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Abstract 

Human instrumental learning is driven by a history of outcome success and failure. We 

demonstrate that week-long treatment with a serotonergic antidepressant modulates a valence-

dependent asymmetry in learning from reinforcement. In particular, we show that prolonged 

boosting of central serotonin reduces reward learning, and enhances punishment learning. This 

treatment induced learning asymmetry can result in lowered positive and enhanced negative 

expectations. A consequential effect is more rewarding, and less disappointing, experiences 

and this may, in part, explain the slow temporal evolution of serotonin’s well-established 

antidepressant effects. 
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Introduction 

 To make good choices, agents need to learn from past success and failure (Skinner, 

1938). Human learning is characterised by remarkable flexibility, including adjustment to 

environmental volatility (Behrens et al., 2007; McGuire et al., 2014), and an asymmetric 

impact of positive and negative reinforcement (Daw et al., 2002; Gershman, 2015). The latter 

is assumed to play a role in the emergence of mood disorders, often characterised in terms of 

aberrant processing of reward and punishment (Murphy et al., 2003; Pulcu & Browning, 2017). 

However, it remains unclear whether learning asymmetries represent biases contributing to 

suboptimal reward prediction, or adaptive computations supporting risk and threat avoidance 

necessary for survival (Niv et al., 2012; Caze & van der Meer, 2013). 

Learning from reinforcement is attributed to two key components: a prediction error 

(PE), quantifying a difference between expectation and outcome, and a learning rate, 

determining the impact of PEs on future reward predictions (Sutton & Barto, 1998). There is 

evidence that PEs also impact emotional states (Rutledge et al., 2014; Eldar & Niv, 2015; Eldar 

et al., 2018), where mood depends not only on how well things are going in general but whether 

things are better or worse than expected. Based on the latter findings it follows that learning 

asymmetries can, in principle, exert a modulatory effect on mood. For instance, enhanced 

learning from reward generates a high expectation of future reward, limiting subsequent 

opportunities for the experience of momentary happiness arising out of positive surprise. 

Similarly, slow learning from punishment can potentially lead to repeated disappointment due 

to negative surprise, leading to an emergence of low mood (Eldar et al., 2016b; Kaye & Ross, 

2017). 

 In this study, we tested a hypothesis of an asymmetric effect of serotonergic 

antidepressants on reinforcement learning that can account for a positive impact on mood. We 
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used computational modelling to assess learning from reward and punishment in a sample of 

healthy volunteers exposed to week-long treatment with selective serotonin reuptake inhibitors 

(SSRIs), a first-line antidepressant intervention (Hieronymus et al., 2018). Specifically, we 

conjectured SSRIs would selectively impact on learning asymmetries, reducing learning from 

reward, and enhancing learning from punishment, in a manner that results in an accumulation 

of more positive and less negative surprise, respectively. 

 

Results 

66 healthy volunteers were administered either a daily oral dose of the SSRI citalopram 

(20mg) or placebo across seven consecutive days. Subjects performed two experimental 

sessions, once after administration of a single dose on day 1 and once, after exposure to 

repeated daily administration, on day 7 (Fig. 1B). On each session, subjects performed a 

modified version of a gambling card game (Fig. 1A; (Eldar et al., 2016a)), where the goal was 

to maximize monetary wins and minimize monetary losses. 

In brief, on each trial participants were presented with a number between 1 and 9 as 

drawn by a computer. Subjects could gamble that the number they were about to draw would 

be higher than the computer drawn number. Critically, participants played with one of three 

possible decks on each trial, which differed in how likely gambles were to succeed. One deck 

contained a uniform distribution of numbers between 1 and 9 (even deck), one deck contained 

more 1’s (low deck, gambles 30% less likely to be successful), and one deck contained more 

9’s (high deck, gambles 30% more likely to be successful). Subjects were informed that an 

unsuccessful gamble would result in a loss (-£5), and a successful gamble would result in a win 

(+£5). Subjects learnt through trial and error about each of the decks’ success likelihood. 

Alternatively, subjects could decline the gamble to opt for a fixed 50% known probability of 
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winning or losing, respectively. On the second session, the game was identical, and the only 

difference being that subjects played with three novel decks, indicated by different colours, 

where colour order and colour-associated win probability was randomly varied across 

participants (Fig. 1B). Subjects had to learn about these decks anew as they were unrelated to 

the ones from the first session. 

