orange). SNA does not improve Time Split performance (f; blue, green) 

when actual negatives are lacking (f; red, orange). Scrambled controls for each experiment (e,f; 

grey, brown, purple, chartreuse) establish a baseline for performance. R2 metrics for SNA 

scrambled and Negatives Removed +SNA models are near zero for Time Split and Drug Matrix 

(e,f; purple, chartreuse).   
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Figure 6. A balanced ratio of positives to negatives achieves the best overall performance. 

Increasing the target negative-to-positive ratio improves Drug Matrix performance for 

classification (c) and regression (d) up to ~40-50% negatives per target. This increase is observed 

with modestly decreased Time Split performance for classification (a) and regression (b) SNA 

models. Addition of negatives to a training set with negatives removed (Negatives Removed +SNA; 

dashed line) shows minimal effect on Time Split (a,b) and Drug Matrix (c,d) performance 

compared to the SNA model without negatives removed from the training set (solid line). 

Regression Negatives Removed +SNA models perform similarly to regression SNA DNNs (b,d). 
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However, classification Negatives Removed +SNA networks perform worse than classification 

SNA models that were trained with pre-existing negative examples (a,c). Shaded areas represent 

the maximum and minimum boundaries within 5-fold cross validation. 
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Dataset 
Training 
Type 

Mean 
R2 R2 std 

Mean 
AURO
C 

AUROC 
std 

Mean 
AUPRC 

AUPRC 
std 

STD 

Drug 
Matrix 

0.1926 0.0186 0.6886 0.0094 0.1490 0.0077 

STD scrambled 0.0154 0.0092 0.5538 0.0099 0.0816 0.0046 

SNA 0.4269 0.0272 0.7833 0.0059 0.4405 0.0079 

SNA scrambled 0.0021 0.0023 0.4842 0.0134 0.0687 0.0030 

STD 

Time Split 

0.2152 0.0033 0.7388 0.0024 0.9434 0.0008 

STD scrambled 0.0513 0.0032 0.6340 0.0033 0.9057 0.0010 

SNA 0.1863 0.0012 0.7133 0.0025 0.9401 0.0006 

SNA scrambled 0.0020 0.0016 0.4664 0.0106 0.8540 0.0032 

STD 

Test 

0.6370 0.0041 0.9036 0.0016 0.9837 0.0004 

STD scrambled 0.0741 0.0026 0.6584 0.0014 0.9200 0.0019 

SNA 0.6428 0.0058 0.9064 0.0026 0.9848 0.0003 

SNA scrambled 0.0009 0.0004 0.4700 0.0053 0.8685 0.0012 

STD 

Train 

0.9224 0.0095 0.9809 0.0026 0.9972 0.0004 

STD scrambled 0.9212 0.0016 0.9814 0.0002 0.9973 0.0000 

SNA 0.8971 0.0100 0.9750 0.0025 0.9962 0.0004 

SNA scrambled 0.8618 0.0217 0.9725 0.0047 0.9958 0.0007 

Table 1. Mean and standard deviation (std) across independent 5-fold cross validation for STD 

and SNA DNN models.  
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Supporting figures and tables include summary statistics for cross validation results and Curve 

Class information. The SI describes additional information important for SEA blacklisting SNA 

and Negatives Upweighted experiments. Figures in the SI include additional AUC, R2, and 

barplots.  
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ABBREVIATIONS 

General Abbreviations 

SNA - Stochastic Negative Addition as a procedure; AUROC - AUC of the Receiver Operating 

Characteristic Curve (classification); AUPRC - AUC of the Precision-Recall Curve 

(classification); AUROCr - AUC of the Receiver Operating Characteristic Curve (regression-as-

classification); AUPRCr - AUC of the Precision-Recall Curve (regression-as-classification) 

Model Abbreviations 

STD - a “standard” model trained without SNA procedure; STD scrambled - STD model trained 

with y-randomization of the input training data; SNA - a model trained with SNA; SNA scrambled 

- SNA model trained with y-randomization of the input training data; Negatives Removed - a model 

trained with negatives removed from the training set; Negatives Removed scrambled - a Negatives 

Removed model trained with y-randomization of the input training data; SNA +SEA blacklist - an 

SNA model where ligands with a chance of binding (by SEA) are blacklisted from SNA choice 

during training. 
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