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ABSTRACT 

The majority of polygenic risk scores (PRS) have been developed and optimized in individuals of 

European ancestry and may have limited generalizability across other ancestral populations. 

Understanding aspects of PRS that contribute to this issue and determining solutions is 

complicated by disease-specific genetic architecture and limited knowledge of sharing of causal 

variants and effect sizes across populations. Motivated by these challenges, we undertook a 

simulation study to assess the relationship between ancestry and the potential bias in PRS 

developed in European ancestry populations. Our simulations show that the magnitude of this 

bias increases with increasing divergence from European ancestry, and this is attributed to 

population differences in linkage disequilibrium and allele frequencies of European discovered 

variants, likely as a result of genetic drift. Importantly, we find that including into the PRS variants 

discovered in African ancestry individuals has the potential to achieve unbiased estimates of 

genetic risk across global populations and admixed individuals. We confirm our simulation 

findings in an analysis of HbA1c, asthma, and prostate cancer in the UK Biobank. Given the 

demonstrated improvement in PRS prediction accuracy, recruiting larger diverse cohorts will be 

crucial—and potentially even necessary—for enabling accurate and equitable genetic risk 

prediction across populations.  
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INTRODUCTION 1 

Increasing research into polygenic risk scores (PRS) for disease prediction highlights their clinical 2 

potential for informing screening, therapeutics, and lifestyle1. While their use enables risk 3 

prediction in individuals of European ancestry, PRS can have widely varying and much lower 4 

accuracy when applied to non-European populations2–4. Although the nature of this bias is not 5 

well understood, it can be attributed to the vast overrepresentation of European ancestry 6 

individuals in genome-wide association studies (GWAS), which is 4.5-fold higher than their 7 

percentage of the world population; conversely, there is underrepresentation of diverse 8 

populations such as individuals of African ancestry in GWAS, which is one fifth their percentage3. 9 

Potential explanations for the limited portability of European derived PRS across populations 10 

includes differences in population allele frequencies and linkage disequilibrium, the presence of 11 

population-specific causal variants or effects, or potential differences in gene-gene or gene-12 

environment interactions4. However, in traits such as body mass index and type 2 diabetes, 70 to 13 

80% of European-based PRS accuracy loss in African ancestry has been attributed to differences 14 

in allele frequency and linkage disequilibrium; therefore, most causal variants discovered in 15 

Europeans are likely to be shared5. Recent methods developed to improve PRS accuracy in non-16 

Europeans have prioritized the use of European discovered variants and population specific 17 

weighting6–8. However, only small gains in accuracy are possible with limited sample sizes of non-18 

European cohorts4.  19 

 20 

PRS have been applied and characterized within global populations, but there is limited 21 

understanding of PRS accuracy in recently admixed individuals and whether this varies with 22 

ancestry. Studies applying PRS in diverse populations3–5,9 or exploring potential statistical 23 

approaches to improve accuracy in such populations6,10 typically present performance metrics 24 

averaged across all admixed individuals. Only one study to date has suggested that PRS 25 

accuracy may be a function of genetic admixture (i.e., for height in the UK Biobank8). However, it 26 
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is unknown if the relationship between accuracy and ancestry exists when variants are discovered 27 

in non-European populations or what the best approach for applying PRS to admixed individuals 28 

will be when there are adequately powered GWAS in non-European populations.   29 

 30 

To help answer these questions, here we systematically and empirically explore the relationship 31 

between PRS performance and ancestry within African, European, and admixed ancestry 32 

populations through simulations. We highlight PRS building approaches that will achieve 33 

unbiased estimates across global populations and admixed individuals with future recruitment 34 

and representation of non-European ancestry individuals in GWAS. We also investigate reasons 35 

for loss of PRS accuracy, and attribute this to population differences in linkage disequilibrium (LD) 36 

tagging of causal variants by lead GWAS variants, as well as allele frequency biases potentially 37 

due to genetic drift undergone by European ancestry populations. Finally, we confirm our 38 

simulation findings by application to data on HbA1c levels, asthma, and prostate cancer in 39 

individuals of European and individuals of African ancestry from the UK Biobank.  40 

 41 

MATERIAL AND METHODS 42 

Simulation of Population Genotypes 43 

We used the coalescent model (msprime v.7.311) to simulate European (CEU) and African (YRI) 44 

genotypes, based on whole-genome sequencing of HapMap populations, for chromosome 20 as 45 

described previously by Martin et al.2 Genotypes were modeled after the demographic history of 46 

human expansion out of Africa12, assuming a mutation rate of 2 x 10-8. We simulated 200,000 47 

Europeans and 200,000 Africans for each simulation trial, for a total of 50 independent simulations 48 

(20 million total individuals). We generated founders from an additional 1,000 Europeans and 49 

1,000 Africans (10,000 total across the 50 simulations) to simulate 5,000 admixed individuals 50 

(250,000 total across the 50 simulations) with RFMIX v.213 assuming two-way admixture between 51 

Europeans and Africans with random mating and 8 generations of admixture. 52 
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 53 

True and GWAS Estimated Polygenic Risk Scores 54 

We generated true genetic liability for all European, African, and admixed individuals within each 55 

simulation trial2. Briefly, m variants evenly spaced throughout the simulated genotypes were 56 

selected to be causal and the effect sizes (𝛽) were drawn from a normal distribution 𝛽~𝑁 (0,
ℎ2

𝑚
), 57 

where h2 is the heritability2. Constant heritability and complete sharing of effect sizes in African 58 

ancestry and European ancestry individuals was assumed. The true genetic liability was 59 

computed as the summation of all variant effects multiplied by their genotype for each individual 60 