On both sessions, subjects’ willingness to gamble differed depending on each deck’s 

win likelihood as a function of time (Fig. 1C/D). A trial-by-trial logistic regression confirmed 

subjects, on both sessions, gambled more against lower computer numbers (P<0.001), and 

Figure 1. Experimental task, pharmacological procedure, and learning performance. 

(A) Experimental design. On each trial, participants were presented with one of three possible decks and a 
number between 1 and 9 drawn by the computer. If participants decided to gamble, they won £5 if the number 
they drew was higher than the computer drawn number, and lost £5 if the number was lower. Participants were 
only informed whether they won or lost the gamble, not which number they drew. Participants had to learn by 
trial and error how likely gambles were to succeed with each of the three decks. One deck contained a uniform 
distribution of numbers between 1 and 9 (even deck), one deck contained more 1’s (low deck), making gambles 
30% less likely to succeed, and one deck contained more 9’s (high deck), making gambles 30% more likely to 
succeed. Opting to decline the gamble resulted in a 50% probability of win/loss, regardless of which number 
was drawn by the computer. 

(B) Pharmacological procedure. Subjects were randomly allocated to take a daily dose of 20mg citalopram or 
placebo for seven days and participated in two sessions: session I took place on day 1 after single 
administration, session II took place on day 7, at a time when citalopram reaches steady-state plasma levels. 
Subjects played an identical game on both sessions, but with two independent sets of three decks, where colour 
order and colour-associated win probability randomly varied across participants. 

(C) & (D) Gambles taken with each deck as a function of time. Percentages were computed separately for each 
set of 15 contiguous trials (4 sets/60 trials per block), for session I (C), and session II (D), respectively. 
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gambled more with better decks (P<0.001), consistent with successful trial-and-error learning 

(Fig. 2A/C). Additionally, over the course of a session, participants gambled more with 

accumulating reward (P<0.001), and avoided gambling with accumulating punishment 

(P<0.001). On session I, effects were similar across drug groups for successful (rewarded), and 

unsuccessful (punished) gambles (P=0.41 & P=0.36; Fig. 2B). At session II, however, we 

found evidence for an asymmetric impact of reward and punishment, as a function of treatment 

(drug x valence, P=0.02; Fig. 2D), and this was attributable to an enhanced impact of losses 

(P=0.01), but not wins (P=0.31), in SSRI as compared to placebo subjects. This differential 

pattern suggests prolonged SSRI treatment enhanced gambling avoidance as a function of 

cumulative punishment. 

In principle, participants can acquire information about decks both from success and 

failure. To account for the precise mechanisms guiding learning, we used computational 

modelling. Replicating results from an earlier study using an identical cognitive task (Eldar et 

al., 2016a), model comparison showed behaviour was best explained by a model that accounted 

Figure 2. Results of trial-by-trial logistic regression model. 

(A) & (C) Fitting a logistic regression model to subjects’ decisions showed that participants gambled more 
with better decks (deck type: -1 for low, 0 for even, 1 for high) and against lower computer numbers (scaled 
to range between -1 (for number 9) and 1 (for number 1), with no drug differences on session I (A), and session 
II (C), respectively. 

(B) & (D) Additionally, subjects, over the course of a session, gambled more with increasing rewards 
(cumulative wins for each deck, reflecting the sum of previous positive gamble outcomes, computed as +1 
multiplied by the computer's number against which it was received), and gambled less with increasing 
punishment (cumulative losses for each deck, reflecting the sum of previous negative gamble outcomes, 
computed as -1 multiplied by (10 – the computer's number against which it was received). On session I, impact 
of preceding wins and losses was unaffected by treatment (B). On session II, however, SSRIs enhanced the 
impact of losses but not wins (D), indicating an asymmetric drug effect on reward and punishment. 
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for an asymmetry in learning from the two outcome types. Specifically, the best-fitting model 

included two different learning rates, one for wins (η+), and one for losses (η-), where these 

determine the degree to which an outcome type impacts on subsequent expectations (model 6: 

‘adjusted & asymmetric Q-learning’; Supplementary file 1A). These expectations, in 

combination with the numbers drawn by the computer, shape whether gambles are likely to be 

taken or declined. 

