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The probabilities that two loci in chromosomes that are separated by a certain genome length
can be inferred using chromosome conformation capture method and related Hi-C experiments.
How to go from such maps to an ensemble of three-dimensional structures, which is an important
step in understanding the way nature has solved the packaging of the hundreds of million base pair
chromosomes in tight spaces, is an open problem. We created a theory based on polymer physics and
the maximum entropy principle, leading to the HIPPS (Hi-C-Polymer-Physics-Structures) method
allows us to go from contact maps to 3D structures. It is difficult to calculate the mean distance
(〈r̄ij〉) between loci i and j from the contact probability (〈p̄ij〉) because the contact exists only
in a fraction (unknown) of cell populations. Despite this massive heterogeneity, we first prove
that there is a theoretical lower bound connecting 〈pij〉 and 〈r̄ij〉 via a power-law relation. We
show, using simulations of a precisely solvable model, that the overall organization is accurately
captured by constructing the distance map from the contact map even when the cell population is
heterogeneous, thus justifying the use of the lower bound. Building on these results and using the
mean distance matrix, whose elements are 〈r̄ij〉, we use maximum entropy principle to reconstruct
the joint distribution of spatial positions of the loci, which creates an ensemble of structures for the
23 chromosomes from lymphoblastoid cells. The HIPPS method shows that the conformations of a
given chromosome are highly heterogeneous even in a single cell type. Nevertheless, the differences
in the heterogeneity of the same chromosome in different cell types (normal as well as cancerous
cells) can be quantitatively discerned using our theory.

INTRODUCTION

The question of how chromosomes are packed in the
tight space of the cell nucleus has taken center stage
in genome biology, largely due to the spectacular ad-
vances in experimental techniques. In particular, the
routine generation of a large number of probabilistic con-
tact maps for many species using the remarkable Hi-C
technique [1–6] has provided us a glimpse of the genome
organization. This in turn has opened several avenues of
research with the hope of understanding the many fea-
tures associated with chromosomes, such as how they are
packaged in the nucleus, and how the chromosome orga-
nization affects the dynamics, and eventually function. A
high contact count between two loci means that they in-
teract with each other more frequently compared to ones
with low contact count. Thus, the Hi-C data describes
the chromosome structures in statistical terms expressed
approximately in terms of a matrix, the elements of which
indicate the probability that two loci separated by a spe-
cific genomic distance are in contact. The Hi-C data
provide only a two-dimensional (2D) representation of
the multidimensional organization of the chromosomes.
How can we go beyond the genomic contact information
to 3D distances between the loci, and eventually the spa-
tial location of each locus is an important unsolved prob-
lem. Imaging techniques, such as Fluorescence In Situ
Hybridization (FISH) and its variations, are the most di-
rect way to measure the spatial distance and coordinates
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of the genomic loci [7]. But currently, these techniques
are limited in scope because currently they provide in-
formation on only a small number of loci in a given ex-
perimental setup. Is it possible to harness the power of
the two methods to construct, at least approximately, 3D
structures of chromosomes? Here, we answer this ques-
tion in the affirmative by building on the precise results
for an exactly solvable Generalized Rouse Model for chro-
mosomes [8, 9], and by using certain unusual polymer
physics principles governing genome organization.

Several data-driven approaches have been developed
in order to go from Hi-C to 3D structure of genomes
[10–17] (see the summary in [18] for additional related
studies). Although these methods are insightful, they
do not predict the physical dimensions of the organized
chromosomes nor have the methods been validated, es-
pecially when the structures are highly heterogeneous.
These are difficult problems to solve using solely data-
driven based approaches to infer structures from Hi-C
data, without physical considerations, reflected in the
polymeric features of the chromosomes. One problem
is associated with the difficulty in reconciling Hi-C (con-
tact probability) and the FISH data (spatial distances)
[19–22]. For example, in interpreting the Hi-C contact
map, one makes the intuitively plausible assumption that
loci with high contact probability must also be spatially
close. However, it has been demonstrated using Hi-C
and FISH data that high contact frequency does not al-
ways imply proximity in space [19–22]. Because the cell
population is heterogeneous, even though they are syn-
chronized in the Hi-C experiments, a given contact is not
present with unit probability in all the cells. Elsewhere
[9], we showed that the heterogeneity in the genome or-
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ganization is the reason for the absence of one-to-one
relation between contact probability and spatial distance
between a pair of loci. The inconsistency between Hi-C
and FISH experiments makes it difficult to extract the
ensemble of 3D structures of chromosomes using Hi-C
data alone without taking into account the physics driv-
ing the condensed state of genomes. Even if one were
to construct polymer models that produce results that
are consistent with the inferred contact map from Hi-C,
certain features of the chromosome structures would be
discordant with the FISH data, reflecting the heteroge-
neous genome organization[23].

Despite the difficulties alluded to above, we have cre-
ated a theory, based on polymer physics concept and the
principle of maximum entropy to determine the 3D orga-
nization solely from the Hi-C data. The resulting physics-
based data-driven method, which translates Hi-C data
through polymer physics to average 3D coordinates of
each loci, is referred to as HIPPS (Hi-C-Polymer-Physics-
Structures). The purposes in the development creating
and applications of the HIPPS method are two fold. (1)
We first establish that there is a lower theoretical bound
connecting the contact probability and the mean 3D dis-
tance in the presence of heterogeneity in the genome orga-
nization. We prove this concept by using the Generalized
Rouse Model for Chromosomes (GRMC) for which accu-
rate simulations can be performed. (2) However, mean
spatial distances, 〈rij〉s, between the loci do not give
the needed 3D structures. In addition, it is important
to determine the variability in chromosome structures
because massive conformational heterogeneity has been
noted both in experiments [23, 30] and computations [9].
In order to solve this non-trivial problem, we use the
principle of maximum entropy to obtain the ensemble of
individual chromosome structures. The HIPPS method,
which allows us to go from the Hi-C contact map to the
three-dimensional coordinates, xi (i = 1, 2, 3, · · · , Nc),
where Nc is the length of the chromosome, may be sum-
marized as follows. First, we construct the mean dis-
tances 〈rij〉 between all i and j using a power-law rela-
tion connecting 〈pij〉, the probability that the loci i and
j are in contact measured in Hi-C experiments, and 〈rij〉.
The justification for the power law relation is established
using GRMC and polymer physics concepts. Then, using
the maximum entropy distribution P ({xi}) with 〈rij〉 as
constraints, we obtained an ensemble of chromosome 3D
structures (the 3D coordinates for all the loci).