(𝑋 =  ∑ 𝛽𝑚𝑔𝑚
𝑚
𝑖=1 ) standardized to ensure total variance of h2 (𝐺 =  

𝑋− 𝜇𝑋

𝜎𝑋
∗ √ℎ2). Finally, the non-61 

genetic effect (𝜀 = 𝑁(0, 1 − ℎ2)) standardized to explain the remainder of the phenotypic variation 62 

(𝐸 =  
𝜀− 𝜇𝜀

𝜎𝜀
∗ √1 − ℎ2)  was added to the genetic risk defining the total trait liability (𝐺 + 𝐸)2. Cases 63 

were selected from the extreme tail of the liability distribution, assuming a 5% disease prevalence. 64 

An equal number of controls and 5,000 testing samples were randomly selected from the 65 

remainder of the distribution; all 5,000 admixed individuals were also used for testing. Across 66 

simulation replicates we varied causal variants (m = {200, 500, 1000}) and trait heritability (h2 = 67 

{0.33, 0.50, 0.67}); however, for simplicity main text results assume m = 1000 and h2 = 0.50.   68 

 69 

The estimated PRS were constructed from GWAS of the simulated genotypes (modeled after 70 

chromosome 20) in European and African ancestry populations, each with 10,000 cases and 71 

10,000 controls. Odds ratios (ORs) were estimated for all variants with minor allele frequency 72 

(MAF) > 1% and statistical significance of association was assessed with a chi-squared test. While 73 

causal variants may be included in the estimated PRS, they are drawn from the total allele 74 

frequency spectrum; thus, they are primarily rare (93% and 87% of causal variants have MAF < 75 

1% in European and African ancestry populations when m = 1000) and restricted from our 76 

analysis. For each population, variants were selected for inclusion into the estimated PRS by p-77 
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value thresholding (p = 0.01 (Main Text), 1x10-4, and 1x10-6 (Supplements)) and clumping (r2 < 78 

0.2) in a 1 Mb window within the GWAS population, where r2 is the squared Pearson correlation 79 

between pairs of variants. A fixed-effects meta-analysis was also performed to calculate the 80 

inverse-variance weighted average of the ORs in African and European ancestry populations, 81 

and LD r2 values for clumping used both datasets as the reference.  82 

 83 

For each individual, an estimated PRS was calculated as the sum of the log(OR) (i.e., the PRS 84 

‘weights’) multiplied by their genotype for all independent and significant variants at a given 85 

threshold. The PRS were constructed for testing samples with variants and weights each selected 86 

from European or African ancestry GWAS, or a fixed-effects meta of both combined. Additional 87 

multi-ancestry PRS approaches7,10 were also explored for admixed individuals. Accuracy was 88 

measured by Pearson’s correlation (r) between the true genetic liability and estimated PRS within 89 

each population. Across simulation trials, averages and ninety-five percent confidence intervals 90 

for r were calculated following a Fisher z-transformation for approximate normality14. The 91 

statistical significance of differences in accuracy between PRS approaches was assessed within 92 

ancestry groups, defined by global genome-wide European ancestry proportions, with a z-test 93 

(also following Fisher transformation). Specifically, within each simulation trial the z-statistic, 94 

measuring the difference between two PRS approaches, was computed and a two-sided p-value 95 

was obtained; results were summarized across trials by taking the median p-value. While using r 96 

as a measure of accuracy has the added benefit of being independent from heritability, in admixed 97 

individuals we also calculate the proportion of variance (R2) for total trait liability (genetic and 98 

environmental component) explained by the estimated PRS. 99 

 100 

Multi-ancestry PRS 101 

Local Ancestry Weighting PRS 102 
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In addition to genotypes of simulated admixed individuals, RFMIX13 also outputs the local ancestry 103 

at each locus for every individual. Thus, we used this information to create a local ancestry 104 

weighted PRS that is not impacted by ancestry inference errors. For admixed African and 105 

European ancestry individuals an ancestry-specific PRS was constructed for each population (k) 106 

by limiting each PRS to variants found in that ancestry-specific subset of the genome (𝑖 ∈ 𝑘),  as 107 

defined by local ancestry, and weighting using variant effects discovered in that population7. Each 108 

ancestry-specific PRS was then combined, weighted by the genome-wide global ancestry 109 

proportion (𝜌𝑘) for that individual as follows7: 110 

𝑃𝑅𝑆 =  𝜌𝐸𝑈𝑅 ∑ 𝛽𝑖,𝐸𝑈𝑅𝐺𝑖

𝑖 ∈𝐸𝑈𝑅

+ (1 − 𝜌𝐸𝑈𝑅) ∑ 𝛽𝑖,𝐴𝐹𝑅𝐺𝑖

𝑖 ∈𝐴𝐹𝑅

 111 

In this way each individual has a PRS constructed from the same independent variants with 112 

personalized weights that are unique to the individual’s local ancestry. 113 

 114 

Linear Mixture of Multiple Ancestry-Specific PRS 115 

Using a linear mixture approach developed by Márquez-Luna et al.10 we combined two PRS 116 

estimated in each of our global training populations  117 

𝑃𝑅𝑆 =  𝛼1𝑃𝑅𝑆𝐸𝑈𝑅 + 𝛼2𝑃𝑅𝑆𝐴𝐹𝑅  118 

where individual PRS were constructed using significant and independent variants (p < 0.01 and 119 

r2 < 0.2 in a 1Mb window) and effect sizes from a GWAS in that training population. For 120 

simulations, mixing weights (𝛼1 and 𝛼2) were estimated in an independent African ancestry testing 121 

population and as validation, accuracy was assessed in our simulated admixed ancestry 122 

individuals. 123 

 124 

Application to Real Data 125 

We obtained genome-wide summary statistics for HbA1c15, asthma16,17, and prostate cancer18,19 126 

calculated in European and African ancestry individuals (Table S1). Summary statistic variants 127 
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that were not present in both the UK Biobank European and African ancestry testing populations 128 

were removed. PRS for each phenotype were constructed from associated and independent 129 