On session I, learning from reward and punishment was similar across treatment groups 

(η+: P=0.70, η-: P=0.67 Fig. 3A). However, by session II, there emerged a significant 

serotonergic impact on learning asymmetry (drug x valence, P=0.007; Fig. 3B), such that, in 

SSRI as compared to placebo subjects, learning from reward was reduced (P=0.009), while 

learning from punishment was enhanced (P=0.04). 

Additionally, an asymmetric effect of cumulative reward and punishment on gambling, 

as derived from the logistic regression, correlated significantly with the asymmetry in learning 

derived from our computational model (session I: r=0.76, P<0.001, session II: r=0.63, P<0.001; 

Fig. 3–Fig. supplement 2). This indicates that an altered gambling preference, related to altered 

learning from different outcome types, was a consequence of temporally extended serotonergic 

intervention. 

Figure 3. Learning asymmetry 
and its serotonergic modulation. 

(A) On session I, computational 
modelling showed learning from 
reward (η+) and learning from 
punishment (η-) was unaffected 
by drug treatment. 

(B) On session II, SSRI treatment 
had a significant effect on 
learning asymmetries, such that it 
reduced learning from reward 
(η+), and enhanced learning from 
punishment (η-). 
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We found a significant asymmetric effect on learning rates across data from both 

sessions (drug x valence: P=0.04), but no significant three-way interaction (drug x valence x 

session: P=0.34, controlling for an overall gambling bias, Fig. 3–Fig. supplement 1). There 

were no between-group differences for the remaining model parameters (Fig. 3–Fig. 

supplement 1). Lastly, generating simulated data based upon model parameters derived from 

the fitting procedure showed that the model captured core features of the real data (Fig. 2–Fig. 

supplement 1), individual parameter estimates could be accurately recovered (Supplementary 

file 1B/C), and our model comparison procedure could identify the model that generated the 

data (Supplementary file 1D). 

 

Discussion 

 Studies probing a serotonergic modulation of human reinforcement learning, using 

serotonergic depletion (Seymour et al., 2012), or single dose SSRI administration (Skandali et 

al., 2018), have proven inconclusive (Boureau & Dayan, 2011; Faulkner & Deakin, 2014). 

Here, we provide evidence that a temporally extended treatment with SSRIs exerts opposing 

effects on reward and punishment learning. 

We suggest the asymmetric effect we highlight can go some ways to explain a gradual 

evolution of an incremental impact of SSRIs on mood. Recent studies have shown that positive 

and negative surprise strongly impacts on self-reported affective states (Rutledge et al., 2014; 

Eldar & Niv, 2015; Eldar et al., 2018). Given a key role of surprise, our results explain how 

serotonergic intervention can, in principle, influence the affective experience of reinforcement. 

Specifically, SSRIs give rise to more positive surprises by slowing down reward learning, and 

minimize subsequent disappointments by enhancing punishment learning. This computational 
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mechanism may thus lead to a gradual emergence of better mood by virtue of an overall greater 

sampling of positive surprise. 

Although a three-way interaction was not significant, evidence suggests that the effects 

we highlight require more extended treatment in order to evolve. Non-human animal data 

similarly show that a modulation of serotonin levels impacts learning processes at different 

timescales, with distinct effects of acute and prolonged intervention (Bari et al., 2010). The 

fact that changes in learning emerge only after an extended intervention may reflect two 

processes, or a synergism of both. First, citalopram reaches steady-state plasma levels after 

seven days (Gutierrez & Abramowitz, 2000), and boosting of serotonin levels by single dose 

administration is unlikely to be sufficient to induce substantial modulation of learning 

processes. Second, synaptic plasticity that may underlie this modulation, such as changes in 

BDNF levels or autoreceptor expression, require days or weeks to emerge (Krishnan & Nestler, 

2010). The temporal trajectory of the effects we describe also mimics the time period for an 

early onset of subtle symptom changes following SSRI treatment in those with clinical 

depression (Taylor et al., 2006). Our study was restricted to a sample of non-depressed healthy 

individuals. Longitudinal assessment of clinical cohorts is an important next step in exploring 

the relationship between a temporal evolution of learning asymmetries and the emergence of 

clinically significant antidepressant effects over time. 