We tested the HIPPS procedure rigorously using the
GRMC, which accounts for the massive heterogeneity
noted in recent experiments [23]. The application of our
theory to decipher the 3D structure of chromosomes from
any species is limited only by the experimental resolution
of the Hi-C technique. Comparisons with experimental
data for sizes and volumes of chromosomes derived from
the calculated 3D structures are made to validate the
theory. Our method predicts that the structures of a
given chromosome within a single cell and in different cell
types is heterogeneous. Remarkably, the HIPPS method

can detect the differences in the extent of heterogeneity
of a specific chromosome among both normal can cancer
cells.

RESULTS

Inferring the mean distance matrix (R̄) from
the contact probability matrix (P) for a homo-
geneous cell population: The elements, r̄ij , of the R̄
matrix give the mean spatial distance between loci i and
j. Note that rij is the distance value for one realization
of the genome conformation in a homogeneous popula-
tion of cells. In this case a given contact is present with
non-zero probability in all the entire cell population. The
elements pij of the P matrix is the contact probability be-
tween loci i and j. We first establish a power law relation
between r̄ij and pij in a precisely solvable model. For the
Generalized Rouse Model for chromosomes (GRMC), de-
scribed in Appendix A, the relation between r̄ij and pij
is given by,

pij = erf(2rc/
√
πr̄ij)− (4π/rcr̄ij)e

−4r2c/πr̄
2
ij

≡ fGRMC(r̄ij).
(1)

where erf(·) is the error function, and rc is the threshold
distance for determining if a contact is established. This
equation provides a way to calculate the distance matrix
(R̄) directly from the contact matrix (P) by inverting
fGRMC(r̄ij). Note that P is inferred only approximately
from Hi-C experiments. However, there are uncertain-
ties, in determining both rc due to systematic errors,
and pij due to inadequate sampling, thus restricting the
use of Eq.1 in practice. In light of these considerations,
we address the following questions: (a) How accurately
can one solve the inverse problem of going from the P
to the R̄? (b) Does the inferred R̄ faithfully reproduce
the topology of the spatial organization of chromosomes?
We use GRMC to answer these questions.

To answer these two questions, we first constructed the
distance map by solving Eq.1 for r̄ij for every pair with
contact probability pij . The P matrix is calculated using
simulations of the GRMC, as described in Appendix B.
For such a large polymer, some contacts are almost never
formed even in long simulations, resulting in pij ≈ 0 for
some loci. This would erroneously suggest that r̄ij →∞,
as a solution to Eq.1. Indeed, this situation arises often
in the Hi-C experimental contact maps where pij ≈ 0
for many i and j. To overcome the practical problem
of dealing with pij ≈ 0 for several pairs, we apply the
block average (a coarse-graining procedure) to P (de-
scribed in Appendix C), which decreases the size of the
P. The procedure overcomes the problem of having to
deal with vanishingly small values of pij while simulta-
neously preserving the information needed to solve the
inverse problem using Eq.1.

The simulated and constructed distance maps are
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FIG. 1. Comparison of the distance matrices (DMs) for the GRMC. (a) The simulated DM (lower triangle) and constructed
DM (upper triangle) are compared side by side. The color bar indicates the value of the mean spatial distance, 〈Rmn〉. The
constructed DM is obtained by solving Eq.3 using the CM (calculated using Eq.11). The matrix size is 2000 × 2000 after the
block averaging is applied to the raw data (Appendix C). The value of rc = 2.0a. The location of loop anchors are derived
from experimental data [6] over the range from 146 Mbps to 158 Mbps for Chromosome 5 in the Human GM12878 cell. (b)
Relative error δ is represented as a map. The relative error is calculated as, δ = (dI − dS)/dS, where dI and dS are the inferred
and simulated distances, respectively; δ increases for loci with large genomic distance indicating the tendency to overestimate
the distances. (c) Ward Linkage Matrices (WLMs) from the simulation and theoretical prediction, shown in the lower and
upper triangle, respectively, are in excellent agreement with each other.

shown in the lower and upper triangle, respectively
(Fig.1a). We surmise from Fig.1a that the two distance
maps are in excellent agreement with each other. There
is a degree of uncertainty for the loci pairs with large
mean spatial distance (elements far away from the
diagonal (Fig.1a,b) due to the unavoidable noise in the
contact probability matrix P. The Spearman correlation
coefficient between the simulated and theoretically
constructed maps is 0.97, which shows that the distance
matrix can be accurately constructed. However, a single
correlation coefficient is not sufficient to capture the
topological structure embedded in the distance map.
To further assess the global similarity between the R̄
from theory and simulations, we used the Ward Linkage
Matrix [24], which we previously used to determine the
spatial organization in interphase chromosomes [25].
Fig.1c shows that the constructed R̄ indeed reproduces
the hierarchical structural information accurately. These
results together show that the matrix R̄, in which
the elements represent the mean distance between the
loci, can be calculated accurately, as long as the P is
determined unambiguously. As is well known, this is not
possible to do in Hi-C experiments, which renders solving
the problem of going from P to R̄, and eventually the
precise three-dimensional structure extremely difficult.

A bound for the spatial distance inferred from
contact probability: The results in Fig.1 show that
for a homogeneous system (specific contacts are present
in all realizations of the polymer), R̄ can be faithfully
reconstructed solely from the P. However, the discrep-
ancies between FISH and Hi-C data in several loci pairs
[26] suggest that the cell population is heterogeneous,
which means that contact between i and j loci is present
in only a fraction of the cells. In this case, which one has

to contend with in practice [9, 23], the one-to-one map-
ping between the contact probability and the mean 3D
distances (as shown by Eq.1) does not hold, leading to
the paradox [19, 20] that high contact probability does
not imply small inter loci spatial distance.