GWAS variants within each training population by p-value thresholding (p= {5x10-8, 1x10-7, 5x10-130 

7, 1x10-6, 5x10-6, 1x10-5, 5x10-5, 1x10-4, 5x10-4, 1x10-3, 5x10-3, 0.01, 0.05, 0.1, 0.5, 1}) and clumping 131 

(LD r2 < 0.2) of variants within 1Mb with PLINK20. Additionally a fixed-effects meta-analysis of the 132 

two populations was performed using METASOFT v2.0.121. The selected PRS variants exhibited 133 

limited heterogeneity between the European and African ancestry training set summary statistics. 134 

In particular, of all possible European (African) ancestry selected PRS variants, only 5.4% (9.4%), 135 

6.9% (5.7%), and 7.0% (4.8%) were heterogeneous between the two groups for HbA1c, asthma, 136 

and prostate cancer, respectively (i.e., I2 > 25% and Q p-value < 0.05). 137 

 138 

PRS performance was evaluated in an independent cohort using genotype and phenotype data 139 

for individuals of European ancestry and individuals of African ancestry (Table S1) from the UK 140 

Biobank, imputation and quality control previously described22. We undertook extensive post-141 

imputation quality control of the UK Biobank, including the exclusion of relatives and ancestral 142 

outliers from within each group. Specifically, analyses were limited to self-reported European and 143 

African ancestry individuals, with additional samples excluded if genetic ancestry PCs did not fall 144 

within five standard deviations of the self-reported population mean. For each individual, their 145 

PRS was computed as the weighted sum of the genotype estimates of effect on each phenotype 146 

from the discovery studies (Table S1), multiplied by the genotype at each variant. For each 147 

population-specific variant set, weights from either the European or African summary statistics or 148 

the fixed-effects meta-analysis were used. A total of 96 polygenic risk scores were evaluated in 149 

each phenotype exploring the impact of ancestral population (two scenarios), p-value threshold 150 

(16 scenarios), and variant weighting (three scenarios). The proportion of variation explained by 151 

each PRS (partial-R2) approach was assessed for UKB European-ancestry and African-ancestry 152 

individuals separately. The partial-R2 was calculated from the difference in R2 values following 153 
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linear regression of HbA1c levels on age, sex, BMI, and PCs (1-10) with and without the PRS 154 

also included. Similarly, for asthma and prostate cancer, we determined the Nagelkerke ’s pseudo 155 

partial-R2 following logistic regression of case status on age, sex (asthma only), BMI (prostate 156 

cancer only), and PCs (1-10) with and without the PRS. Additionally, in African ancestry 157 

individuals we created a combined PRS (𝛼1𝑃𝑅𝑆𝐸𝑈𝑅 + 𝛼2𝑃𝑅𝑆𝐴𝐹𝑅) where 𝑃𝑅𝑆𝐸𝑈𝑅  and 𝑃𝑅𝑆𝐴𝐹𝑅  was 158 

the most optimal PRS using variants from the designated population and the weight and p-value 159 

that resulted in the highest accuracy; albeit in sample, optimization was done within a single PRS 160 

to ensure limited overfitting of the combined model10. We used 5-fold cross validation to assess 161 

model performance in which 80% of the cohort was used to estimate the mixing coefficients (𝛼1 162 

and 𝛼2) and the combined PRS partial-R2 was calculated in the remaining 20% of the data. 163 

Reported partial-R2 was averaged across folds10. For our binary phenotypes with unbalanced 164 

cases and controls we used stratified 5-fold cross validation. 165 

 166 

RESULTS 167 

Generalizability of European Derived Risk Scores to an Admixed Population 168 

We constructed PRS from our simulated European datasets and applied them to independent 169 

simulated European, African, and admixed testing populations, assuming 1000 true causal 170 

variants (m) and trait heritability (h2) of 0.5. On average, 1552 (range = [1134-1920]) variants were 171 

selected for inclusion into the PRS at p-value < 0.01 and LD r2 < 0.2 (Table 1). The average 172 

accuracy across replicates (50 simulations), measured by the correlation (r) between the true and 173 

inferred genetic risk, was much higher when applying the PRS to Europeans (r = 0.77; 95% CI = 174 

[0.76, 0.77]) than to Africans (r = 0.45; 95% CI = [0.44, 0.47]; Figure 1). This is in agreement with 175 

decreased performance seen in real data when applying a European derived genetic risk score 176 

to an African population2–5. 177 

 178 
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To understand the relationship between ancestry and PRS accuracy, admixed individuals were 179 

stratified by their proportion of genome-wide European (CEU) ancestry: high (100%>CEU>80%), 180 

intermediate (80%>CEU>20%), and low (20%>CEU>0%). PRS performance decreased with 181 

decreasing European ancestry (Figure 1). Average accuracy (Pearson’s correlation) for the high, 182 

intermediate, and low European ancestry groups was 0.73 (95% CI = [0.72, 0.74]), 0.61 (95% CI 183 

