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Abstract 
Understanding and preventing the emergence of novel viruses requires an accurate and            
comprehensive understanding of their genomes. One under-investigated class of functional          
genomic elements is overlapping genes (OLGs), which allow a single stretch of nucleotides             
to encode two distinct proteins in different reading frames. Viral OLGs are common and have               
been associated with the origins of pandemics, but are still widely overlooked. We             
investigate ​de novo OLG candidates in SARS-CoV-2 and identify a new gene here named              
ORF3c​. ​ORF3c has been documented elsewhere but is unnamed, unannotated, or conflated            
with ​ORF3b of other SARS-related betacoronaviruses (sarbecoviruses). In fact, ​ORF3c is           
not homologous to ​ORF3b​, as the two genes occupy different genomic positions and reading              
frames. We find that ​ORF3c exhibits clear ​evidence of translation from ribosome profiling             
and important immunological properties. We then conduct an evolutionary analysis of           
ORF3c at three levels: between-species, between-host, and within-host. Specifically, 21          
representative sarbecovirus genomes show ​ORF3c is also present in some pangolin-CoVs           
but not more closely related bat-CoVs; 3,978 SARS-CoV-2 genomes reveal ​ORF3c gained a             
new stop codon (G25563U) that rose drastically in frequency during the current COVID-19             
pandemic; and 401 deeply sequenced samples of SARS-CoV-2 demonstrate the recurrence           
of this mutation in multiple hosts. Surprisingly, the newly gained ​ORF3c stop codon             
hitchhiked early with haplotype 241U/3037U/14408U/23403G (Spike-D614G), which       
appears to drive the European pandemic spread. Our results liken ​ORF3c to other important              
viral accessory genes recombined, lost, split, or truncated before or during outbreaks,            
including ​ORF3b and ​ORF8 in sarbecoviruses. OLGs deserve considerably more attention,           
as their rapid evolution may be more important than is currently appreciated in the              
emergence of zoonotic viruses.  
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Introduction 
The COVID-19 pandemic raises urgent questions about the properties that allow animal            
viruses to cross species boundaries and spread within humans. Addressing these questions            
requires an accurate and comprehensive understanding of viral genomes. One frequently           
overlooked source of novelty is the evolution of new overlapping genes (OLGs) in which an               
existing protein-coding nucleotide sequence is translated in a new reading frame to produce             
a distinct additional protein, a phenomenon known as ​overprinting​. Such “genes within            
genes” improve genomic information compression and may offer a major source of genetic             
novelty (Keese and Gibbs 1992), particularly as frameshifted sequences preserve certain           
physicochemical properties of proteins (Bartonek et al. 2020). However, OLGs also entail the             
cost that a single mutation may alter two proteins, complicating sequence analyses.            
Moreover, genome annotation methods typically miss OLGs, favoring one open reading           
frame per genomic region (Warren et al. 2010). In SARS-related betacoronaviruses           
(subgenus ​Sarbecovirus​; sarbecoviruses), OLGs are known but remain inconsistently         
reported. For example, absent or conflicting annotations of ​ORF3b​, ​ORF9b​, and ​ORF9c            
persist in SARS-CoV-2 reference genome Wuhan-Hu-1 (NCBI: NC_045512.2) and genomic          
studies (e.g., Chan et al. 2020; F. Wu et al. 2020), and no overlapping genes within ​ORF3a                 
are displayed in the UCSC SARS-CoV-2 genome browser (Fernandes et al. 2016). Such             
inconsistencies stymie research, as OLGs may play a key role in the emergence of new               
viruses. For example, in human immunodeficiency virus-1 (HIV-1), the novel OLG ​asp (within             
env​) is actively expressed in human cells (Affram et al. 2019) and is associated with the                
pandemic M group lineage (Cassan et al. 2016). Similarly, an OLG in SARS-CoV-1, ​ORF3b              
within ORF3a​, is sometimes annotated in SARS-CoV-2 even though it contains a premature             
STOP codon in this virus.  
 

Novel overlapping gene candidates 
To identify OLGs within the SARS-CoV-2 genome, we first generated a complete list of              
candidate ORFs in the Wuhan-Hu-1 reference genome (NCBI: NC_045512.2). Specifically,          
we used the Schlub et al. codon permutation method (Schlub et al. 2018) to detect               
unexpectedly long ORFs while controlling for codon usage. One unannotated gene           
candidate, here named ​ORF3c​, scored highly (​P​=0.0104), exceeding the significance of two            
known OLGs annotated in Uniprot (​ORF9b and ​ORF9c ​[​ORF14 ​] within ​N​;           
https://viralzone.expasy.org/8996 ​) (Figure 1; Supplement).  
 
ORF3c comprises 58 codons (including STOP) near the beginning of ​ORF3a ​(Table 1;             
Figure 2), making it longer than the known genes ​ORF7b (44 codons) and ​ORF10 (39               
codons) (Supplement). ​ORF3c was discovered independently by Chan et. al (2020) as            
‘ ​ORF3b​’ and Pavesi (2020) as, simply, ‘hypothetical protein’. Due to its naming ambiguity             
and location within ​ORF3a​, ​ORF3c has subsequently been conflated with ​ORF3b in multiple             
studies (Fung et al. 2020; Ge et al. 2020; Gordon et al. 2020; Hachim et al. 2020; Helmy et                   
al. 2020; Yi et al. 2020), an extensively characterized OLG in SARS-CoV-1 and other              
sarbecoviruses which also overlaps ​ORF3a (McBride and Fielding 2012). In fact, ORF3c ​is             
unrelated to ​ORF3b as the two genes occupy different reading frames and genomic             

3 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 22, 2020. ; https://doi.org/10.1101/2020.05.21.109280doi: bioRxiv preprint 

https://viralzone.expasy.org/8996
https://doi.org/10.1101/2020.05.21.109280
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
Figure 1. ​Sarbecovirus gene repertoire and evolutionary relationships. Only genes downstream           
of ​ORF1ab are shown, beginning with ​S (Spike-encoding). Four types of genes and their relative               
positions in the SARS-CoV-2 genome are shown on top. Genes are colored by type: hypothesized               
overlapping (yellow); overlapping (burgundy); accessory (green); and structural (blue). Genes with           
intact ORFs in each of 21 sarbecovirus genomes are shown on bottom. Positions are relative to each                 
genome, i.e., homologous genes are not precisely aligned. Note that ​ORF8 is not novel in               
SARS-CoV-2 as has been claimed (Chan et al. 2020), and ​ORF9b and ​9c are found throughout                
sarbecoviruses, though rarely annotated. ​ORF3b is full-length in only 3 sequences (SARS-CoV            
TW11, SARS-CoV Tor2, and bat-CoV Rs7327), while the remainder fall into two distinct classes              
having an early or late premature STOP codon (Supplement). ​ORF8 is intact in all but 5 sequences:                 
SARS-CoVs TW11 and Tor2, where it has split into ​ORF8a and ​ORF8b​; and bat-CoVs BtKY72,               
BM48-31, and JTMC15, where it is deleted (i.e., only three contiguous green boxes). The full-length               
version of ​ORF3c is shown in SARS-CoV-2 Wuhan-Hu-1 and pangolin-CoV GX/P5L; however, note             
that a shorter isoform beginning later has been hypothesized (​ORF3a-iORF2​; Finkel et al. 2020)              
(Table 1).  
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Table 1. ​Nomenclature and reading frames for overlapping gene candidates in SARS-CoV-2 ​ORF3a​. 