Heterogeneity in genome organization implies that
given the contact probability, one can no longer deter-
mine the mean 3D distance uniquely, which implies that
for certain loci the results of Hi-C and FISH must be
discordant. Recently, we solved the Hi-C-FISH paradox
by calculating the extent of cell population heterogeneity
using FISH data and concepts in polymer physics. The
distribution of subpopulations could be used to recon-
struct the Hi-C data. For a mixed population of cells,
the contact probability pij and the mean spatial distance
〈r̄ij〉 between two loci m and n, are given by,

〈r̄ij〉 =

S∑
m

ηm,ij r̄m,ij (2)

〈pij〉 =
S∑
m

ηm,ijpm,ij (3)

where r̄m,ij and pm,ij are the mean spatial distance and
contact probability between i and j in mth subpopula-
tion, respectively. In the above equation, S is total num-
ber of distinct subpopulations, and ηm,ij is the fraction
of the subpopulation m, which satisfies the constraint∑S
m ηm,ij = 1. Although there exists a one-to-one rela-

tion between pm,ij and r̄m,ij in each mth subpopulation,
it is not possible to determine 〈pij〉 solely from 〈r̄ij〉 with-
out knowing the values of each ηm,ij and vice versa.

More generally, if we assume that there exists a con-
tinuous spectrum of subpopulations, 〈r̄ij〉 and 〈pij〉 can
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be expressed as,

〈r̄ij〉 =

∫
dr̄ijK(r̄ij)r̄ij (4)

〈Pij〉 =

∫
dpijQ(pij)pij (5)

where r̄ij and pij are the mean spatial distance and the
contact probability associated with a single population.
K(r̄ij) andQ(pij) are the probability density distribution
of r̄mn and pmn over subpopulations, respectively.

We have shown [9] that the paradox arises precisely
because of the mixing of different subpopulations. The
value ηm,ij , K(r̄ij) or Q(pij) in Eq. 2-5 in principle could
be extracted from distribution of 〈r̄ij〉, which can be mea-
sured using imaging techniques. However, this is usually
unavailable or the data are sparse which leads to the ques-
tion: Despite the lack of knowledge of the composition
of cell populations, can we provide an approximate but
reasonably accurate relation between 〈pij〉 and 〈r̄ij〉? In
other words, rather than answer the question (a) posed
in the previous section precisely, as we did for the homo-
geneous GRMC, we are seeking an approximate solution.
The GRMC calculations provide the needed insights to
construct the approximate relation to calculate distance
matrix from the contact probability matrix.

A key inequality: Let us consider a special case
where there are only two distinct discrete subpopula-
tions, and the relation between the r̄ij(r̄) and pij(pij)
is given by Eq. 1. According to Eqs. 2-3, we have
〈r̄〉 = ηr̄1 + (1− η)r̄2 = ηf−1

GRMC(p1) + (1− η)f−1
GRMC(p2),

and 〈p〉 = ηp1+(1−η)p2. Note that f−1
GRMC exists since f

is a monotonic function. Fig.2a gives a graphical illustra-
tion of the inequality f−1

GRMC(〈p〉) ≤ 〈r̄〉. This inequality
states that the mean spatial distance of the whole pop-
ulation has a lower bound of f−1

GRMC(〈p〉), which is the
mean spatial distance inferred from the measured contact
probability 〈p〉 as if there is only one homogeneous popu-
lation. This is a powerful result, which is the theoretical
basis for constructing the HIPPS method, allowing us to
go from Hi-C data to 3D organizations.

The inequality f−1
GRMC(〈p〉) ≤ 〈r̄〉 shows that a theoret-

ical lower bound for 〈r̄ij〉 exists, given the value of 〈pij〉
regardless of the compositions of the whole cell popula-
tion. In fact, such an inequality can be generalized for
arbitrary discrete or continuous distribution of subpopu-
lations. Let us assume that for a homogeneous system,
there exists a convex and monotonic decreasing function,
φ, relating the contact probability p and the mean spatial
distance r̄, r̄ = φ(p) (we neglect the suffix ij for better
readability). Note that φ takes the form of Eq. 1 for the
GRMC. It can be shown that the following inequality
holds (Appendix D),

〈r̄〉 ≥ φ(〈p〉) (6)

The above equation (Eq.6) shows that the lower
bound of the mean spatial distance of a heterogeneous
population is given by the mean spatial distance com-
puted from the measured contact probability as if the
cell population is homogeneous. The equality holds
exactly only when the population of cells is precisely
homogeneous. This finding is remarkably useful in
predicting the approximate spatial organization of chro-
mosomes from Hi-C contact map, as we demonstrate
below. For the GRMC, according to Eq. 6, we have
〈r̄ij〉 ≥ f−1

GRMC(〈pij〉), which is a special case in which
only two distinct discrete subpopulations are present.
Thus, the precisely solvable model suggests that the
approximate power law relating 〈pij〉 and 〈r̄ij〉 could
be used as a starting point in constructing the spatial
distance matrices using only the Hi-C contact map for
chromosomes.

Validation of the lower bound relating 〈pij〉 and
〈r̄ij〉 in heterogeneous cell population: In order to
investigate the effect of heterogeneity (contact between
i and j for all (i, j) pairs do not exist in all the cells)
on the quality of the constructed mean distance matrix
〈R̄〉 from the contact probability matrix 〈P〉, we simu-
lated a model system with two distinct cell populations.
One has all the CTCF mediated loops present (with frac-
tion η), and the other is a polymer chain without any
loop constraints (with fraction 1−η). We used the lower
bound, f−1

GRMC(〈pij〉), to infer 〈r̄ij〉 from 〈pij〉. The re-
sults, shown in Fig.2b,c,d, provide a numerical verifica-
tion of the theoretical lower bound linking contact prob-
ability and mean spatial distance. Fig.2b shows the scat-
ter plot for 〈r̄ij〉 versus 〈pij〉 from the simulation. The

theoretical lower bound, f−1
GRMC(〈pij〉) is shown in com-

parison. Fig.2b shows that the lower bound holds with
all the points are above it. Using the f−1

GRMC(〈pij〉), the
〈R̄〉 in Fig.2d are calculated from the simulated 〈P〉. The
comparison between the inferred and the simulated 〈R̄〉
(middle ad bottom in Fig.2d) show that the difference
between the constructed and simulated DMs is largest
near the loops resulting in an underestimate of the spa-
tial distances in the proximity of loops. This occurs be-
cause the constructed 〈R̄〉 is computed from the simu-
lated 〈P〉, which is sensitive to the heterogeneity of the
cell population. The difference matrices show that, al-
though the constructed 〈R̄〉 underestimated the spatial
distances around the loops, most of the pairwise distances
are hardly affected. This exercise for the GRMC justi-
fies the use of the lower bound as a practical guide to
construct 〈R̄〉 from the 〈P〉.