= [0.60, 0.62]), and 0.53 (95% CI = [0.51, 0.54]), respectively (Figure 1). In comparison to 184 

Europeans, the performance of the European derived PRS was significantly lower in individuals 185 

with intermediate (20% decrease, p = 1.27x10-47), and low (32% decrease, p = 6.48x10-16) 186 

European ancestry, and with African-only ancestry (41% decrease, p = 8.00x10-155). There was 187 

no significant difference for individuals with high (5.3% decrease, p = 0.09) European ancestry. 188 

These trends remained consistent when varying the genetic architecture (Figure S1), specifically 189 

decreasing the number of causal variants (m) and varying the trait heritability (h2). Additionally, 190 

the relationship between ancestry and accuracy persisted with the inclusion of variants at lower 191 

p-value thresholds (Figure S2).  192 

 193 

By further binning admixed individuals into deciles of global European ancestry and determining 194 

the variance explained of the total liability (genetics and environment) by the PRS, we estimated 195 

a 1.34% increase in accuracy for each 10% increase in global European ancestry, replicating a 196 

previous analysis of height in the UK Biobank8. The slope of this linear relationship increased with 197 

increasing heritability but was not found to vary with the number of true causal variants (Figure 198 

S3).     199 

 200 

Population Specific Weighting of European Selected Variants 201 

Using a well-powered GWAS from our simulated African cohort (10,000 cases and 10,000 202 

controls), we aimed to explore the potential accuracy gains achieved from a PRS with European 203 

selected variants, but with population specific weighting of these variants. We applied three 204 
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different weighting approaches to incorporate non-European effect sizes: (1) effect sizes from an 205 

African ancestry GWAS for all variants; (2) effect sizes from a fixed-effects meta-analysis of 206 

European and African ancestry GWAS for all variants, both having 10,000 cases and 10,000 207 

controls; and (3) population specific weights based on the local ancestry for an individual at each 208 

variant in the PRS (Figure 2).  209 

 210 

The most accurate PRS approach varied by the proportion of European ancestry. Populations 211 

with greater than 20% African ancestry benefited significantly from the inclusion of population 212 

specific weights (Figure 2). Intermediate European ancestry benefitted most from using fixed-213 

effects meta-analysis weighting instead of European weights (r = 0.64 vs. 0.61, p = 0.02). In 214 

contrast, variant weighting from an African ancestry GWAS instead of from European had higher 215 

accuracy in low European ancestry (r = 0.65 vs. 0.53, p = 0.009) and African-only (r = 0.64 vs. 216 

0.45, p = 2.02x10-44) populations. Individuals with high European ancestry had similar accuracy 217 

with weights from a fixed-effects meta-analysis as from European (r = 0.73 in both, p = 0.79), but 218 

decreased performance with the inclusion of weights from an African ancestry GWAS (r = 0.62 219 

vs. 0.73, p = 0.01).  220 

 221 

No clear benefits, and in some cases significant decreases, were observed for local ancestry 222 

informed weights compared to weights from a European or African ancestry GWAS or fixed-223 

effects meta-analysis. Individuals with high, intermediate, and low European ancestry had lower 224 

accuracy using local ancestry informed weights compared to the best weighting in each ancestry 225 

group: r = 0.71 vs. 0.73 (from fixed-effect or European weights; p = 0.58); r = 0.61 vs. 0.64 (from 226 

fixed-effect weights; p = 0.004); and r = 0.63 vs. 0.65 (from African weights; p = 0.60), respectively 227 

(Figure 2).  228 

 229 

Performance of Non-European PRS Variant Selection and Weighting Approaches 230 
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In our simulations, population specific weighting of PRS SNPs discovered in European ancestry 231 

populations improved PRS accuracy; however, the disparity between performance in European 232 

ancestry individuals versus African and admixed ancestry individuals remained large. We aimed 233 

to explore the potential improvements in PRS that could be gained by including variants 234 

discovered in large, adequately powered African ancestry cohorts. Following clumping and 235 

thresholding of significant variants using LD and summary statistics from the simulated African 236 

populations, an average of 5269 (range = [4462-6071]) variants were included in the PRS (Table 237 

1) reflective of the greater genetic diversity and decreased LD compared to Europeans23. In 238 

contrast, when constructing a PRS using the same LD and p-value criteria applied to a fixed-239 

effects meta-analysis of European and African ancestry, an average of only 92 (range = [38-197]) 240 

variants were included in the PRS. This substantially smaller number was a result of few variants 241 

being statistically significant in both populations. Of the total number of variants included from the 242 

European GWAS, African ancestry GWAS, and fixed-effects meta, only 1.15%, 0.54%, and 15.0% 243 

on average were the exact causal variant from the simulation; an additional 3.72%, 5.34%, and 244 

33.3% tagged at least one causal variant with r2 > 0.2 (and were within 1000 kb of that causal 245 

variant) in European ancestry populations and 3.45%, 2.42%, and 28.1% in African ancestry 246 

populations (Table 1). The limited overlap between true causal and GWAS selected variants is a 247 

result of causal variants in our simulation arising from the total spectrum of allele frequencies, and 248 

therefore more likely to be rare, while GWAS is better powered to detect common variants in the 249 

study population from which they were identified2. These common variants may not adequately 250 

tag rare variants due to low correlation24.    251 

 252 

Overall, we constructed twelve PRS with variants selected from GWAS in European or African 253 

ancestry populations or a fixed-effects meta of both (three scenarios) and weights from the same 254 

approaches plus an additional local ancestry specific weighting method (four scenarios) (Figure 255 