Gene​a Reading 
frame​b 

Genome 
positions, 
Wuhan-Hu-1​c 

Description References 

ORF3a ss11 
(reference) 

25393-26220 
(276 codons) 

Ion channel formation and virus release in 
SARS-CoV-1 infection; host cell apoptosis; 
triggers inflammation; antagonizes interferon 

Lu et al. (2010); Cui 
et al. (2019) 

ORF3h / ORF3a* 
/ ORF3a.iORF1 

ss13 25457-25582 
(42 codons) 

Predicted similarity to viroporin; overlaps 
codons 22-64 of ​ORF3a 

Cagliani et al. 
(2020); Firth (2020); 
Finkel (2020); 
Pavesi (2020) 
conflates it with 
ORF3b 

ORF3c  ss12 25524-25697 
(58 codons) 

Binds STOML2 mitochondrial protein 
(Gordon et al. 2020); short form contains a 
predicted signal peptide (Finkel et al. 2020); 
may contribute to differences between 
SARS-CoV-1 and SARS-CoV-2 in immune 
response as a unique antigenic target 
(Hachim et al. 2020); interferon antagonism 
has not been demonstrated; aligned to 
ORF3b​ by Chan et al. but is not 
homologous; overlaps codons 44-102 of 
ORF3a 

Present study; Chan 
et al. (2020) and 
citing studies refer 
to it as ​ORF3b 
(Gordon et al. 2020; 
Hachim et al. 2020; 
etc.); Pavesi (2020) 
refers to it as 
‘hypothetical 
protein’ 

ORF3a-iORF2 / 
ORF3c-short 

ss12 25596-25697 
(34 codons) 

ORF3c​, but excluding the 24-codon 
upstream region harboring the majority of 
premature STOP codons in SARS-CoV-2; 
contains a predicted signal peptide (Finkel et 
al. 2020); overlaps codons 68-102 of ​ORF3a 

Finkel et al. (2020) 

ORF3a-short ss11 
(reference) 

25765-26220 
(152 codons) 

Evidence of separate expression from 3a; 
has also been conflated with ​ORF3b​; 
equivalent to codons 124-276 of ​ORF3a 

Davidson et al. 
(2020) and pers. 
comm. 

ORF3b ss13 25814-26281 
(ORFs at 
25814-82, 
25910-84, 
26072-170, and 
26183-281; i.e., 
23, 25, 33, and 
33 codons)​d 

Truncated in SARS-CoV-2; functions as 
interferon antagonist in SARS-related 
viruses; may contribute to differences 
between SARS-CoV-1 and SARS-CoV-2 in 
immune response, including asymptomatic 
phase; although aligned to ​ORF3c​ by Chan 
et al., is not homologous; overlaps codons 
141-276 of ​ORF3a 

Konno et al. (2020) 
(2020) claim 
functionality of first 
(23-codon) ORF in 
SARS-CoV-2 

a​Genes are listed by start site from 5’ (top) to 3’ (bottom). 
a​Nomenclature as described in Nelson et al. (2020): ss=sense-sense (same strand); ss12=codon position 1 of the 
reference frame overlaps codon position 2 of the overlapping frame on the same strand; ss13=codon position 1 
of the reference frame overlaps codon position 3 of the overlapping frame on the same strand. 
c​Positions and numbers of codons include the STOP codons. 
d​The SARS-CoV-2 region homologous to SARS-CoV-1 ​ORF3b​ contains 4 premature STOP codons, resulting in 
the presence of four distinct ORFs (AUG-to-STOP); see Supplement.  
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Figure 2. ​Codon permutation analysis to identify candidate overlapping genes in all three             
forward-sense reading frames​. Known genes and the hypothesized ​ORF3c are indicated with            
horizontal red lines. Reading frames 1, 2, and 3 refer to start sites of frames beginning at position 1, 2,                    
or 3 of the Wuhan-Hu-1 reference genome, respectively, with genome coordinates shown at the              
bottom (Supplement). Yellow indicates low ​P​-values (natural logarithm scale), while gray indicates            
absence of an ORF longer than 30 codons (not tested). 
 
 
positions within ​ORF3a​. Specifically, ​ORF3c ends 39 codons upstream of the SARS-CoV-2            
genome region homologous to ​ORF3b​, where the same start site encodes only 23 codons              
(A. Wu et al. 2020) (Table 1; Figures 1 and 2; Supplement). It is also distinct from other                  
OLGs hypothesized within ​ORF3a ​(Table 1), and an independent sequence composition           
analysis predicts ​ORF3c over the alternative candidate ​ORF3a*​/​ORF3h (Pavesi 2020).          
Thus, ​ORF3c putatively encodes a novel protein not present in other sarbecoviruses, and             
the absence of full-length ​ORF3b in SARS-CoV-2 distinguishes it from SARS-CoV-1 (Figure            
1). In contrast, ​ORF3b plays a central role in SARS-CoV-1 immune interactions and its              
absence or truncation in SARS-CoV-2 may be immunologically important (Konno et al. 2020;             
Yuen et al. 2020). 
 

ORF3c ​ molecular biology and expression  
To assess expression of ​ORF3c​, we re-analyzed the ribosome profiling (Ribo-seq) data of             
Finkel et al. (2020), who report a shorter isoform of ​ORF3c beginning within codon 68 of                
ORF3a (​ORF3a-iORF2​). Results for samples with ribosomes stalled by lactimidomycin and           
harringtonine reveal a clear peak at the start site of the full-length ​ORF3c (longer isoform),               
similar to the start site read distribution observed for annotated genes (Figure 3). This              
suggests ​ORF3c is actively translated. Referring to ​ORF3c as ​ORF3b​, Gordon et al. (2020)              
demonstrate that stable protein expression can occur and that 3c interacts with the             
mitochondrial protein STOML2. However, the resolution of mass spectrometry is too low to             
detect short proteins (​ORF3c​, ​ORF9c​, ​ORF10​, or other OLG candidates Table 1). In four              
publicly available SARS-CoV-2 mass spectrometry datasets, signals for ​ORF3c are above a            
1% false-discovery threshold (Bezstarosti et al. 2020; Bojkova et al. 2020; Davidson et al.              
2020; PRIDE Project PXD018581; Methods). Despite that, structural prediction of the ​ORF3c  
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Figure 3 ​. ​Ribosome profiling re-analysis of ​ORF3c expression in four public ribosome-stalled            
datasets from Finkel et al. (2020). Ribosome accumulation at the start site is a key signature of                 
translation, emphasized in ribosome-stalled samples. ​ORF3c (yellow) shows a clear signature of            
ribosome accumulation, measured in reads per million mapped reads in the sample, at its              
hypothesized start site (vertical dashed line), exceeding start site accumulation for the two other long               
hypothesized ORFs overlapping ​ORF3a​, namely ​ORF3h (upstream, different reading frame; Cagliani           
et al. 2020) and ​ORF3a-iORF2 (downstream, same open reading frame but shorter; Finkel et al.               
2020). Results for known genes are shown for comparison with low (e.g., ​ORF8 ​, third from bottom)                
and high (​N​, second from bottom) levels of expression.  
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protein suggests α-helices connected with coils and an overall fold model that matches             
known protein structures (e.g., Protein Data Bank ID: 2WB7, 6A93) with borderline            
confidence (TM-score<0.514) (SFigure 1). Finally, the proteins encoded by ​ORF3c (referred           
to as ​ORF3b​), ​ORF8 ​, and ​N elicit the strongest antibody responses observed in COVID-19              
patient sera, with ​ORF3c sufficient to accurately diagnose in the majority of COVID-19 cases              
(Hachim et al. 2020), providing further strong evidence of expression. 
 
To further investigate the immunological properties of ​ORF3c​, we predicted linear T-cell            
epitope candidates for each 9-mer of the SARS-CoV-2 proteome using NetMHCPan (Jurtz            
et al. 2017) to estimate MHC class I binding affinity for representative HLA alleles (Sidney et                
al. 2008). The lowest predicted epitope density occurs in ​ORF3c​, the only gene significantly              
depleted compared to both short unannotated ORFs (​P​=0.019; two-sided percentile) and           
randomized peptides (​P​=0.044; permutation tests), followed by ​ORF8 and ​N (Figure 4).            
Thus, the three peptides eliciting the strongest antibody (B-cell epitope) responses in            
SARS-CoV-2 are also predicted to contain the lowest T-cell epitope density, ​ORF3c among             
them. This suggests the action of selective pressures on ​ORF3c that would only be possible               
if its protein is produced ​in situ​. Taken together, these results provide strong evidence for               
expression of ​ORF3c​. 
 