To show that the constructed 〈R̄〉 using the lower
bound gives a good global description of the chromosome
organization, we also calculated the often-used quantity
〈R(s)〉, the mean spatial distance as a function of the
genomic distance s, as an indicator of average struc-
ture (Fig.2c). The calculated 〈R(s)〉 differs only negli-
gibly from the simulation results. Notably, the scaling
of 〈R(s)〉 versus s is not significantly changed (inset in
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Fig.2c), strongly suggesting that constructing the 〈R̄〉 us-
ing the lower bound gives a good estimate of the average
size of the chromosome segment.

To further assess the quality of the constructed 〈R̄〉,
we calculated the WLMs for the heterogeneous system
with η = (0.1, 0.3, 0.5, 0.7, 0.9, 1.0) (see Fig.S1). The re-
sults are consistent with the visual comparison of the 〈R̄〉;
the calculated 〈R̄〉 for large η agree significantly better
with the simulations compared to small values of η. This
is also reflected in the distance correlation [27] between
the reconstructed and simulated WLMs (blue curve in
Fig.S1b), increasing from ≈ 0.8 to ≈ 1.0 from η < 0.7 to
η > 0.7. In contrast, the distance correlation coefficients
between the reconstructed and simulated 〈R̄〉 (red curve
in Fig.S1b) stays around 0.95 for all values of η, which
would not allow us to distinguish between different mod-
els.

It is worth noting that even for small values of η,
the distance correlation coefficient is 0.8, which is a
high value. This is consistent with the result shown in
Fig.2c that the constructed 〈R̄〉 gives a rough but rea-
sonable global estimation of the structural organization
even though it may deviate from the exact result in de-
tails. Taken together these results show that the recon-
structed 〈R̄〉 provides a fairly accurate description of the
conformations in spite of the presence of heterogeneity in
the conformations.

The distance correlation gives a global description
of the similarity between the simulated and inferred
DMs. To further investigate the degree of similarity
at different length scales, we computed the Adjusted
Mutual Information (AMI) scores between the simulated
and constructed clustering result from WLM by varying
the number of clusters (Fig.S1). A small number of
clusters corresponds to the large scale hierarchical
organization whereas a higher number of clusters reveals
the structure on the small length scale. For η ≤ 0.7,
AMI scores are low (Fig.S1) for the small number of
clusters and increases upon increasing the number of
clusters up to around 0.8. For η > 0.7, the AMI scores
remain around 0.9 throughout the range of the number
of clusters.

Inferring 3D organization of interphase chromo-
somes from experimental Hi-C contact map: To
apply the insights from the results from GRMC to ob-
tain the 3D organization of chromosomes, we conjecture
that a power law relation, first suggested using imaging
experiments [7] and subsequently established by us [25],
relating the contact probability between two genomic loci
〈pij〉 and 〈r̄ij〉 holds generally for chromatins. Thus, we
write,

〈r̄ij〉 = Λ〈pij〉−1/α (7)

where α and Λ are unknown coefficients. Again, note
that the 〈·〉 and ·̄ represent the average over subpopula-

tions and the average over individual conformations in
a single subpopulation, respectively. In a homogeneous
system, the equalities 〈r̄〉 = r̄ and 〈p〉 = p hold. For the
GRMC, Λ = rc and α = 3.0. From the ensemble Hi-C
experiments, 〈pij〉 can be inferred. For a self-avoiding
polymer, α ≈ 3.71 for two interior loci that are in
contact (see Appendix E). Based on experiments [7] and
simulations using the Chromosome Copolymer Model
[25] a tentative suggestion could be made for a numerical
value for α ≈ 4.0. Given the paucity of data needed to
determine α we follow the experimental lead [7] and set
it to 4.0, which is an unusually large value not associated
with any known polymer model. We show below that
the power-law relation given in Eq.7 provides a way to
infer the approximate 3D organization of chromosomes
from the experimental Hi-C contact map.

Experimental Validation on Eq7 and choice of α:
To further show that Eq.7 with α = 4 is accurate, we
calculated the square of the radius of gyration of all the
23 chromosomes using R2

g = (1/2N2
c )
∑
i,j〈r̄ij〉2. The

dashed line in Fig.3a is a fit of R2
g as a function of chromo-

some size, which yields Rg ∼ N0.27
c whereNc is the length

of the chromosome. For a collapsed polymer, Rg ∼ N1/3
c

and for an ideal polymer to be Rg ∼ N1/2
c . To ascertain

if the unusual value of 0.27 is reasonable, we computed
the volume of each chromosome using (4/3)πR3

g and com-
pared the results with experimental data [28]. The scal-
ing of chromosome volumes versus Nc of the predicted
3D chromosome structures using HIPPS is also in ex-
cellent agreement with the experimental data (Fig.3b).
The exponent 0.27 . 1/3 suggests the chromosomes
adopt highly compact, space-filling structure, which is
also vividly illustrated in Fig.4.

Since the value of Λ (Eq.7) is unknown, we estimate
it by minimizing the error between the calculated
chromosome volumes and experimental measurements.
We find that Λ = 117 nm, which is the approximate
size of a locus of 100 kbps (the resolution of the
Hi-C map used in the analysis). It is noteworthy
that the genome density computed using the value of
Λ = (100 · 103/(4/3)πΛ3)bps · nm−3 = 0.015bps · nm−3

is consistent with the typical average genome density of
Human cell nucleus 0.012bps · nm−3 [29]. The value of
Λ does not change the scaling but only the absolute size
of chromosome.