2). For Europeans, the highest PRS accuracy was achieved with European selected variants and 256 
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weights (r = 0.77; 95% CI = [0.76, 0.77]); however, a similar accuracy was observed for weights 257 

from a fixed-effects meta (r = 0.76; p = 0.53). For Africans, the highest PRS accuracy was with 258 

African selected variants and weights from a fixed-effects meta (r = 0.75; 95% CI = [0.74, 0.75]), 259 

similar performance was observed with African variants and weights (r = 0.74, p = 0.28). For 260 

admixed individuals, the highest performing PRS depended on the population ancestry 261 

percentage. In individuals with high European ancestry (>80%), the best PRS was with European 262 

selected variants and fixed-effects meta or European weights (r = 0.73; 95% CI = [0.72, 0.74]). 263 

For individuals with intermediate (20%-80%) or low (<20%) European ancestry, the most accurate 264 

PRS was from using African selected variants and weights from a fixed-effects meta-analysis (r 265 

= 0.68; 95% CI = [0.67, 0.68] and 0.71; 95% CI = [0.70, 0.72], respectively). Again, no benefit was 266 

observed with the inclusion of local ancestry specific weights for any set of PRS variants. Using 267 

a more stringent p-value threshold and including fewer variants into the PRS did not result in a 268 

change of the best PRS variants and weights (Figure S2). 269 

 270 

Inclusion of Variants from Diverse Populations 271 

We found that including in the PRS variants discovered in African ancestry GWAS with population 272 

specific weights results in less disparity in PRS accuracy across ancestries compared to 273 

European selected variants, confirming that GWAS in non-bottlenecked populations may yield a 274 

more unbiased set of disease variants25. For example, applying to individuals of African ancestry 275 

a PRS derived from GWAS variants and weights discovered in training data from the target 276 

population results in a 15.7% higher accuracy compared to using a PRS comprised of variants 277 

discovered in a European GWAS (also with African weights). In contrast, the gains in accuracy 278 

achieved by sourcing variants from ancestry-matched studies were much lower in European 279 

ancestry individuals. Compared to a PRS with variants from an African ancestry GWAS (with 280 

European weights), a PRS derived from a European GWAS (also with European weights) only 281 
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gave a 3.9% higher accuracy. We also observed better generalization of PRS based on African 282 

selected variants across all admixed groups (Figure 2). 283 

 284 

Unlike in Europeans, a PRS with variants discovered in African ancestry populations generalized 285 

across ancestral groups with population-specific weighting. However, similar to the European 286 

PRS, the African ancestry derived PRS (with African variants and weights) was estimated to have 287 

a 1.62% increase in the variance explained of the total trait liability by the PRS for each 10% 288 

increase in African ancestry (Figure S4). Through a linear combination of the European and 289 

African ancestry derived PRS (Methods)10, the relationship between ancestry and accuracy 290 

diminished to less than a 0.4% increase per 10% increase of African ancestry (Figure S4). 291 

 292 

While the best single PRS for admixed individuals with at least 20% African ancestry selected 293 

variants based on a GWAS in an African ancestry population with weights from a fixed-effects 294 

meta-analysis, a linear combination of the European and African ancestry derived PRS had higher 295 

accuracy; this was particularly true at decreased African ancestry cohort sizes. We saw 296 

considerable improvements with the combined PRS over using a European derived (European 297 

selected variants and weights) PRS, especially for low European ancestry (CEU < 20%) where 298 

even with 10-fold fewer African samples there was a 27.4% increase in PRS accuracy compared 299 

to the European derived risk score and a 12.3% increase compared to a PRS with African 300 

ancestry selected variants and weights from a fixed-effects meta (Figure 3). 301 

 302 

Allele Frequency and Linkage Disequilibrium of GWAS variants 303 

We sought to understand what factors impacted PRS generalizability across the different variant 304 

selection approaches. GWAS performed in European and African ancestry populations (for SNPs 305 

with MAF  0.01) were both more likely to identify significant variants that were more common in 306 

their own population than in the other. Approximately 60% of variants identified in European 307 
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ancestry populations had minor allele frequencies less than 1% in African ancestry populations 308 

and vice-versa; however, given the underlying assumption of homogeneity, the smaller number 309 

of variants selected by a meta-analysis of the two populations tended to have more similar minor 310 

allele frequencies (Figure 4a). Although European and African ancestry GWAS were both better 311 

powered to detect variants at intermediate frequencies within the same study population, GWAS 312 

in European ancestry populations may be unable to capture derived risk variants that have 313 

remained in Africa, which could be the result of genetic drift, whereas GWAS in African ancestry 314 

populations are not subject to this bias25. 315 

 316 

We also examined LD tagging of causal variants by GWAS selected variants within our simulated 317 

European and African populations. Each causal variant’s LD score was calculated by summing 318 

up the LD r2 between that causal variant and every GWAS tag variant within 1000 kb. The LD 319 

scores calculated in European and African ancestry populations were highly correlated (Pearson’s 320 

r > 0.7) for the GWAS and fixed-effects meta selected variants. Variants selected from a fixed-321 

effects meta had the highest LD score correlation between populations, as expected given that 322 

the variants reached significance in both populations and therefore were more common with 323 

similar LD patterns (Figure 4b). Since LD score correlation did not vary largely between 324 

simulations, we examined the raw LD scores for a single simulation in order to illustrate 325 

differences in LD score magnitude not captured by the Pearson’s correlation.  326 

 327 

We found that European selected variants had higher LD scores in European compared to in 328 