 In summary, we show that week-long SSRI treatment reduces reward and enhances 

punishment learning. This learning asymmetry can, in theory, result in lowered positive and 

enhanced negative expectations, and consequentially, to more rewarding, and less 

disappointing experience. We suggest this modulation of computations that guide 

reinforcement learning may contribute to a known serotonergic impact on mood. 
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Methods 

Subjects 

 66 healthy volunteers (mean age: 24.7±3.9; range 20-38 years; 40 females; 

Supplementary file 1E) participated in this double-blind, placebo-controlled study. All subjects 

underwent an electrocardiogram to exclude QT interval prolongation and a thorough medical 

screening interview to exclude any neurological or psychiatric disorder, any other medical 

condition, or medication intake. The experimental protocol was approved by the University 

College London (UCL) local research ethics committee, with informed consent obtained from 

all participants. 

 

Pharmacological procedure 

 Participants were randomly allocated to receive a daily oral dose of the SSRI citalopram 

(20mg) or placebo, over a period of seven consecutive days. All subjects performed two 

laboratory testing sessions. Session I was on day 1 of treatment,  3h after single dose 

administration, as citalopram reaches its highest plasma levels after this interval (Noble & 

Benfield, 1997). On the following days, subjects were asked to take their daily medication dose 

at a similar time of day, either at home or at the study location. Session II was on day 7 of 

treatment, a time when citalopram is known to reach steady-state plasma levels (Gutierrez & 

Abramowitz, 2000), with the tablet being taken 3h before test. 

 

Affective state questionnaires 

 To examine putative effects of the drug on subjective affective states over the course of 

the study, participants completed the Beck’s Depression Inventory (BDI-II, (Beck et al., 
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1996)), Snaith-Hamilton Pleasure Scale (SHAPS, (Snaith et al., 1995)), State-Trait Anxiety 

Inventory (STAI, (Spielberger et al., 1983)), and the Positive and Negative Affective Scale 

(PANAS, (Watson et al., 1988)) on two different occasions: (i) pre-drug, day 1; (ii) peak drug, 

day 7. 

 

Experimental task 

 To examine differences in learning from success and failure, we used a modified 

version of a gambling card game (Eldar et al., 2016a), in which subjects’ goal was to maximize 

monetary wins and minimize monetary losses. 

 The game consisted of 180 trials, divided into three 60-trial blocks. On each trial (Fig. 

1A), subjects were shown with which one of three possible decks (each designated by distinct 

colour and pattern) they will be playing. After a short interval (2 to 5 s, uniformly distributed), 

the computer drew a number between 1 and 9, and participants had up to 2.5 s to choose 

whether they wanted to gamble that the number, which they are about to draw, will be higher 

than the computer drawn number. If participants chose to gamble, they won £5 if the number 

that they drew was higher than the computer’s number, and they lost £5 if it was lower (as well 

as in half of the trials in which the numbers were equal). If subjects opted to decline the gamble, 

they won/lost with a fixed 50% known probability. Not making any choice always resulted in 

a loss. Feedback was provided 700 ms following each choice and consisted of a ‘+£5’, ‘-£5’, 

or ‘+£5 / -£5’ visual symbol. The drawn number was not shown. Subjects were told that each 

of the three decks contained a different proportion of high and low numbers, and they could 

learn by trial and error about each of the decks’ likelihood of success. 

 Unbeknownst to participants, one deck contained a uniform distribution of numbers 

between 1 and 9 (‘even deck’), one deck contained more 1’s than other numbers (‘low deck’), 
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making gambles 30% less likely to succeed, and one deck contained more 9’s than other 

numbers (‘high deck’), making gambles 30% more likely to succeed. In the first 15 trials, the 

computer drew the numbers 4, 5, and 6 three times each, and the other numbers once each. To 

make sure that all participants take a gamble in approximately 50% of trials, the numbers that 

the computer drew three times were increased by one (e.g., [4, 5, 6] to [5, 6, 7]), in each 

subsequent set of 15 trials, if subjects took two thirds or more of the gambles against these 

numbers in the previous 15 trials, or decreased by one if participants took a third or less of the 

gambles. Participants’ decks were pseudorandomly ordered while ensuring that the three decks 

were matched against similar computers’ numbers and that no deck appeared in successive 

trials more than the other decks. 

 On both sessions, the game was identical, with the only difference being subjects played 

with distinct sets of three decks, indicated by different colours, where colour order and colour-

associated win probability randomly varied across participants (Fig. 1B). Subjects were 

informed that the decks from session II were entirely unrelated to the ones from session I, and 

they had to learn about the novel decks anew. 