 
Figure 4 ​. ​Predicted T-cell epitope density per gene ​. Mean number of predicted 9-amino acid              
epitopes per residue for each SARS-CoV-2 protein (green bars), calculated as the number of epitopes               
overlapping each amino acid position divided by protein length. Two sets of negative controls were               
used: (1) products of ​n​=103 short unannotated (putatively nonfunctional) ORFs present in the             
SARS-CoV-2 genome, representing the result expected for real ORFs that have been evolving in the               
genome without functional constraint; and (2) ​n​=1,000 randomized peptides generated from each            
protein by randomly sampling its amino acids with replacement (orange bars), representing the result              
expected for ORFs encoding the same amino acid content whose precise sequence has not been               
subjected to an evolutionary history (Supplement). Error bars show 95% confidence intervals. For             
nonfunctional ORFs, the horizontal gray dotted line shows the mean number of epitopes per residue,               
and the gray shaded region shows a 95% confidence interval. * ​P​=0.019, two-sided percentile for short               
unannotated ORFs; ​P​=0.044, permutation test for randomized peptides. 
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ORF3c ​ taxonomic range 
To assess the origin of ​ORF3c and its conservation within and among host taxa, we created                
an alignment of 21 sarbecovirus genomes from Lam et al. (2020), limiting to those ​with an                
annotated ​ORF1ab and no frameshift mutations in the core genes ​ORF1ab​, ​S​, ​ORF3a​, ​E​, ​M​,               
ORF7a​, ​ORF7b​, or ​N (Supplement). Among the sarbecoviruses, all core genes are intact             
(i.e., no mid-sequence STOP) in all sequences, with the exception of ​ORF3c​, ​ORF3b​, and              
ORF8 ​. ​ORF3c is intact in only 2 sequences: SARS-CoV-2 Wuhan-Hu-1 and pangolin-CoVs            
from Guangxi (GX/P5L) (Figure 5). ​ORF3b is intact in only 3 SARS-CoV-1 sequences:             
SARS-CoV TW11, SARS-CoV Tor2, and bat-CoV Rs7327, with the remainder falling into            
two distinct groups sharing an early or late STOP codon, respectively (Supplement). Finally,             
ORF8 is intact in all but 5 sequences, where it contains premature STOPs or large-scale               
deletions (Figure 1).  
 
 

 
Figure 5. Amino acid variation in proteins encoded by ​ORF3c and ​ORF3b across             
sarbecoviruses. Amino acid alignments of 3c and 3b show their sequence conservation. Black lines              
indicate STOP codons in ​ORF3c and ​ORF3b​, showing their restricted taxonomic ranges. Intact             
ORF3c is restricted to SARS-CoV-2 and pangolin-CoV GX/P5L, whereas ​ORF3b is found throughout             
the sarbecoviruses, but truncated early in most genomes outside of SARS-CoV-1. Sequences show             
the 3c residues of SARS-CoV-2 Wuhan-Hu-1 (57aa; NCBI=NC_045512.2; bottom left) and the 3b             
residues of SARS-CoV Tor2 (154aa; NCBI=NC_004718.3; bottom right). 
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The presence of intact ​ORF3c homologs among host species suggests possible functional            
conservation. However, the taxonomic distribution of this intact ORF is incongruent with            
whole-genome phylogenies in that ​ORF3c is present in Guangxi pangolin-CoVs (GX/P5L;           
more distantly related to SARS-CoV-2) but absent from Guangdong pangolin-CoVs (GD/1;           
more closely related to SARS-CoV-2) (Figure 5), confirmed by the alignment of Boni et al.               
(2020). Further, phylogenies built on ​ORF3a are also incongruent with whole-genome           
phylogenies, and ​ORF3c contains two STOP codons in the closely related bat-CoV NY02             
(data not shown). These observations are likely due to the presence of recombination             
breakpoints in ​ORF3a near ​ORF3c ​(Boni et al. 2020; Rehman et al. 2020). Thus,              
recombination, convergence, or recurrent loss played a role in the origin or taxonomic             
distribution of ​ORF3c​. 
 

Between-species divergence 
To examine natural selection on ​ORF3c​, we measured diversity at three evolutionary levels:             
between-species (​Sarbecovirus​), between-host (human SARS-CoV-2), and within-host       
(human SARS-CoV-2). At each level, we inferred selection by estimating mean pairwise            
nonsynonymous (amino acid changing) and synonymous (not amino acid changing)          
nucleotide divergence (​d​; between sarbecoviruses) or diversity (​π​; within SARS-CoV-2)          
among all sequenced genomes at each level. Importantly, we combined standard (non-OLG)            
methods (Nei and Gojobori 1986; Nelson et al. 2015) with a new method tailored for OLGs,                
which we previously used to detect purifying selection on the ​asp OLG in HIV-1 (Nelson et                
al. 2020).  
 
For between-species analyses, we utilized the aforementioned alignment of 21 sarbecovirus           
genomes unless otherwise noted. At this and all hierarchical evolutionary levels, the            
strongest signals of purifying selection are consistently observed in the non-OLG regions of             
N (nucleocapsid-encoding gene, which is also the most highly expressed gene (Methods,            
Figure 6; SFigure 2). Thus, the non-OLG regions of N experience disproportionately low             
rates of nonsynonymous change, evidencing strict functional constraint. Note that this signal            
can be missed if non-OLG methods are applied to ​N without accounting for its internal               
OLGs, ​ORF9b and ​ORF9c (e.g., ​P​=0.0268 vs. 0.411, excluding vs. including OLG regions at              
the between-host level; Supplement). On the other hand, significant purifying selection is not             
observed at the between-species level for any gene not detected by our proteomic analysis              
(​ORF3c​, ​ORF9c​, and ​ORF10​) (Figure 6; Supplement), showing that highly expressed genes            
tend to exhibit the greatest functional constraint. 
 
Comparing Wuhan-Hu-1 to pangolin-CoV GX/P5L, ​ORF3c shows ​d​N​/​d ​S​=0.14 (​P​=0.264),         
whereas inclusion of a third allele found in pangolin-CoV GX/P4L results in ​d​N​/​d ​S​=0.43             
(​P​=0.488) (Figure 6; Supplement). Additionally, one of two possible changes synonymous in            
both genes is observed, but only one of 245 possible changes nonsynonymous in both              
genes is observed (​P​=0.0162, Fisher’s Exact Test) (Supplement). As this evidence is            
suggestive of constraint, we performed sliding windows of ​d​N​/​d ​S across the length of ​ORF3a              
to check whether potential purifying selection is specific to the expected host species and              
genome positions. Indeed, pairwise comparisons of each sequence to SARS-CoV-2 reveal           
purifying selection that is highly specific to the reading frame, genome positions, and  
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Figure 6. Natural selection analysis of nucleotide differences at three evolutionary levels.            
Nucleotide differences were analyzed at three levels: between-species divergence (​d​), between-host           
diversity (​π​; consensus-level), and within-host diversity (​π​; deep sequencing). Each gene/level is            
shaded according to the ratio of mean nonsynonymous to synonymous differences per site to indicate               
purifying selection (​d​N ​/​d ​S​<1 or ​π​N ​/​π ​S​<1; blue) or positive selection (​d​N ​/​d ​S​>1 or ​π​N ​/​π ​S​>1; red). For each               
gene, sequences were only included in the between-species analysis if a complete, intact ORF (no               
STOPs) was present. Genes containing a second overlapping gene (OLG) in a different frame were               
analyzed separately for non-OLG and OLG regions using SNPGenie and OLGenie, respectively. The             
short overlap between ​ORF1a and ​ORF1b (​nsp11 and ​nsp12​) was excluded from analysis. Error bars               
represent the standard error of mean pairwise differences, estimated using 10,000 bootstrap            
replicates (codon unit). Significance (​Q​) refers to a Benjamini-Hochberg false-discovery rate           
correction after ​Z​-tests of the hypothesis that ​d​N ​-​d​S​=0 or ​π​N ​-​π​S​=0, evaluated using 10,000 bootstrap              
replicates (codon unit). See Methods for further details. 
 