Generating ensembles of 3D structures using the
maximum entropy principle: The great variabil-
ity in the genome organization have been noted before
[9, 23, 30]. To investigate the structural heterogeneity of
the chromosomes, we ask the question: how to generate
an ensemble of structures consistent with the mean pair-
wise spatial distances between the loci? More precisely,
what is the joint distribution of the position of the loci,
P ({xi}), subject to the constraint that the mean pair-
wise distance is 〈||xi − xj ||〉 = 〈r̄ij〉? Generally, there
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FIG. 2. (Caption next page.)

exists an infinite number of P ({xi}), satisfying the con-
straint of mean pair-wise spatial distances. By adopt-
ing the principle of maximum entropy, we seek to find
the PMaxEnt({xi}) with the maximum entropy among
all possible P ({xi}). The maximum entropy principle

has been previously used in the context of genome or-
ganization [31, 32] for different purposes. We note par-
enthetically that the preserving the constraints of mean
pairwise distances is equivalent to preserving the con-
straints of mean squared pairwise distances. In practice,
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FIG. 2. (a) Lower Bound for mean spatial distance 〈r̄〉 illustrated graphically. The blue curve is the function f−1
GRMC which exists

since fGRMC is a monotonic function. The orange line is the secant line between points (p1, f
−1
GRMC(p1)) and (p2, f

−1
GRMC(p2)).

All the points between p1 and p2 on x-axis can be expressed as ηp1 + (1 − η)p2 ≡ 〈p〉 for some value of η ∈ [0, 1]. The
y-axis value corresponds to 〈p〉 is ηf−1

GRMC(p1) + (1 − η)f−1
GRMC(p2) ≡ 〈r̄〉 and f−1

GRMC(〈p〉) for the orange line and blue curve,
respectively. Notice that for any values of p1, p2 and η, the orange line is always above the blue curve, which proves the
inequality f−1

GRMC(〈p〉) ≤ 〈r̄〉. From the graph, it can also be noted the equality holds only when p1 = p2, which is to say
the cell population is homogeneous. (b) Scatter plot for mean pair-wise spatial distances versus the contact probability for
η = 0.3. Solid black line is the theoretical lower bound, given by the solution f−1

GRMC(〈pij〉). (c) Plots of 〈R(s)〉 as a function
of the genomic distance, s, for η = 0.3 and 0.7. The inset shows the same data on a log-log scale; 〈R(s)〉 is calculated using

〈R(s)〉 = (1/TM)
∑M

a=1

∑T
t=1

(
r
(a)
ij (t)δ(s − |i − j|)/(N − s)

)
. The theoretical predictions are in remarkable agreement with

simulations. (d) Simulated CM (top), simulated DM and inferred DM side by side (middle), and relative error map (bottom)
for η = 0.3 for GRMC. Note that all the maps are block averaged from size 10000 to size 400 as explained in the Appendix C.
The inferred DM is obtained using 〈r̄ij〉 = f−1

GRMC(〈pij〉). Relative error map is shown with blue color indicating larger error.
It is clear that the spatial distances are underestimated at the loops

we found that using the constraints of squared distances,
〈||xi − xj ||2〉 = 〈r̄2

ij〉, yields better convergence. Recall

that the PMaxEnt({xi}) with respect to the constraints
of the mean squared pairwise spatial distances is,

PMaxEnt({xi}) =
1

Z
exp
(
−
∑
i<j

kij ||xi − xj ||2
)

(8)

where kij are the Lagrange multipliers that are chosen so
that the average values 〈||xi−xj ||2〉 matches 〈r2

ij〉, which
could be either inferred from the Hi-C contact map or
directly measured in FISH experiments; Z is the normal-
ization factor. The merit of the maximum entropy distri-
bution (Eq.8) is that it is both data-driven and physically
meaningful since the parameters kij are inferred from ex-
perimental data and the term kij ||xi−xj ||2 can be viewed
as pair-wise potential energy between the loci. Indeed,
Eq. 8 is exactly the same as the generalized Rouse model
[8] where kij are the spring constants between genomic
loci.

The procedure used to generate an ensemble of
3D chromosome structures is the following: First, we
compute the mean spatial distance matrix from contact
map using Eq. 7 with α set to 4.0. The value of the
scaling factor Λ = 117nm, calculated using additional
experimental constraints (see the previous section).
Recall that Λ only sets the length scale but has no effect
on the conformational ensemble of the chromosome.
Using the iterative scaling algorithm, we obtain the
values of kij (Appendix G). Once the values of kij are
obtained, PMaxEnt can be directly sampled as a multi-
variate normal distribution, thus generating an ensemble
of chromosome structures. Fig.5a shows the comparison
between the inferred DM and the DM for Chromosome
1 obtained using the maximum entropy principle. It is
visually clear that the two DMs are in excellent agree-
ment (see Fig.S2-S7 for the other chromosomes). We
should emphasize that the maximum entropy method
described here, in principle, can achieve exact match
with the inferred DM. The small discrepancies are due
to 1) the quality of convergence and 2) the intrinsic er-
ror in the Hi-C map and the inferred DM derived from it.

Characteristics of 3D chromosome structures:
The 3D conformations are specified by xi, i =
1, 2, 3, · · · , Nc where Nc is the number of loci at a given
resolution (the centromeres are discarded due to lack to
information about them in the Hi-C contact map). The
values of Nc for all the 23 chromosomes are given in Ta-
ble.S1. We generated an ensemble of 1,000 structures
for each of the 23 Human interphase chromosomes using
the procedure described above. Fig.4a shows the typical
conformations of averaged value of radius of gyration for
each chromosome. Visually it is clear that there is consid-
erable shape heterogeneity among the chromosomes. To
quantify the shape of chromosomes, we obtain the dis-
tribution of relative shape anisotropy κ2 (Appendix H).
Fig.4b shows the violin plots of κ2 for all the 23 chro-
mosomes, ordered by value of 〈κ2〉. The chromosomes
exhibit considerable variations in κ2. Chromosome 13 is
most spherical and chromosome 19, 9 and 21 have the
most elongated shape.

We can draw important conclusions from the calcu-
lated 3D structural ensemble with some biological impli-
cations that we mention briefly.