 To familiarize participants with the basic structure of the task, subjects, on both 

sessions, performed a 60-trial training block with an ‘even’ deck, where visual feedback 

indicated the number that participants drew. 

 

Logistic regression analysis 

 We fitted a trial-by-trial logistic regression model to subjects’ decisions, comprising 

four different terms: (i) deck type (-1 for low, 0 for even and 1 for high), (ii) computer number 

(scaled to range between -1 (for number 9) and 1 (for number 1)), (iii) cumulative wins 

(reflecting, for each deck, the sum of previous positive outcomes,  computed as +1 multiplied 
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by the computer's number against which it was received), and (iv) cumulative losses (reflecting, 

for each deck, the sum of previous negative outcomes, computed as -1 multiplied by (10 – the 

computer's number against which it was received)). 

 

Computational modelling 

Model space 

 To account for the precise mechanisms that guided learning from reward and 

punishment, we compared a set of computational learning models in terms of how well each 

model explained subjects’ choices. In all models, the probability of taking a gamble was 

modelled by applying a logistic function to a term that represented available evidence. 

 Model 1 (‘gambling bias’) and model 2 (‘gambling bias & computer number’) are 

oblivious to previous experience with the decks, and do not assume any learning to occur. 

 Here, model 1 computes the evidence as: 

𝛽! 

, where 𝛽! is a gambling bias parameter, determining a subject’s general propensity to gamble, 

thus allowing the model to favour either gambling or declining to begin with. 

 Model 2 computes the evidence as: 

𝛽! + 𝛽!!	𝑁" 

, where N is the computer drawn number at trial t, scaled to range between -1 (for number 9) 

and 1 (for number 1), equivalent to the logistic regression, and 𝛽!! is an inverse temperature 

parameter, determining the strength, with which the computer’s number is determining a 

decision to gamble. 
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 Model 3 (‘Q-learning’) learns the expected outcome of gambles with each deck as 

follows: 

Q"#$
%! 	= 	𝑄"

%! 	+ 	𝜂	𝛿" 

, where 

𝛿" 	= 	 𝑟" 	− 	𝑄"
%! 

is an outcome prediction error, reflecting the difference between the actual (𝑟") and the expected 

(𝑄"
%!) outcome of a gamble. 𝑟" = 1 represents a win, and 𝑟" = -1 represents a loss, and 𝜂 is a 

learning rate parameter that weights the influence of prediction errors on subsequent 

expectations. Model 3 then computes the evidence as: 

𝛽! + 𝛽!!	𝑁" 	+ 	𝛽!!!𝑄"
%! 

, where 𝛽!!! is a free parameter that determines the strength, with which choices are directed 

towards higher Q-value options. 

 In contrast to the previous model, model 4 (‘adjusted Q-learning’) computes prediction 

errors with respect to expectations that additionally factor in the computer’s number: 

𝛿" 	= 	 𝑟" 	− 	𝑄"
%! 	− 	𝑁" 

, which means the model learns more from more surprising outcomes, i.e., from win outcomes 

of gambles against higher numbers, and from loss outcomes of gambles against lower numbers. 

 Based on prior work (Gershman, 2015; Eldar et al., 2016a), we assumed subjects would 

learn at a different rate from successful, i.e., reward, and unsuccessful gambles, i.e., 

punishment. In contrast to the gambling bias parameter (𝛽!) that was included in all models, 

allowing them to favour either gambling or declining to begin with, an asymmetric learning 

bias can make such a tendency evolve with learning over time. 
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 To this end, model 5 (‘asymmetric Q-learning’) and model 6 (‘adjusted & asymmetric 

Q-learning’) incorporate two distinct learning rate parameters (𝜂#	& 𝜂&), that allow learning 

at a different rate from different outcome types, i.e., from wins: 

Q"#$
%! 	= 	𝑄"

%! 	+ 	𝜂#	𝛿" 

, and from losses: 

Q"#$
%! 	= 	𝑄"

%! 	+ 	𝜂&	𝛿" 

 