 
between-species comparison where ​ORF3c is intact (SARS-CoV-2 vs. pangolin-CoV         
GX/P5L) (Figure 7, left). This signal is independent of whether STOP codons are present, so               
its consilience with the only open ORF in this region across sarbecoviruses is remarkable.              
The contrastive signal is also similar to that observed for known OLGs ​ORF3b in              
comparisons to SARS-CoV-1 (Figure 7, right) and ​ORF9b and ​ORF9c in both viruses             
(SFigure 3).  
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Figure 7. Between-species sliding window analysis of natural selection on overlapping frames            
of ​ORF3a​. ​Pairwise analysis of selection across sarbecoviruses using OLGenie (OLG-appropriate           
d​N ​/​d ​S values). On the left-hand side, the ss12 frame (see Table 1 footnotes) of each sarbecovirus                
genome is compared with this frame in SARS-CoV-2, showing some evidence for purifying selection              
in the ​ORF3c region when the pangolin-CoV GX/P5L sequence is compared to SARS-CoV-2. On the               
right-hand side, this analysis is repeated for ss13, this time with respect to SARS-CoV-1, where               
ORF3b in ss13 is functional. Here it is seen that there is constraint in this frame across much of the                    
gene, across sarbecoviruses.  
 

Between-host evolution and pandemic spread 
We obtained ​n​=3,978 human SARS-CoV-2 consensus sequences from GISAID, limiting to           
whole-genome high-coverage sequences lacking indels in coding regions (accessed April          
10, 2020; Supplement). Between-host diversity was sufficient to detect marginally significant           
purifying selection across all genes (​π​N​/​π​S​=0.50, ​P​=0.0613, ​Z​-test; SFigure 4A-C) but not            
individual genes (Figure 6). Thus, we instead investigated single mutations over time. One             
high-frequency mutation denoted ​ORF3c​-LOF (​ORF3c ​-loss-of-function) causes a STOP        
codon in ​ORF3c (3c-E14*) but a nonsynonymous change in ​ORF3a (3a-Q57H). This            
mutation increases in frequency over time in multiple locations (G25563U; SFigure 4D),            
raising the possibility that it experiences natural selection on ​ORF3a​, ​ORF3c​, or both. This              
variant is also not observed in any other sarbecovirus included in our analysis (Figure 5;               
Supplement), where the most common variant causing an ORF3c ​STOP is instead            
synonymous in ​ORF3a​ (C25614U).  
 
With respect to ​ORF3a​, ​ORF3c​-LOF (G25563U) has been identified as a strong candidate             
for positive selection for its effect as ​ORF3a​-Q57H (Kosakovsky-Pond 2020). However,           
temporal allele frequency trajectories (SFigure 4D) and similar signals from phylogenetic           
branch tests are susceptible to ascertainment bias (e.g., preferential sequencing of imported            
infections and uneven geographic sampling) and stochastic error (e.g., small sample sizes).            
Thus, we performed an independent assessment to partially account for these confounding            
factors. We first constructed the mutational pathway leading from the SARS-CoV-2           
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haplotype collected in December 2019 to the haplotype carrying ​ORF3c​-LOF (G25563U).           
This pathway involves five mutations (C241U, C3037U, C14408U, A23403G, G25563U),          
constituting five observed haplotypes (EP–3 → EP–2 → EP → EP+1 → EP+1+LOF, shown              
in Table 2). Here, EP is suggested to have driven the European Pandemic (detected in               
German patient #4, footnote 3 of Table 2; Forster et al. 2020; Rothe et al. 2020); EP–3 is                  
the Wuhan founder haplotype; and +LOF refers to ​ORF3c​-LOF. We then documented the             
frequencies and earliest collection date of each haplotype (Table 2) to determine whether             
ORF3c​-LOF occurred early on the EP background. 
 
Surprisingly, despite its expected predominance in Europe due to founder effects, the EP             
haplotype is extremely rare. By contrast, haplotypes with one additional mutation (C14408U)            
on the EP background are common in Europe, with ​ORF3c​-LOF occurring very early on this               
background to create EP+1+LOF from EP+1. Neither of these two haplotypes is observed in              
China (Table 2), suggesting that they arose in Europe subsequent to the arrival of the EP                
haplotype in February. Thus, we further partitioned the samples into two groups,            
corresponding to countries with or without early (January) samples (“early founder” and “late             
founder”, respectively) (Figure 8). In the early founder group, EP–3 is the first haplotype              
detected in all countries but Germany, consistent with most early COVID-19 cases being             
related to travel from Wuhan. As implies that genotypes EP–3 and EP had longer to spread                
in the early founder group, it is surprising that their spread is dwarfed by the increase of                 
EP+1 and EP+1+LOF starting in late February. This turnover is most obvious in the late               
founder group, where multiple haplotypes are detected in a narrow time window, and the              
number of cumulative samples is always dominated by EP+1 and EP+1+LOF. Thus, the             
quick spread of ​ORF3c​-LOF seems to be caused by its linkage with another driver, either               
C14408U (+1 variant) or a subsequent ​variant(s) occuring on the EP+1+LOF background            
(Discussion). These observations highlight the necessity of empirically evaluating the effects           
of ​ORF3c ​-LOF, linked variants, and their interactions with Spike-D614G (A23403G).  
 

Within-host diversity and mutational bias 
For within-host analyses, we obtained ​n​=401 high-depth (>50-fold coverage) human          
SARS-CoV-2 samples from the Sequence Read Archive. Within human hosts, 42% of SNPs             
passed our false-discovery rate criterion (Methods), with a median minor allele frequency of             
2% (21 reads; 1,344 depth). The non-OLG regions of ​N again show significant purifying              
selection (​π​N​/​π ​S​=0.39; ​Q​=0.0477), but ​ORF3c remains non-significant (​π​N​/​π​S​=1.73;        
Q​=0.701) (SFigure 4A, middle). We also examined 6 high-depth samples of pangolin-CoVs            
from Guangxi, but no conclusions could be drawn (e.g., due to low quality; Methods;              
Supplement).  
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Figure 8. Pandemic spread of EP+1 haplotype and the hitchhiking of ​ORF3c​-LOF. ​Cumulative             
frequencies of haplotypes in samples from Germany and five other countries with the most abundant               
sequence data. Countries are grouped into early founder (left) and late founder (right) based on the                
presence of absence of SARS-CoV-2 samples from January, respectively. In the early founder group,              
EP–3 (gray) is observed much earlier than other haplotypes in France and the US, and EP (red) is                  
observed early in Germany, giving them the advantage of a founder effect. However, neither EP nor                
EP–3 dominate later spread. Instead, EP+1 (yellow) and EP+1+LOF (blue) increase much faster             
despite their later occurrence in these countries. In the late founder group, multiple haplotypes occur               
at almost the same time, but EP-3 and EP spread slower. The green dashed line denotes the                 
combined frequencies of EP+1 and EP+1+LOF (yellow and blue, respectively).  
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Table 2. ​ The mutational pathway to European pandemic founder haplotypes​+ 