African ancestry populations; however, variants selected from an African ancestry GWAS tagged 329 

causal variants in both populations more strongly (Figure 4c). This is unlikely to be due to the 330 

larger number of African selected variants, as the results were unchanged following normalization 331 

of LD scores by dividing the total LD score for each causal variant by PRS size (Figure S5). Fixed-332 

effects meta-analysis variants had similar LD score magnitudes. However, while a greater 333 
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proportion of the fixed-effects meta selected variants were causal, fewer were strong tags for 334 

causal variants not directly identified, highlighting the potential need for a model that does not 335 

assume homogeneity of effects for tag variants26. Additionally, causal variants with identical effect 336 

sizes may have differing allele frequencies across populations which would result in 337 

heterogeneous allele substitution effects; this helps indicate why a fixed-effects meta-analysis 338 

may not be the optimal approach.  339 

 340 

Application to Real Data 341 

To corroborate our simulation findings, we undertook an analysis of 96 PRS developed for the 342 

prediction of multiple complex traits in European and African ancestry individuals from the UK 343 

Biobank, including HbA1c levels, asthma status, and prostate cancer (Table S1). We tested 344 

variant selection strategies based on p-value thresholding and LD clumping of genome-wide 345 

summary statistics15 computed in independent European or African ancestry cohorts and variant 346 

weights from the same approaches with an additional weighting from a fixed-effects meta across 347 

populations. Multiple p-value thresholds and weighting strategies were tested to assess the PRS 348 

accuracy in African ancestry individuals relative to European ancestry individuals across 349 

parameters. 350 

 351 

In UK Biobank Europeans, a GWAS significant European-derived PRS (with European variants 352 

and weights) had a partial-R2 of 1.6%, 1.2%, and 1.5% respectively for HbA1c levels, asthma, 353 

and prostate cancer; the same PRS applied to African ancestry individuals, with approximately 354 

13.1% European ancestry8, only explained 0.07%, 0.38%, and 0.19% (Figure S6). Although the 355 

proportion of variation explained by the PRS (partial-R2) was consistently lower in UK Biobank 356 

African ancestry individuals compared to Europeans, prediction was improved through the 357 

inclusion of variants or weights discovered in an independent African ancestry cohort across all 358 

traits (Figure S6). Interestingly, we found that a linear combination of the best performing PRS 359 
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with European discovered variants and African ancestry discovered variants improved accuracy 360 

substantially (Table S2), supporting our simulation finding that a combined PRS which includes 361 

variants from the target population, even at smaller sample sizes, is the optimal approach for 362 

constructing PRS in admixed and non-European individuals.    363 

 364 

DISCUSSION 365 

Our work shows that incorporating variants selected from European GWAS into a PRS can result 366 

in less accurate prediction in non-European and admixed populations in comparison to variants 367 

selected from a well-powered African ancestry GWAS. Through simulations and application to 368 

real data analysis of multiple complex traits, we provide empirical evidence that supports the use 369 

of a linear mixture of multiple population derived PRS to remove bias with ancestry and achieve 370 

higher accuracy in admixed individuals with currently available non-European sample sizes. We 371 

also demonstrate the anticipated improvements in PRS prediction accuracy that may be achieved 372 

with the inclusion of diverse individuals in GWAS, highlighting the need to actively recruit non-373 

European populations.  374 

 375 

Our simulation finding that prediction accuracy of a European derived PRS linearly decreases 376 

with increasing proportion of African ancestry in admixed African and European populations is 377 

consistent with a recent study of height where there was a 1.3% decrease for each 10% increase 378 

in African ancestry8. This decrease in prediction accuracy has been attributed to linkage 379 

disequilibrium and allele frequency differences, as well as differences in effect sizes across 380 

populations contributing to height8. Our work adds further insights into this reduction in PRS 381 

accuracy, showing that (1) it exists in the absence of trans-ancestry effect size differences 382 

consistent with previous theoretical models that did look at admixture2,5, and (2) variants selected 383 

from an African population may not have these same biases. Recent work found that known 384 

GWAS loci discovered in Europeans have allele frequencies that are upwardly biased by 1.15% 385 
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in African ancestry populations which results in a misestimated PRS; a phenomenon that likely 386 

arises due to population bottlenecks and ascertainment bias from GWAS arrays25. In our 387 

simulation study, which was not impacted by ascertainment bias, we show that GWAS in African 388 

ancestry populations also identify variants with population allele frequency differences; however, 389 

these variants have more consistent LD tagging of causal variants across populations. Our 390 

observations support the hypothesis that well-powered African ancestry GWAS will be able to 391 

more accurately capture disease associated loci that are more broadly applicable across 392 

populations, due to having undergone less genetic drift25.  393 

 394 

A major advantage of our study is having large simulated European and African ancestry cohorts 395 

to provide guidelines for developing the best possible PRS in admixed individuals with current 396 

and future GWAS. Through our exploration of 12 PRS, with various variant selection and 397 

weighting approaches, we re-capitulate recent results applying similar PRS strategies to an 398 

admixed Hispanic/Latino population9. For individuals with intermediate proportions of European 399 

ancestry (20-80%), we also see improvements using European selected variants and population-400 

specific or fixed-effects meta weights; however, as non-European cohorts get increasingly large 401 

it will be imperative to perform variant discovery in these populations as gains in accuracy with 402 

weight adjustment of European selected variants will be limited especially in individuals with 403 

higher proportions of non-European ancestry.      404 

 405 

Current methods for improving PRS accuracy in diverse populations have prioritized the inclusion 406 

of variants from European GWAS, as these have higher statistical power to identify trait 407 

associated loci. For example, one such approach uses a two-component linear mixed model to 408 

allow for the incorporation of ethnic-specific weights6. Another method creates ancestry-specific 409 

partial PRS for each individual based on the local ancestry of variants selected from a European 410 