Model fitting 

 To fit the parameters of the different models to subjects’ decisions, we used an iterative 

hierarchical expectation-maximization procedure across the entire sample, separately for each 

session (Bishop, 2006; Eldar et al., 2018). We sampled 105 random settings of the parameters 

from predefined prior distributions. Then, we computed the likelihood of observing subjects’ 

choices given each setting and used the computed likelihoods as importance weights to re-fit 

the parameters of the prior distributions. These steps were repeated iteratively until model 

evidence ceased to increase. To derive the best-fitting parameters for each individual subject, 

we computed a weighted mean of the final batch of parameter settings, in which each setting 

was weighted by the likelihood it assigned to the individual subject’s decisions. Note that the 

hierarchical fitting procedure, including all priors, were applied to the entire sample without 

distinguishing between SSRI and placebo subjects. This ensured that the parameter estimates, 

at the level of individual subjects, were mutually independent given the shared prior, rendering 

it appropriate to assess between-group differences. Learning rate parameters (𝜂, 𝜂# & 𝜂&) were 

modelled with Beta distributions (initialized with shape parameters a = 1 and b = 1). The 

gambling bias parameter (𝛽!) was modelled with a normal distribution (initialized with μ = 0 
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and σ = 1), and inverse temperature parameters (𝛽!! & 𝛽!!!) were modelled with Gamma 

distributions (initialized with κ = 1, θ = 1). 

 

Model comparison 

We compared between models in terms of how well each model accounted for subjects’ 

choices by means of the integrated Bayesian Information Criterion (iBIC (Huys et al., 2012; 

Eldar et al., 2018)). Here, we estimated the evidence in favour of each model (λ) as the mean 

likelihood of the model given 105 random parameter settings drawn from the fitted group-level 

priors. We then computed the iBIC by penalizing the model evidence to account for model 

complexity as follows: iBIC = - 2 ln λ + κ ln n, where κ is the number of fitted parameters, and 

n is the total number of subject choices used to compute the likelihood. Lower iBIC values 

indicate a more parsimonious model fit. 
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Figure 2 – figure supplement 1. Results of trial-by-trial logistic regression model for simulated data. 

Generating simulated data based upon the model parameter estimates from the best-fitting model showed that 
the model captured core features of the real data. Note that for this analyses, we simulated 100 data sets and 
averaged the results. Fitting a logistic regression model to subjects’ simulated decisions revealed highly similar 
effects of (A) & (C) deck type and computer number, as well as (B) & (D) cumulative wins and losses on both 
sessions, respectively (cf. Fig. 2 of the main manuscript for the results of the real data). Error bars indicate 
SEM. 
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Figure 3 -  figure supplement 1. No drug effects on model parameters. 

In contrast to the effect of SSRI treatment on learning rates, there were no between-group differences for the 
remaining model parameters, such as (A) the gambling bias parameter (𝛽!; session 1: P=0.87, session 2: 
P=0.78), and (B) the decision temperature parameter determining the impact of the computer number (𝛽!!; 
session1: P=0.40, session 2: P=0.97) and the impact of learned Q-values (𝛽!!! session1: P=0.44, session 2: 
P=0.64). n.s. = not significant. Error bars indicate SEM. 

Note that a gambling bias (𝛽!) was overall negatively associated with a learning asymmetry (r=-0.18, P=0.03), 
in line with the notion that subjects with a positive gambling bias (more likely to gamble to begin with) have 
more room to adjust their behaviour through learning from negative events (negative learning asymmetry, η- 

> η+). 
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Figure 3 -  figure supplement 2. Asymmetric effects of reward and punishment. 

(A) An asymmetric effect of cumulative reward and punishment on gambling, as derived from the logistic 
regression, significantly correlated with an asymmetry in learning, as derived from our computational model, 
both on session I (A), and on session II (B). 
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SSRIs modulate asymmetric learning from reward and punishment 

 

Supplementary File 1 

 
 
 

 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Model number 1 2 3 4 5 6 
       

iBIC session I 16446 10487 8419 7730 8045 7689 
       

iBIC session II 16465 10934 8585 7440 8025 7428 

Supplementary file 1A. Model comparison. 

We compared 10 different models in terms of how well they explained subjects’ choices on each 
session. For each model, iBIC scores (integrated Bayesian Information Criterion) are shown. A lower 
iBIC score indicates better fit with subjects’ choices. The best-fitting model 6 is indicated in red. 

Model 1 (‘gambling bias’); Model 2 (‘gambling bias & computer number’); Model 3 (‘Q-learning’); 
Model 4 (‘adjusted Q-learning’); Model 5 (‘asymmetric Q-learning’); Model 6 (‘adjusted & 
asymmetric Q-learning’). Cf. Methods for details.S 
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Supplementary file 1B/C. Recovery of model parameter estimates. 