Ancestral allele 
Coordinate  
Derived allele  EP–3 EP–2 EP ​3 EP+1 ​3 EP+1+LOF 

C241U 0 0 1 1 1 

C3037U 0 0 1 1 1 

C14408U 0 0 0 1 1 

A23403G​4 0 1 1 1 1 

G25563U 0 0 0 0 1 

Earliest collection ​* 24-Dec 7-Feb 28-Jan 20-Feb 21-Feb 

Earliest location ​* Wuhan Wuhan 
Munich 
(Shanghai) ​4 Lombardy 

Hauts de 
France 

Occurrence in China  233 1 1 (2) ​4 0 0 

Occurrence in Europe 458 0 21 1153 310 

Occurrence in Italy 1 0 0 27 0 

Occurrence in Germany 15 0 1 11 21 

Occurrence in Belgium 27 1 20 187 27 

Occurrence in UK 210  0   0  338  38 

Occurrence in Iceland 56  0  0  212  54 

Occurrence in France  14  0 72 102 

Occurrence in US 467 0 0 88 ​2 326 ​2 

Occurrence in GISAID ​1 1610 2 22 1455 752 
+​ The haplotypes are here defined by five variants in the table, and other variants with lower frequency on these 
backgrounds are ignored. 
*​ The earliest collection location and time are highly subject to collection and submission bias and do not 
necessarily reflect where the mutation/haplotype first occurs. 
1​ These numbers are based on 3853 samples from Dec 24 to Apr 1 at the time of GISAID accession that passed 
both our quality control procedure for alignment (based on missingness) and for this particular analysis (no 
ambiguous genotype calls among the five SNPs in this table) unless otherwise stated. 
2 ​There is likely a testing bias in the US, as EP+1+LOF haplotype was often detected in Washington, and EP+1 
haplotype was not. 
3 ​This EP haplotype is first detected in German patient #4, a documented “founder” for coronavirus spread in 
Germany. However, neither EP haplotype nor EP+1 haplotype was detectable between 28-Jan and 20-Feb, but 
they immediately became a major haplotype when EP+1 became detectable. The failure of detecting these two 
haplotypes during the three weeks could potentially be explained by ascertainment bias, e.g., lack of testing for 
travel-independent cases. 
4​ This Shanghai sample EPI_ISL_416327 has 1.32% of poly-N and failed our quality control process, added here 
since it is potentially relevant to the origin of EP haplotype. If this sample is included, the EP haplotype is 
observed in China and Shanghai twice. 
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Figure 9. High-frequency within-host mutations. Mutations with a minor allele frequency of ≥0.025             
in one or more of ​n​=401 samples are shown. Only variants where the major allele matches the                 
Wuhan-Hu-1 genome were considered. Each locus has up to three possible single-nucleotide derived             
alleles compared to the reference background. Open circles (black outlines) show the pooled             
frequencies of all minor alleles (“All”), while solid circles (color fill) show the frequencies of individual                
derived alleles. For most sites, only one derived mutation type (e.g., C→U) was observed across all                
samples. Precluding co-infection by multiple genotypes and sequencing errors, derived mutations           
occurring in more than one sample (y axis) must be identical by state but not descent (i.e., recurrent).                  
Genome positions are plotted on the x-axis, with distinct genes shown in different colors and               
overlapping genes shown as a black blocks within reference genes. Nonsynonymous and nonsense             
mutations (“NS”) are indicated with a red dot. 
 
 
Our within-host analysis allowed the detection of mutations recurring in multiple samples,            
which might indicate mutational pressure or selective advantage. Precluding co-infection by           
multiple genotypes (coinfection rate ​x​2 is negligible when infection rate ​x is small), derived              
mutations occurring in more than one sample must be identical by state but not descent (i.e.,                
recurrent). Limiting to 220 samples where the major allele was also ancestral (Wuhan-Hu-1             
genotype), ​ORF3c​-LOF is observed as a minor allele in two samples (SRR11410536 and             
SRR11479046 at frequencies of 0.0190 and 0.0463, respectively). This frequency of           
recurrent mutation (2 of 220) is high but not unusual, as 1.76% of genomic changes have an                 
equal or higher derived allele frequency. In addition, no recurrent mutations with frequency             
>2.5% (Figure 9) occur in ​ORF3c​. However, we note that a small number of genomic loci                
exhibit high rates of recurrent mutations, with five mutations observed in >10% of host              
samples (Methods; Figure 9, SFigure 5). Surprisingly, another STOP mutation (A404U;           
nsp1-​L47*) is observed in the majority of samples (Figure 9), unexplainable by mutational             
bias. ​As NSP1 promotes host mRNA degradation and suppresses host protein synthesis in             
SARS-CoV-1 (Kamitani et al. 2006), its full-length form likely plays a similar role in              
SARS-CoV-2, and deactivated ​nsp1 (A404U) may be under frequency dependent selection           
within-host.  

16 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 22, 2020. ; https://doi.org/10.1101/2020.05.21.109280doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.21.109280
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Discussion 
Our analyses provide strong evidence that SARS-CoV-2 contains a third overlapping gene,            
ORF3c​, that has not been consistently identified or fully analyzed before this study. The              
annotation of a newly emerged virus is difficult, and OLGs tend to be less carefully               
documented than non-OLGs, for example, ​ORF9b and ​ORF9c are still not annotated in the              
most used reference genome, Wuhan-Hu-1 (NCBI: NC_045512.2). This difficulty is          
exacerbated for SARS-CoV-2 by the highly dynamic process of frequent gains and losses of              
accessory genes across the ​Sarbecovirus subgenus. Therefore, ​de novo and          
homology-based annotation are both essential, followed by careful expression analyses          
using multi-omic data and evolutionary analyses within and between species. In particular,            
we emphasize the importance of using whole-gene or genome alignments when inferring            
homology for both OLGs and non-OLGs, taking into account genome positions and all             
reading frames. Unfortunately, in the case of SARS-CoV-2, the lack of such inspections has              
led to mis-annotation and a domino effect. For example, homology between ​ORF3b            
(​Sarbecovirus​) and ​ORF3c (SARS-CoV-2) has been implied (Chan et al. 2020) and repeated             
(Table 1). This has led to unwarranted inferences of shared functionality (e.g., “Orf3b             
[​ORF3c ​] is shown to be an interferon antagonist and is involved in pathogenesis”; Gordon et               
al. 2020) and subsequent claims of homology between ​ORF3b and other putative OLGs             
within ORF3a of SARS-CoV-2, e.g., ​ORF3h/3a* (on the basis of a shared reading from              
despite having no shared genomic positions; Pavesi 2020). Given the speed of growth of              
SARS-CoV-2 literature, it is likely this mistake will be further promulgated. We therefore             
provide a detailed annotation of Wuhan-Hu-1 protein-coding genes and codons in           
Supplement, respectively, as a resource for future studies. 
 
Our study highlights the highly dynamic process of frequent gains and losses of accessory              
genes across the ​Sarbecovirus subgenus, with the greatest functional constraint observed           
for the most highly expressed genes (SFigure 2). Indeed, while many or all accessory genes               
may be dispensable for viruses in cell culture, they often play an important role in natural                
hosts (Forni et al. 2017), and their loss may represent a key step in adaptation to new hosts                  
after crossing a species barrier (Gorbalenya et al. 2006). For example, the absence of              
full-length ​ORF3b in SARS-CoV-2 has received attention from few authors (e.g.,           
Lokugamage et al. 2020), even though it plays a central role in SARS-CoV-1 infection and               
early immune interactions as an interferon antagonist (Kopecky-Bromberg et al. 2007), with            
effects modulated by ORF length (Zhou et al. 2012). ​ORF3b is central in SARS-CoV-1              
infection and early immune interactions and its absence or truncation in SARS-CoV-2 may             
be immunologically important (Yuen et al. 2020), e.g., in the suppression of type I interferon               
induction (Konno et al. 2020). Furthermore, the apparent presence of the ​ORF3c coincident             
with the inferred entry of SARS-CoV-2 into humans from a hitherto undetermined reservoir             
host suggests that this gene may be functionally relevant for the emergent properties of              
SARS-CoV-2, analogous to ​asp​ for HIV-1-M (Cassan et al. 2016).  
 