GWAS7. This approach was found to improve trait predictability, compared to a traditional PRS 411 
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with population specific or European weights, in East Asians for BMI but not height7. In contrast, 412 

implementing this local-ancestry method7 in our simulation, we found that PRS accuracy was 413 

higher with African or fixed-effects meta weighting than with local ancestry in admixed African 414 

ancestry populations. Our results suggest that true equality in performance will be difficult to 415 

obtain solely based on European-identified variants even with local ancestry-adjusted weights. 416 

Although local ancestry weighting may have greater benefits when complete sharing across 417 

populations is not assumed, we show that in the absence of population-specific factors, the 418 

optimal PRS approach involves using variants identified in a large African population and 419 

population-specific weighting.  420 

 421 

To create a multi-ancestry PRS without incorporating local ancestry, Márquez-Luna et al. (2017) 422 

uses a mixture of PRS taking advantage of existing well-powered GWAS studies and 423 

supplementing with additional information that can be gained from a smaller study in the 424 

population of interest10. While this approach may offer relative improvement in PRS accuracy for 425 

non-Europeans compared to a European-derived PRS, our simulation suggests that the inclusion 426 

of significant tag variants discovered in Europeans may unnecessarily hinder predictive 427 

performance in non-Europeans. We investigate this approach in the context of varying admixture 428 

proportions and find that it achieved high accuracy across all admixed individuals, was not biased 429 

by ancestry, and significantly improved performance over a European-only PRS with 10-fold fewer 430 

African ancestry cases. Thus, a combination of multiple single population PRS may be the best 431 

currently available approach for admixed individuals, and this approach will likely continue to 432 

improve as the individual PRS are further developed.  433 

 434 

An important novel finding of our work that the inclusion of variants from an African-ancestry 435 

population results in less disparity in PRS accuracy across other populations, illustrates the need 436 

to recruit diverse populations in GWAS and make these data readily available. Large consortia 437 
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such as H3Africa, PAGE, the Million Veterans Program, and All of Us are undertaking efforts to 438 

support this initiative. Based on our analysis of HbA1c, asthma, and prostate cancer in the UK 439 

Biobank, we find that improvement in PRS prediction accuracy is currently possible by 440 

incorporating findings from GWAS in African ancestry populations, albeit with lower power. In 441 

addition to smaller sample sizes, this potential improvement may be limited by ascertainment bias 442 

in what SNPs are included on genotyping arrays and poorer imputation in non-Europeans. GWAS 443 

arrays and their imputation have substantially higher coverage among Europeans, and this may 444 

result in decreased PRS portability of findings across traits; in such situations, whole genome 445 

sequencing in diverse populations may be needed in order to improve accuracy27,28. Our study 446 

and others support the immense genetic diversity that can be unlocked by studying 447 

underrepresented populations to both eliminate the disparity in genetics for prediction medicine 448 

and provide novel insights into disease biology for all populations25,27,29.  449 

 450 

Although our simulation study provides important insight into the future of PRS use, it has 451 

important limitations. First, while coalescent simulations allow for decreased computational 452 

burden, model assumptions may result in inaccurate long-range linkage disequilibrium especially 453 

for whole genome simulations30. However, given we only simulated chromosome 20, biases are 454 

expected to be modest30. We also use a case-control framework for our simulation; therefore, 455 

power and potential differences in population PRS accuracy may be even higher if a quantitative 456 

trait was used. In addition, our simulations assume random mating among admixed individuals 457 

and therefore do not reflect the more complex assortative mating that may be observed, which 458 

may impact the distribution of local ancestry tract lengths in our simulation and therefore hinder 459 

the improvement of PRS accuracy by local ancestry weighting31. Also, although we provide 460 

evidence to suggest the contribution of population differences in allele frequency and LD tagging 461 

of causal variants to loss of PRS accuracy with varying ancestry, we do not delineate how each 462 

of these factors decrease accuracy independently; this is a direction for future work. Finally, we 463 
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have only simulated individuals from Yoruba, a West African population, which is not 464 

representative of the greater diversity in Sub Saharan Africa32. Future studies must be done to 465 

ensure our findings can be extended to individuals from other regions of Africa.  466 

 467 

Overall, our findings support the concern that while studies have demonstrated the potential 468 

clinical utility of PRS, adopting the current versions of these scores could contribute to inequality 469 

in healthcare4. Going forward, future studies should prioritize the inclusion of diverse participants 470 

and care must be taken with the interpretation of currently available risk scores. While statistical 471 

approaches may offer improvements in accuracy compared to current European-derived risk 472 

scores, in order to truly diminish the disparity and achieve PRS accuracies similar to in European 473 

ancestry populations we must actively recruit and study diverse populations.474 
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SUPPLEMENTAL DATA 

Document S1. Figures S1-S6 and Tables S1-S2 
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WEB RESOUCES 

HBA1 summary statistics (Wheeler et al. 2018): https://www.magicinvestigators.org/downloads/ 

Asthma summary statistics (Daya et al. 2019 and Demenais et al. 2018): 

https://www.ebi.ac.uk/gwas/downloads/summary-statistics 

PrCa summary statistics (Emami et al. 2020): https://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs001221.v1.p1 

plink2: https://www.cog-genomics.org/plink/2.0/ 

RFMix: https://github.com/slowkoni/rfmix 

METASOFT: http://genetics.cs.ucla.edu/meta_jemdoc/ 
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DATA AND CODE AVAILABILITY 