Upon fitting the best-fitting model 6 to the simulated data, we found that model parameter estimates could be 
accurately recovered. This is indicated by a strong positive correlation between parameter estimates derived from 
fitting to real data (x-axis) and derived from fitting to simulated data (y-axis), both for (A) Session I, and  (B) Session 
II. 𝛽! = gambling bias parameter; 𝛽!! = decision temperature parameter determining the impact of the computer 
number; 𝛽!!!= decision temperature parameter determining the impact of learned Q-values; η+ = learning rate for 
reward; η- = learning rate for punishment. 
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Supplementary file 1D. Validation of the model comparison procedure. 

We simulated 10 data sets across both sessions, using each model with its parameters fitted to subjects’ real 
choices, and we applied the model comparison procedure to each data set. Each cell shows how many datasets 
generated by the model indicated on the vertical axis were detected as reflecting the model used for simulation 
indicated on the horizontal axis. This analysis showed that the model comparison could accurately detect the 
model used for data simulation as the best-fitting model when using models 1-5 (10 out of 10 times, indicated 
in red), confirming specificity of the model comparison procedure, i.e., model 6 is not recognized when it is 
not the true underlying model. Moreover, this procedure confirmed sensitivity of the model comparison model 
procedure, i.e., model 6 is recognized when it is the true underlying model (10 out of 10 times). This was the 
case 7/10 times as the sole winner, i.e., iBIC difference > 6 to second best model, and 3/10 times as shared 
winner, i.e., within 6 of the lowest iBIC. 
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 Placebo  SSRI  Pvalue 
      

Gender 20 ♀ / 13 ♂  20 ♀ / 13 ♂  1.000 
      

Age 24.8 ± 3.9  24.5 ± 4.0  0.757 
      

BDI – II [day 1] 4.4 ± 5.4  3.6 ± 4.0  0.540 
BDI – II [day 7] 4.6 ± 5.7  4.5 ± 4.5  0.924 

BDI – II [day 7 – day 1] 0.2 ± 3.3  0.8 ± 3.5  0.469 
      

SHAPS [day 1] 0.3 ± 1.0  0.3 ± 0.7  1.000 
SHAPS [day 7] 0.6 ± 1.6  0.8 ± 2.5  0.771 

SHAPS [day 7 – day 1] 0.3 ± 1.5  0.5 ± 2.1  0.738 
      

STAI - state [day 1] 30.6 ± 8.5  30.1 ± 6.4  0.795 
STAI - state [day 7] 33.1 ± 9.7  31.4 ± 6.6  0.392 

STAI - state [day 7 – day 1] 2.5 ± 8.5  1.4 ± 5.6  0.508 
      

STAI - trait [day 1] 33.1 ± 9.7  34.6 ± 6.6  0.479 
STAI - trait [day 7] 34.6 ± 9.8  35.5 ± 7.5  0.664 

STAI - trait [day 7 – day 1] 1.5 ± 5.0  0.9 ± 3.1  0.615 
      

PANAS - positive [day 1] 31.2 ± 8.6  30.0 ± 7.9  0.562 
PANAS - positive  [day 7] 29.0 ± 10.4  28.3 ± 8.3  0.775 

PANAS - positive [day 7 – day 1] -2.3 ± 7.3  -1.7 ± 5.6  0.749 
      

PANAS - negative [day 1] 11.5 ± 2.5  11.2 ± 1.4  0.588 
PANAS - negative [day 7] 12.1 ± 3.3  11.1 ± 1.7  0.143 

PANAS - negative [day 7 – day 1] 0.5 ± 3.2  -0.2 ± 1.8  0.277 

Supplementary file 1E. Affective state questionnaire data. 
Drug groups were matched for age and gender, and there was no baseline difference in any of the 
affective state questionnaires (assessed on day 1, pre-drug). Moreover, there was no drug effect on any 
of the affective state measures. BDI – II = Beck’s Depression Inventory II (Beck et al., 1996), SHAPS 
= Snaith-Hamilton Pleasure Scale (Snaith et al., 1995), STAI = State-Trait Anxiety Inventory 
(Spielberger, 1983), PANAS = Positive and Negative Affective Scale (Watson et al., 1988). 
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