Excluding OLGs when studying regions with OLG can lead to erroneous detection of natural              
selection (or lack thereof). For example, a synonymous variant in one reading frame is very               
likely to be nonsynonymous in a second overlapping frame. As a result, purifying selection              
against the nonsynonymous effect in the second frame will lower ​d​S (raise ​d​N​/​d ​S​) in the first                
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frame, increasing the likelihood of positive selection misinference (Holmes et al. 2006;            
Nelson et al. 2020). Such errors could, in turn, lead to mischaracterization of the genetic               
contributions of OLG loci to important viral properties such as incidence and persistence.             
One potential consequence is misguided countermeasure efforts, e.g., failure to detect           
functionally conserved or immunologically important regions. Finally, although only ​ORF3c is           
discussed in this study, other OLG candidates were also assessed at the between-host             
level, of which one shows evidence of translation in ribosome profiling and purifying             
selection (​π​N​/​π​S​=0.22, ​P​=0.0278; ​S-iORF2​ in Finkel et al. 2020) (Table 1). 
 
Our comprehensive evolutionary analysis of the SARS-CoV-2 genome demonstrates that          
many genes are under relaxed purifying selection, consistent with the exponential growth of             
the virus and consequent relaxation of selection (Gazave et al. 2013). At the between-host              
level, nucleotide diversity increases somewhat over the period 2019/12/24-2020/03/31 of the           
COVID-19 pandemic, tracking the number of locations sampled, while the ​π​N​/​π​S ratio            
remains relatively constant at 0.46 (±0.030 SEM) (SFigure 4). Other genes differ in the              
strength and direction of selection at the between- and within-host levels, suggesting a shift              
in function or importance over time. ​ORF3c and ​ORF8 are both among the youngest genes               
in SARS-CoV-2, taxonomically restricted to a subset of betacoronaviruses (Cui et al. 2019),             
and ​ORF8 exhibits relatively high levels of nonsynonymous change between isolates           
(between-host ​π​N​/​π ​S ratios) (Figure 6) and frequent insertions and deletions among           
sarbecoviruses (Figure 1; Supplement). High between-host ​π​N​/​π​S was also observed in           
SARS-CoV-1 ORF8 ​, perhaps due to a relaxation of purifying selection upon entry into civet              
cats or humans (Forni et al. 2017). However, ​ORF3c and ​ORF8 both exhibit strong antibody               
(B-cell epitope) responses (Finkel et al. 2020) and predicted T-cell epitope depletion (Figure             
4) in SARS-CoV-2. This highlights the important connection between evolutionary and           
immunologic processes (Daugherty and Malik 2012), as antigenic peptides allow immune           
detection and may impose a fitness cost for the virus. The loss or truncation of these genes                 
may share an immunological basis and deserves further attention. 
 
Although mutational bias marginally favors the recurrence of ​ORF3c​-LOF (within-host          
analysis), the quick expansion of this mutation and its haplotype during this pandemic is              
puzzelsome (between-host analysis). One potential explanation for the slower spread of           
EP–3 is a sampling policy bias in case isolation; in most countries, testing and quarantine               
enforcement were preferentially applied to travellers who recently visited Wuhan, which may            
have led to selective detection, isolation, quarantining, and tracing of EP–3 and EP             
haplotypes. Because mutations occurring within Europe (e.g., C14408U and G25563U) are           
not from intercontinental travelers, we expected they would contribute more to           
community-acquired infections, particularly as testing biases might have provided an          
opportunity for them to spread in Europe. However, the EP+1 and EP+1+LOF haplotypes             
also grow faster in the late founder group, where it is unclear which haplotype was more                
travel related. Because G25563U simultaneously creates a nonsynonymous change         
(​ORF3a​-Q57H) and a loss of function (​ORF3c​-LOF), it could influence the spread of             
SARS-CoV-2 through selection on either change. Despite that, the quick spread of G25563U             
seems to be caused by its early occurrence in linkage with the +1 variant (C14408U causes                
RdRp-P323L), suggesting that this mutation is the real driver and the increase in             
ORF3c​-LOF is due to hitchhiking. The spread of EP+1 and EP+1+LOF but not EP is               
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unexpected, as EP was the earliest haplotype and carried Spike-D614G (A23403G), a            
variant with predicted functional relevance (Bhattacharyya et al. 2020). Thus, it is possible             
that the +1 mutation (C14408U) acts synergistically with D614G or other mutations            
(5’UTR-C241U, ​nsp3​-C3037U) unique to the EP background, causing differences among the           
haplotypes in infection rate, disease rate, hospitalization rate, latent period, transmission           
rate, or other symptoms. The faster spread of EP+1+LOF than EP+1 in the early founder               
countries but not late founder countries (​p​=0.0312) also requires explanation. These           
observations highlight the necessity of empirically evaluating the effects of 3c-LOF           
(G25563U), 3a-Q57H (G25563U), RdRp-P323L (C14408U), and their interactions with         
Spike-D614G (A23403G). Lastly, because we excluded minor alleles with frequencies          
<2.5%, it is likely that the spread ​ORF3c​-LOF or other haplotypes is further assisted or               
hindered by subsequent mutations (Supplement). 
 
Our study has several limitations. Short peptides can be difficult to detect using mass              
spectrometry methods, and the second half of 3c does not contain any potential targets.              
Thus, we were unable to discriminate 3c, 9c, or 10 from noise even in two high-quality                
datasets, a limitation likely to be true of any proteomics dataset for SARS-CoV-2. With              
respect to between-host diversity, we focused on relatively abundant consensus-level          
sequence data; however, this approach can miss important variation (Holmes 2009),           
stressing the importance of deeply sequenced within-host samples, sequenced with          
technology appropriate for calling within-host variants. As we use Wuhan-Hu-1 for read            
mapping and remove duplicate reads, reference bias could potentially affect our within-host            
results (Degner et al. 2009). We detected natural selection using counting methods that             
examine all pairwise comparisons between or within specific groups of sequences, which            
may have less power than methods that trace changes over a phylogeny. However, this              
approach is robust to errors in phylogenetic and ancestral sequence reconstruction, and to             
artifacts due to linkage or recombination (Hughes et al. 2006; Nelson and Hughes 2015).              
Additionally, although our method for measuring selection in OLGs does not explicitly            
account for mutation bias, benchmarking with other viruses suggests detection of purifying            
selection is conservative (Nelson et al. 2020). Finally, given multiple recombination           
breakpoints in ​ORF3a and the relative paucity of sequence data for viruses closely related to               
SARS-CoV-2, our analysis could not differentiate between convergence, recombination, or          
recurrent loss in the origin of ​ORF3c​. 
 
In conclusion, OLGs are an important part of viral biology that deserve more attention. We               
document several lines of evidence for the expression and functionality of a novel OLG in               
SARS-CoV-2, here named ​ORF3c​, and compare it to other hypothesized OLG candidates in             
ORF3a​. Finally, we provide a detailed annotation of the SARS-CoV-2 genome and highlight             
mutations of potential relevance to the within- and between-host evolution of SARS-CoV-2            
as a resource for future studies. 
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Methods 

Genomic features and coordinates 
All genome coordinates are given with respect to reference sequence Wuhan-Hu-1 (NCBI:            
NC_045512.2; GISAID: EPI_ISL_402125) unless otherwise noted. SARS-CoV-1 genome coordinates         
are given with respect to reference sequence Tor2 (NC_004718.3). SARS-CoV-2 Uniprot peptides            
were obtained from ​https://viralzone.expasy.org/8996 ​, where ​ORF9c is referred to as ​ORF14​.           
Nucleotide sequences were translated using R::Biostrings (Lawrence et al. 2013), Biopython (Cock et             
al. 2009), or SNPGenie (Nelson et al. 2015). Alignments were viewed and edited in AliView v1.20                
(Larsson 2014). To identify OLGs using the Schlub et al. codon permutation method (Schlub et al.                
2018), all 12 ORFs annotated in the Wuhan-Hu-1 reference genome were used as a reference               
(NCBI=NC_045512.2; ​ORF1a​, ​ORF1b​, ​S​, ​ORF3a​, ​E​, ​M​, ​ORF6 ​, ​ORF7a​, ​ORF7b​, ​ORF8 ​, ​N​, and             
ORF10​).  