Compartments and microphase separation: The prob-
abilistic representations for Chromosome 1 are shown in
Fig.5b,c,d where we align all the conformations and su-
perimpose them. First, we note that such a probabilistic
representation demonstrates clear hierarchical folding of
chromosomes where the loci with small genomic distance
(similar color) are also close in space (Fig.5b, see Fig.11
for the other chromosomes). Long-range mixing between
the loci is avoided, supporting the notion of crumpled
globule [33–35]. Furthermore, the reconstructed struc-
ture of the chromosomes shows clear microphase separa-
tion (different colors are segregated. These are referred
to as A and B compartments (Fig.5c, see Fig.12 for the
other chromosomes), representing two epigenetic states
(euchromatin and heterochromatin), which we obtained
using the spectral clustering [25]. Each compartment pre-
dominantly contains loci belonging to either euchromatin
or heterochromatin. Contacts within each compartment
are enriched between either euchromatin or heterochro-
matin epigenetic states. In the Hi-C data the compart-
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a

b

FIG. 3. (a) Plot of the square of the radius of gyration R2
g as

a function of the chromosome size. The dashed line is a fit to
the data with the slope 0.54 which implies that Rg ∼ N0.27.
The data are for the 23 chromosomes. (b) Volume of each
chromosome versus the length in units of base pairs. The
experimental values (black squares) are computed using the
data in [28]. The dashed line is the fit to the experimental
data with slope 0.8. Volume of each chromosome is calculated
using λVnuc where λ is the percentage of volume of the nu-
cleus volume Vnuc. The values of λ are provided in Fig.S5 in
[28], and Vnuc = (4/3)πr3nuc where rnuc = 3.5µm is the radius
of Human lymphocyte cell nucleus [28]. Volumes of the re-
constructed Chromosome using theory and computation are
calculated using (4/3)πR3

g (color circles). The predicted val-
ues, without any adjustable parameters, and the experimental
values have a Pearson correlation coefficient of 0.79. The good
agreement further validates the procedure used to construct
the ensemble of 3D genome structures.

ments appear as a prominent checker board pattern in the
contact maps. Fig.5c shows that the two compartments
are spatially separated and organized in a polarized fash-
ion, which is fully consistent with multiplexed FISH and
single-cell Hi-C data[30].

Mapping ATAC-seq to 3D structures: Advances in se-
quencing technology have been used to infer epigenetic
information in chromatin without the benefit of integrat-
ing with structures. In particular, the assay for trans-
posase accessible chromatin using sequencing (ATAC-
Seq) technique provides chromatin accessibility, which
in turn provides insights into gene regulation and other

functions. The results obtained using ATAC-seq (see Ap-
pendix I for details on processing of ATAC-seq data),
also shows microphase separation pattern between high
ATAC signal and low ATAC signal region (Fig.5d). With
the structures determined by HIPPS in hand, we mapped
the ATAC-Seq data onto ensemble of conformations for
Chromosome 1 from GM 12878 cell in Fig.5d. It appears
that accessibilities in chromosome 1 for various functions
(such as nucleosome positioning and transcription factor
binding regions) may be spatially segregated. Such seg-
regation between high ATAC signal loci and low ATAC
signal loci are also visually clear in other chromosomes
(Fig.13). Remarkably, these results, derived from the
HIPPS method, follow directly from the Hi-C data with-
out creating a polymer model with parameters that are
fit to the experimental data.

Structural Heterogeneity: To investigate the het-
erogeneity in chromosome conformations, we examined
the variations among the 1,000 conformations generated
for chromosome 5. First, as a global structural charac-
teristic, we computed the radius of gyration of individual
structure. Rg. Fig.6a shows the histogram, P (Rg), and
conformations with compact, intermediate and expanded
conformations as examples. We then wondered what is
the degree of variations in the organization of the A/B
compartments? Specifically, we want to know whether
A/B compartments are spatially separated in a single-
cell. To answer this question, we first define a quan-
titative measure of the degree of mixing between A/B
compartments, Qk,

Qk =
1

Nc

∑
i

|nA(i; k)/n̂A − nB(i; k)/n̂B |
k

(9)

where k is the number of nearest neighbor of loci i. In
Eq. 9 nA(i; k) and nB(i; k) are the number of neighbor
loci belonging to A compartment and B compart-
ment for loci i out of k nearest neighbor, respectively
(nA(i; k) + nB(i; k) = k). With Nc = (NA + NB), the
fraction of loci in the A compartment is n̂A = NA/Nc
and n̂B = NB/Nc is the fraction in the B compartment
where NA, NB are the number of A and B loci, re-
spectively. The k nearest neighbors of i are computed
as follows. First, the distance from i to all loci are
calculated. From these distances, the k smallest values
are chosen, and this process is repeated for all i. Note
that Qk is length-scale invariant because it is a function
of the number of nearest neighbors, which allows us
to compare the structures with different values of Rg.
Note that Qk = 2 or 0 for perfect demixing and mixing
between A and B compartments, respectively. Fig.6b
shows Qk and P (Qk) histograms for different values of k.
The distribution is clearly skewed toward large values,
indicating demixing of the A and B compartments on
the population level. At the same time, the distribution
shows that there exists a small fraction of single cell
chromosomes conformations, which have Qk values close
to 0.8, implying that the compartment organization of
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FIG. 4. (a) Representative 3D reconstructed structures for all the 23 Human interphase chromosomes using inferred DM, which
is calculated using Eq.7 with Λ = 117 nm and α = 4.0. The colors encode the genomic position of the loci. The resolution of
loci is 100 kbps. Red and purple represent 5’ and 3’ ends, respectively. The structures whose radius of gyration closet to the
population average value are selected. The structures are rendered using Ovito with bond radius of Λ = 117nm. (b) Violin plot
for the relative shape anisotropy κ2 (Appendix H) for all the 23 chromosomes. The chromosomes are ordered with increasing
of 〈κ2〉. Chromosome 13 and the Chromosome 21 have the most and the least spherical shape, respectively.
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FIG. 5. (a) Comparison between the DM inferred from Hi-C data (lower triangle) and the DM calculated from an ensemble of 3D
structures for Chr1 using the HIPPS method, 〈P〉 → 〈R̄〉 → Ensemble of 3D structures (upper triangle). A/B compartments,
determined using spectral biclustering are shown as well [25]. (b) Superpositions of an ensemble of 3D structures for Chr1. A
total number of 1,000 conformations are aligned and superimposed. Each point represent one loci from one conformation. The
cloud representation demonstrates the probabilistic picture of chromosome conformation, with color representing the genomic
location of the loci along the genome. It is clear that the loci close along the genome are preferentially located in 3D proximity
as well, consistent with the notion of crumpled/fractal globule. The resolution of the loci is 100 kbps. It is worth emphasizing
that the structures are entirely determined starting from a contact map, without invoking any energy function. (c) Same
cloud point representations as (b) with color indicating the A/B compartments. Phase separation between A/B compartments
is vividly illustrated. (d) Same cloud representation as (b) and (c) but with ATAC-seq read counts as color coding. The
ATAC-seq read counts are obtained and processed (Appendix I) from the data taken from [36] under GEO accession number
GSE47753. Then it is binned into four quantiles. It can be observed that the loci with high ATAC signal and low ATAC
signal are spatially segregated. For majority of the 23 chromosomes, the spatial pattern of ATAC-seq is consistent with A/B
compartments (Fig.13)

chromosome exhibits a degree of heterogeneity.