The code generated during this study is available at 

https://github.com/taylorcavazos/PRS_Admixture_Simulation 
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TABLES 

Table 1. Summary of PRS Variants and Causal Tagging across Simulations 

GWAS Population 
Total # PRS 

Variants (p<0.01) 
# Causal # in LD with a Causal Variant 

European 1552 [1134-1920] 18 [10-26] r2>0.8 r2>0.6 r2>0.4 r2>0.2 

 LD in Europeans   27 [16-40] 32 [22-44] 39 [25-55] 58 [38-80] 

 LD in Africans   20 [9-36] 25 [16-42] 34 [24-54] 53 [35-70] 

African 5269 [4462-6071] 28 [18-40] – – – – 

 LD in Europeans   94 [67-122] 132 [95-171] 183 [123-238] 280 [202-364] 

 LD in Africans   37 [26-48] 48 [34-61] 67 [50-89] 127 [81-170] 

Fixed-Effects Meta 92 [38-197] 12 [5-22] – – – – 

 LD in Europeans   15 [6-26] 17 [6-28] 21 [9-39] 29 [16-47] 

 LD in Africans   13 [6-21] 14 [6-25] 17 [9-29] 24 [10-43] 
* The number of variants is reported as the average and range [low-high] across the 50 simulations 

 

Table 1 Legend: The set of PRS variants from each GWAS and the fixed-effects meta-analysis were selected by p-value 

thresholding (p < 0.01) and clumping (r2 < 0.2) across the 50 simulations. Each PRS variant was compared to the causal set of 

variants (m = 1000) within each simulation to determine the direct overlap between the two sets and the LD r2 between the PRS 

variant and every causal variant within a 1000 kb window. The total number of selected PRS variants that tag at least one causal 

variant at r2 greater than 0.8, 0.6, 0.4, or 0.2 is listed in the table. 
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FIGURES 

Figure 1. Accuracy of European Derived PRSs by Proportion of Total Ancestry 

 

Figure 1 Legend: Accuracy of PRS, with variants and weights from a European GWAS, decreases linearly with increasing 

proportion of African ancestry. Variants and weights were extracted from a GWAS of 10000 European cases and 10000 European 

controls. PRS accuracy was computed as the Pearson’s correlation between the true genetic risk and GWAS estimated risk score 

across 50 simulations in independent test populations of 5000 Europeans, 5000 Africans, and 5000 admixed individuals. Admixed 

individuals were grouped based on their proportion of genome-wide European ancestry. Simulations assume 1000 causal variants 

and a heritability of 0.5 to compute the true genetic risk. A p-value of 0.01 and LD r2 cutoff of 0.2 was used to select variants for the 

estimated risk score. 
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Figure 2. PRS Construction Approaches and Performance in Admixed Individuals 

 

Figure 2 Legend: Using significant variants from an African Ancestry GWAS with population-specific weights results in less 

disparity in PRS accuracy across populations. PRS were constructed using variants and weights selected from either a European 

or African population (10000 cases, 10000 controls each) or a fixed-effects meta-analysis of both. An additional local ancestry 

specific method was used for PRS weighting. Performance, measured as the Pearson’s correlation between the true and GWAS 

estimated risk score, is shown across 50 simulations. Simulations assume 1000 causal variants and a heritability of 0.5 to compute 

the true genetic risk. A p-value of 0.01 and LD r2 cutoff of 0.2 was used to select variants for the estimated risk scores. 
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Figure 3. Impact of African Sample Size on PRS Accuracy and Generalization 

 

Figure 3 Legend: PRS accuracy in diverse populations can be improved by including data from an African Ancestry GWAS 

with smaller sample sizes than in a European GWAS. The number of African samples used in the GWAS and subsequent PRS 

construction was decreased to reflect availability of diverse samples in real data. Analysis was conducted assuming 1%, 5%, 10%, 

50%, and 100% (matched size of European dataset) of the total African ancestry cases. Average accuracy and the 95% confidence 

interval were reported across the 50 simulations for different variant selection and weighting approaches. Simulations assume 1000 

causal variants and a heritability of 0.5 to compute the true genetic risk. A p-value of 0.01 and LD r2 cutoff of 0.2 was used to select 

variants for the estimated risk score. A linear mixture of single population PRS (𝛼1𝐸𝑈𝑅 +  𝛼2𝐴𝐹𝑅), with variants and weights selected 

from that population, was also tested in the admixed population. The mixture coefficients (𝛼1 and 𝛼2) were estimated in an 

independent African ancestry testing population.     
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Figure 4. Allele Frequency Distribution of GWAS Selected Variants and LD Tagging of Causal Variants 

 

Figure 4 Legend: GWAS significant variants are more common in the study population from which they were discovered; 

however, African Ancestry GWAS variants may result in better LD tagging across populations. Variants were selected from a 

European or African ancestry GWAS or a fixed-effects meta of both populations. 4a. GWAS variants were binned by their minor 

allele frequency estimated from the European, African, and admixed populations. The error bar represents the 95% CI across 

simulations. 4b. LD scores were calculated for every causal variant by adding up the LD r2 for each GWAS tag variant within 1000 
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kb of the causal variant. LD scores calculated in a Europeans and Africans were compared by Pearson’s correlation. The results 

were summarized across simulations as the average and 95% CI. 4c. Raw LD scores for each causal variant (m = 1000) calculated 

in a European or African population for one simulation. Each panel shows the approach used for variant selection. Causal variants 

directly discovered through the GWAS are colored in grey. 
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