SARS-CoV-2 genome data and alignments 
SARS-CoV-2 genome sequences were obtained from GISAID on April 10, 2020 (Supplement). Whole             
genomes were aligned using MAFFT v7.455 (Katoh and Standley 2013), and subsequently discarded             
if they contained internal gaps (-) >900 nt from either terminus, a length sufficient to exclude                
sequences with insertions or deletions (indels) in coding regions. Coding regions were identified using              
exact or partial homology to SARS-CoV-2 or SARS-CoV-1 annotations.  

Sarbecovirus genome data and alignments 
SARS-CoV-related genome IDs were obtained from Lam et al. (2020) and downloaded from GenBank              
or GISAID. Only genotype Wuhan-Hu-1 was used to represent SARS-CoV-2. Except for            
pangolin-specific analyses, only genotypes GX/P5L and GD/1 were used to represent pangolin-COVs;            
GD/1 was chosen as a representative because the other lacks the ​S gene and contains 27.76% Ns,                 
while GX/P5L was chosen because it is one of two high-coverage sequences derived from lung tissue                
that also contains no Ns. Other sequences were excluded if they lacked an annotated ​ORF1ab with a                 
ribosomal slippage, or contained a frameshift indel in any gene, leaving 21 sequences for analysis               
(Supplement). To produce whole-genome alignments, we first aligned all sequences using MAFFT.            
Then, coding regions were identified using exact or partial sequence identity to SARS-CoV-2 or              
SARS-CoV-1 annotations, translated, and aligned at the amino acid level using ProbCons v1.12 (Do              
et al. 2005). The longest gene was used in the case of OLGs. Amino acid alignments were then                  
imposed on the coding sequence of each gene using PAL2NAL v14 (Suyama et al. 2006: 2) to                 
maintain complete codons. Finally, whole genomes were manually shifted to match the codon             
alignments in AliView. Codon breaks were preferentially resolved to align S/Q/T at 3337-3339 and L               
with T/I at 3343-3345 because of biochemical similarity. This preserved all nucleotides of each              
genome while concurrently incorporating codon-aware alignments. 

Phylogenetic analysis and ancestral sequence reconstruction 

Phylogenetic relationships among isolates were explored using maximum likelihood phylogenetic          
inference, as implemented in IQ-tree (Nguyen et al. 2015). The generalized time-reversible (GTR;             
Tavaré 1986) and non-reversible (asymmetric substitution matrix; Boussau and Gouy 2006) were            
contrasted based on their logLik value, while accounting for among-site rate heterogeneity using             
discrete rate categories modeled by the Γ distribution (Yang 1995) and the FreeRate model (Soubrier               
et al. 2012). 
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Proteomics analysis 

iBAQ values (proportional estimates of the molar protein quantity of a protein in a given sample,                
allowing relative quantitative comparisons) were computed using the Max-Quant software (Cox and            
Mann 2008) as the sum of all peptide intensities per proteins divided by the number of theoretical                 
peptides per protein.  

Ribo-seq analysis 

Ribo-seq datasets with accession numbers SRR117133166, SRR117133167, SRR117133168, and         
SRR117133169 (Finkel et al. 2020) were downloaded from the Sequence Read Archive. These             
samples comprised the data for ribosomes stalled with either lactimidomycin or harringtonine, with the              
Vero E6 cells harvested at 24hours post infection, and had higher sequence coverage depth than               
other samples, allowing for reliable start determination. They were mapped to the Wuhan-Hu-1             
reference genome with the sequenced strain’s mutations, as listed in Finkel et al. (2020). Mapping               
used Bowtie2 (Langmead et al. 2019) local alignment, with a seed length of 20 and up to one                  
mismatch allowed. Mapped reads within 15 nucleotides of each putative start site were then counted               
and counts plotted using the 5’ most mapped position of each read.  

NetMHCPan T-cell epitope analysis 
Viral protein sequences were analyzed using 9-mer substrings in NetMHCpan4.0 (Jurtz et al. 2017).              
Twelve (12) HLA supertype representative were used in the analysis: HLA-A*01:01 (A1),            
HLA-A*02:01 (A2), HLA-A*03:01 (A3), HLA-A*24:02 (A24), HLA-A*26:01 (A26), HLA-B*07:02 (B7),          
HLA-B*08:01 (B8), HLA-B*27:05 (B27), HLA-B*39:01 (B39), HLA-B*40:01 (B44), HLA-B*58:01 (B58),          
and HLA-B*15:01 (B62). NetMHCpan4.0 returns percentile ranks that characterize a peptide’s           
likelihood of antigen presentation compared to a set of random natural peptides. We employed the               
suggested threshold of 2% to determine potential presented peptides, and 0.5% to identify strong              
MHC binder. Both strong and weak binders were considered predicted epitopes. 

Statistical tests on synonymous and nonsynonymous rate 
Statistical and data analyses and visualization were carried out in R v3.5.2 (R Core Team 2018)                
(libraries: boot, RColorBrewer, scales, tidyverse), Python (BioPython, pandas) (McKinney 2010),          
Excel, Google Sheets, and PowerPoint. Colors were explored using Coolors (​https://coolors.co ​).           
Copyright-free images of a bat, human, and pangolin were obtained from Pixabay            
(​https://pixabay.com​). Only two-sided ​P​-values are reported for statistical tests. For known and            
putative OLGs, the ​d​N ​/​d ​S (​π​N ​/​π ​S​) ratio was estimated using ​d​NN ​/​d ​SN (​π​NN ​/​π ​SN ​) for the reference frame               
and or ​d​NN ​/​d ​NS (​π​NN ​/​π ​NS ​) for the alternate frame (ss12 or ss13), because the number of SS                
(synonymous/synonymous) sites was insufficient to estimate ​d​SS (​π​SS​). Unless otherwise noted, the            
null hypothesis of ​d​N ​-​d​S​=0 (​π​N ​-​π​S​=0) was evaluated using both ​Z and achieved significance level              
(ASL) tests (Nei and Kumar 2000) with 10,000 and 1,000 bootstrap replicates for genes and sliding                
windows, respectively, using individual codons (alignment columns) as the resampling unit (Nei and             
Kumar 2000). For ASL, ​P​-values of 0 were reported as the lowest non-zero value possible given the                 
number of bootstrap replicates. Benjamini-Hochberg (Benjamini and Hochberg 1995) or          
Benjamini-Yekutieli (Benjamini and Yekutieli 2001) false-discovery rate corrections (​Q​-values) were          
used for genes (independent regions) and sliding windows (contiguous overlapping regions),           
respectively. 
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Between-species analyses 
Because the uncorrected ​d value often exceeded 0.1 in between-species comparisons, a            
Jukes-Cantor correction (Jukes and Cantor 1969) was applied to ​d​N and ​d​S estimates. For each ORF,                
sequences were only used to estimate ​d​N ​/​d ​S if a complete, intact ORF (no STOPs) was present.                
Additionally, the following codons were excluded from analysis: codons 1-13 of ​E​, which overlap              
ORF3b in SARS-CoV-related taxa; codons 62-64 of ​ORF6 ​, which follow an early STOP in some taxa;                
and codons 72-74 of ​ORF9c​, which following an early STOP in some taxa. 

Between-host analyses 
To quantify the diversity and evenness of sample locations, we quantified their entropy as -∑​p​*ln(​p​),               
where ​p ​is the number of distinct (unique) locations or countries reported for a given window (Ewens                 
and Grant 2001). 

Cumulative haplotype frequency 
We define haplotypes along the mutational pathway using all five high DAF mutations from              
Wuhan-Hu-1 to ​ORF3c​-LOF, and subsequent mutations after ​ORF3c​-LOF are ignored in the            
haplotype analysis. Samples with missing data at any of the five loci are removed from the haplotype                 
analysis. We calculate the cumulative haplotype frequency of each haplotype in Germany (where EP              
haplotype is a documented founder) and five other countries with the most abundant samples by the                
time of data accession. The cumulative frequency is calculated as the total number of occurrences of                
each haplotype collected by each day divided by the total number of samples from the same country.                 
Countries are subsequently divided into early founders and late founders to investigate founder             
effects. Early founder countries tend to have more than a few samples from January, and late                
founders tend to have samples collected only after mid-February.  