Chromosome organizations in different cell types:

Since single chromosome conformations in a single cell
exhibit extensive variations, it is natural to wonder how
structurally heterogeneous a given chromosome is in dif-
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FIG. 6. (a) Distribution of the radius of gyration, P (Rg),
of Chromosome 5 from GM12878 cell type. Three structures
whose value of Rg is in 0.15 quantile, 0.5 quantile and 0.75
quantile, respectively are shown. (b) Distribution of the de-
gree of mixing between A/B compartments, P (Qk) (Eq.9),
for Chromosome 5. Qk = 2 for perfect demixing and Qk = 0
for perfect mixing between A/B compartments.

ferent cells types and if the HIPPS method can quantify
these differences at the single-cell level? We are searching
for differences in the heterogeneity of a specific chromo-
some in different cell types. From a physical viewpoint
this is difficult to answer this question precisely because
structural heterogeneity of a chromosome in a given cell
type could overwhelm the analysis. Furthermore, one has
to contend with high-dimensional data (each conforma-
tion has 3N coordinates) in the ensemble of conforma-
tions.

In order to delineate the differences in the hetero-
geneities in the conformations of a specific chromosome
in different cell types we used a machine learning method

for large data analysis [37]. To compare two single chro-
mosome conformations, we first normalized the distance
matrix such that

∑
i,j r

2
ij = 1. By doing so, we elimi-

nate the effect of overall size of the individual chromo-
some conformation, thus allowing us to compare them in
terms of only their conformations. We generated a to-
tal number of 1,000 structures for chromosome 21 from 7
cell types using Hi-C data [6]. Fig.7a shows the tSNE (t-
Distributed Stochastic Neighbor Embedding) plot [37] for
7,000 individual chromosome conformations from 7 dif-
ferent cell types (1,000 conformations for each cell type).
It is clear that the structural ensembles of chromosome 21
from different cell types have different degrees of overlap
with each other. IMR-90 (fibroblast), HUVEC (umbili-
cal vein endothelium), and GM12878 (lymphoblastoid),
which are normal human cells, form compact, distinct
clusters with negligible overlap with each other. In Fig.7a
the conformations of chromosome 21 in the 2D tSNE rep-
resentation are shown as blue (IMR-90), red (HUVEC),
and green (GM12878) dots. In sharp contrast, the con-
formations of the same chromosome in HMEC (breast
epithelial cell), K562 (myeloid leukemia cell in bone mar-
row), NHEK (epidermal keratinocytes - type of skin cell),
and KBM7 (a different leukemia cell) cells display very
large variations. They are not as compact and their phase
space structure in terms of the low dimensional tSNE co-
ordinates show overlapping regions (Fig.7a).

To further investigate the characteristics of chromo-
some organization in different cell types, we computed
the values of F (k), which quantifies the multi-body long-
range interactions of the chromosome structure. We de-
fine F (k) as,

F (k) =
1

kNcF0(k)

∑
i

∑
j∈mi(k)

|j − i| (10)

where k is the number of nearest neighbors, and mi(k)
is the set of loci that are k nearest neighbors of loci
i; F0(k) = (1/2)(1 + k/2) is the value of F (k) for a
straight chain. From Eq.10, it follows that the presence
long-range interaction increases the value of F (k). It is
worth noting that F (k) can also be viewed as a measure
of how well the linear relation along genome is preserved
in the 3D structure. Fig.7b show the distributions of
F (k) for each cell type. GM12878 cell shows the most
enrichment of long-range multi-body clusters whereas
NHEK and HMEC cells show the least. However, there
is extensive overlap between different cell types for F (k).
Remarkably, we find that there are substantial variations
in the structural ensembles of chromosome 21, and by
implication others as well, not only within a single
cell but also among single cells belonging to different
tissues. From our perspective, it is most interesting
that the HIPPS when combined with machine learning
techniques can quantitatively predict the differences.
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FIG. 7. (a) tSNE plot for the ensemble of chromosomes 21
structures for 7 cell types (IMR-90, HMEC, GM12878, HU-
VEC, K562, NHEK, KBM7). Each cell type has a total num-
ber of 1,000 independent conformations. Each conformation
is represented by its distance matrix. The metric used to
compare two single chromosomes is the squared Euclidean
distance between distance matrices. (b) The distribution of
F (k) (Eq.10) for different cell types. We take k = 8, corre-
sponding to 8 nearest neighbors.

DISCUSSION AND CONCLUSION

Using theory, based in polymer physics and the prin-
ciple of maximum entropy, and precise numerical simu-
lations of a non-trivial model, we have provided an ap-
proximate solution to the problem of how to construct an
ensemble of the three-dimensional coordinates of each lo-
cus from the measured probabilities (〈pij〉) that two loci
are in contact. The key finding that makes our theory
possible is that 〈pij〉 is related to 〈r̄ij〉 through a power
law, which is in accord with experiments [7] as well as ac-
curate polymer models for interphase chromosomes [25].
The inferred mean spatial distances are then used to ob-
tain an ensemble of structures using the maximum en-
tropy principle. Our approach, which is both physically
motivated and data-driven procedure, is self-consistently
accurate for the precisely solvable GRMC. The physi-
cally well-tested theory, leading to the HIPPS method,
allowed us to go take the Hi-C contact map and create

an ensemble of three-dimensional chromosome structures
without any underlying model. Using the HIPPS method
we constructed the 3D organization of the twenty-three
human chromosomes solely from the Hi-C contact maps.
We believe that our theory, with sparse data from Hi-C
and FISH experiments, may be combined to produce the
3D structures of chromosomes for any species.