Within-host diversity 
For within-host analyses, we obtained ​n​=401 high-depth (at least 50-fold mean coverage) human             
SARS-CoV-2 samples sequenced with Illumina technology, from the Sequence Read Archive. Only            
Illumina samples were used as some Nanopore samples exhibited apparent systematic bias in calling              
putative intrahost SNPs, and this technology has also been shown to be unsuitable for intra-host               
analysis (Grubaugh et al. 2019). Reads were trimmed with BBDUK (Bushnell B. 2017. BBTools.              
https://jgi.doe.gov/data-and-tools/bbtools/​), and mapped against the Wuhan-Hu-1 reference sequence        
using Bowtie2 (Langmead and Salzberg 2012) with local alignment, seed length 20, and up to 1                
mismatch. SNPs were called using the LoFreq (Wilm et al. 2012) variant caller from mapped reads                
with sequencing quality and MAPQ both at least 30. Only single-end or the first read in a pair of                   
paired-end reads were used. Variants were dynamically filtered based on each site’s coverage using              
a binomial cutoff to ensure a false-discovery rate of ≤1 within-host variant in our study (401 samples),                 
assuming a mean sequencing error rate of 0.2% (Schirmer et al. 2016). 

To estimate ​π​, numbers of nonsynonymous and synonymous differences and sites were first             
calculated individually for each of the 401 samples using SNPGenie (Nelson et al. 2015)              
(​https://github.com/chasewnelson/SNPGenie ​). Next, average within-host numbers of differences and        
sites were calculated for each codon by taking the mean across all samples. For example, if a                 
particular codon contained nonsynonymous differences in two of 401 samples, with the two samples              
exhibiting mean numbers of 0.01 and 0.002 pairwise differences per site, this codon was considered               
to exhibit a mean of (0.01+0.002)/401=0.0000299 pairwise differences per site across all samples.             
These codon means were then treated as independent units of observation during bootstrapping. 

Pangolin samples examined refer to Sequence Read Archive records SRR11093266,          
SRR11093267, SRR11093268, SRR11093269, SRR11093270, SRR11093271. Only 179 single        
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nucleotide variants were called prior to our FDR filtering, and samples SRR11093271 and             
SRR11093270 were discarded entirely due to low mapping quality. We also note that after our quality                
filtering, 4 samples contain consensus alleles that do not match their reference sequence (at GISAID):               
P1E, P4L, P5E, and P5L (Supplement). 

Within-host recurrent mutations analyses 
We assume that each host was infected by a small number of viruses of the same genotype. Under                  
this assumption, the minor allele of each segregating site within-host is either due to genotyping and                
sequencing artifacts or due to new mutations during or post replication. Because there are very few                
loci with high frequency derived allele between-host, and because the Wuhan-Hu-1 genome is used              
as the reference in mapping, we here only consider within-host mutations against the reference              
background. There are four possible bases at each locus, A, U, G, and C, and three possible                 
mutational directions against the Wuhan-Hu-1 reference genome. For each locus, we calculate the             
number of samples with reference allele as N = N ​1 + N ​2 ​, where N ​1 is the number of samples that all                     
reads mapped to the Wuhan reference allele, and N ​2 is the number of samples that the Wuhan                 
reference allele is major allele. Out of N ​2 ​, we calculated the number of samples carrying each of the                  
three possible non-reference alleles, as N ​A​, N ​U ​, N ​G​, N ​C ​. If A is one of the observed non-reference                 
alleles, we would calculate the frequency of A as p ​A​= N ​A​/N. If the reference allele is U, we calculate                   
p ​A​, p ​G​, p ​C ​, and p ​All = p ​A + p ​G + p ​C ​. A larger frequency indicates the derived allele is observed in many                      
samples. The Derived Allele Frequency (DAF) within-host is calculated as the total number of reads               
mapped to the observed minor allele divided by the total number of reads mapped to the locus. If all                   
reads are mapped to the Wuhan-Hu-1 reference allele, then the DAF = 0. There are five mutations                 
that occur in more than 10% of the samples, four of which are nonsynonymous, for which we plotted                  
their DAF within-host. For this analysis, we did not apply the per-site FDR cutoff, thus a DAF=0 is                  
equivalent to the absence of reads mapped to the mutation, after reads are filtered by sequence                
quality, mapping quality and LoFreq’s default significance threshold (P-value = 0.010000).  
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Supplementary Figures 
 

 
Supplementary Figure 1. ​Structural prediction for 3c protein. Independent computational          
modeling predictions of α-helices at the secondary (left inset, carried out in NetSurf v2) and tertiary                
structure levels (right inset, carried out in I-TASSER). Folding concordance with the closest protein              
structure match is shown (rightmost inset, aligned with TM-align). For explanation of shown metrics,              
see ​https://zhanglab.ccmb.med.umich.edu/I-TASSER ​. Chan et al. (2020) also predict a fold with           
α-helices (Raven Kok, pers. comm.). 
 
  

28 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 22, 2020. ; https://doi.org/10.1101/2020.05.21.109280doi: bioRxiv preprint 

https://zhanglab.ccmb.med.umich.edu/I-TASSER/
https://doi.org/10.1101/2020.05.21.109280
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
Supplementary Figure 2. Correlation between natural selection and protein expression. ​A weak            
negative Spearman correlation between the ratio of changes in amino acids to synonymous changes              
(​d​N ​/​d ​S​) and protein expression levels is observed across all three evolutionary levels: between             
species, between hosts, and within hosts. For each evolutionary level (panel), a given gene (color)               
has only one selection value (y axis) but two values of expression (x axis) from independent datasets                 
(shape). Selection is calculated either as ​d​N ​/​d ​S or, for the overlapping gene ​ORF9b​, in terms of the                 
OLG-appropriate measure ​d​NN ​/​d ​NS ​. 
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Supplementary Figure 3. Between-species sliding window of genes overlapping ​N​. ​Pairwise           
OLGenie analysis of the N gene across sarbecoviruses, in the ss13 reading frame. Each genome was                
compared with SARS-CoV-2 (left hand side) and SARS-CoV (right hand side plot). Methods as for               
Figure 7. 
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Supplementary Figure 4. SARS-CoV-2 between-host nucleotide diversity and allele frequencies          
as a function of time. Nonsynonymous (​π​N ​) and synonymous (​π​S​) nucleotide diversity, ​π​N ​/​π ​S​,             
diversity of sampling locations, and allele frequencies as a function of time for human SARS-CoV-2               
(GISAID data). Results show sliding windows of 14 days (step size=7 days) representing 13 time               
points since the first GISAID sample was collected (EPI_ISL_402123 on 12/24/2019). Regions with             
overlapping genes were excluded (​ORF3a​/​ORF3c ​, ​N​/​ORF9b ​, and ​N​/​ORF9c ​). Shaded regions show           
standard error of the mean (10,000 bootstrap replicates, codon unit). The horizontal dotted gray line               
denotes the ​π​N ​/​π ​S ratio expected under neutrality (1.0). Entropy in of sampling locations was defined               
as -∑​p​*ln(​p​), where ​p ​is the number of distinct (unique) locations or countries reported for a given                 
window (Ewens and Grant 2001). Observed (sampled) allele frequency trajectories are colored by             
continents with sufficient sample sizes (Supplement).  
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Supplementary Figure 5. Recurrent nonsynonymous mutations within multiple human hosts.          
Histogram of the derived allele frequency of the four most common recurrent with-host protein-coding              
mutations across 401 samples (bin width=0.01). Mutation A404U introduces a premature stop codon             
in ​nsp1​, whereas the remainder are nonsynonymous.  
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