The limitation of many population-based experimen-
tal approaches for producing the 3D organization is their
inability to extract the single-cell information. Due to
the apparent heterogeneity in the cell population [9, 20],
Hi-C map, as an ensemble average quantity, does not
contain the information about the fluctuations of the or-
ganization of genomes. The Hi-C map and the derived
〈R̄〉 only characterize the averaged structure. In other
words, there may not exist a typical single-cell genome
that can be described by the Hi-C map, and hence the
〈R̄〉 derived from it. Using the maximum entropy prin-
ciple, we are able to generate an ensemble of structures
from 〈R̄〉, consistent with observation from imaging data.
It is worth noting that our use of the maximum entropy
principle with pairwise distances as constraints, leads to
a joint distribution of loci coordinates without assuming
a predefined energy function.

The HIPPS method may also suffer from the same
problem because 〈R̄〉 is inferred from ensemble averaged
Hi-C map. Thus, we suggest that the actual single-cell
experimental measurements are fundamentally crucial to
decipher the single-cell genome organization. This can
also be reasoned from the following arguments using our
simple mixture model system as an example. Every tra-
jectory can be described by either a chain containing all
the loops or a chain that is devoid of loops. Therefore,
averaging over an ensemble of cells may not be mean-
ingful from an in vivo perspective. Using the maximum
entropy principle described in this work, a single mode
widespread distribution can be obtained instead of a bi-
modal distribution which characterize two distinct sub-
populations. This problem can be overcome by using
distribution instead of mean as constraints under the
maximum entropy principle. However, such distributions
should only be obtained from single-cell measurements.
Nevertheless, the theoretical lower bound that we have
derived provides a way forward to obtain 3D organization
from contact map alone, perhaps even from single-cell Hi-
C data.

The HIPPS method could be improved in at least two
ways. First, the theory relies on Eq.7, which relates the
average contact probability between two loci to the mean
distance between them. Even though choosing α = 4.0
in Eq.7 provides a reasonable description of the sizes of
all the chromosomes it should be treated as a tentative
estimate. More precise data accompanied by an ana-
lytically solvable polymer model containing consecutive
loops, as is prevalent in the chromosomes, could produce
more accurate structures. Second, as the resolution of
Hi-C map improves the size of the contact matrix will
not only increase but the matrix would be increasingly
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sparse because of the intrinsic heterogeneity of the chro-
mosome organization. Thus, methods for dealing with
sparse matrices will have to be utilized in the HIPPS
method for extracting chromosome structures.

We should emphasize that if the chromosome struc-
tures are used in conjunction with an underlying model
with energy functions that produce the patterns in en-
semble averaged Hi-C data then the HIPPS method could
be used to predict single cell structures, which would shed
light on the heterogeneous organization of chromosomes.
Ultimately, this might well be the single most important
utility of our theory.

APPENDIX A: SIMULATION DETAILS

The GRMC is a variant of a model introduced previ-
ously [8] as a caricature of physical gels. Recently, we
used the GRMC [9] as the basis to characterize the mas-
sive heterogeneity in chromosome organization. The en-
ergy function for the GRMC is [9],

U(r1, ..., rN ) =
N−1∑
i=1

USi +
∑
{p,q}

UL{p,q}. (11)

For the bonded stretch potential, USi , we use,

USi =
κ

2
(|ri+1 − ri| − a)2, (12)

where a is the equilibrium bond length. The interaction
between the loop anchors is modeled using,

UL{p,q} =
ω

2
(|rp − rq| − a)2 (13)

where the spring constant may be associated with the
CTCF facilitated loops. The labels {p, q} represent the
indices of the loop anchors, which are taken from the
Hi-C data [6].

The energy function for the ideal Rouse chain simu-
lated in this work is,

U(r1, ..., rN ) =
N−1∑
i=1

USi , (14)

which is obtained from the energy function for GRMC by
eliminating the loop constraints (setting ω = 0 in Eq.13).

In order to accelerate conformational sampling, we per-
formed Langevin Dynamics simulations at low friction
[38]. The total number, N , of monomers is 10, 000. We
simulated each trajectory for 108 time steps, and saved
the snapshots every 10, 000 time steps. We generated ten
independent trajectories, which are sufficient to obtain
reliable statistics, which we illustrate in Fig.S8.

APPENDIX B: DATA ANALYSES OF THE
SIMULATION DATA

The contact probability between the mth and nth loci
in the simulation is calculated using,

Pmn =
1

TM

M∑
a=1

T∑
t=1

Θ(rc − |r(a)
m (t)− r(a)

n (t)|), (15)

where Θ(·) is the Heaviside step function, rc is the thresh-
old distance for determining the contacts, the summation
is over the snapshots along the trajectory, and M is the
total number of independent trajectories, and T is the
number of snapshots for a single trajectory. The mean
spatial distance between the ith and the jth loci in the
simulations is calculated using,

〈Rmn〉 =
1

TM

M∑
a=1

T∑
t=1

|r(a)
m (t)− r(a)

n (t)|. (16)

The objective is to calculate 〈Rmn〉 from Pmn , and to
determine, if in so doing, we get reasonably accurate re-
sults. Because these quantities can be computed pre-
cisely for the GRMC, the [Pmn, 〈Rmn〉] relationship can
be rigorously tested.

APPENDIX C: BLOCK AVERAGE

Fig.8 shows the procedure used for the block average
when dealing with several vanishing (or very small) con-
tact probabilities Pmns. Such a method could be used for
(almost) any sparse matrix. Let the original contact ma-
trix (CM) have size N ×N . By setting a coarse-grained
level n, the original CM is divided into blocks, each with
size n. The new coarse-grained CM is constructed in the
way the values of elements in the (N/n)× (N/n) are the
arithmetic average of elements in each block. We then
demonstrate that this coarse-graining procedure does not
alter the structural information embedded in the original
CM.

APPENDIX D: DERIVATION OF A LOWER
BOUND FOR THE SPATIAL DISTANCE

Let us use ·̄ and 〈·〉 as notations for the average over
each genome conformations in a single homogeneous pop-
ulation and the average over each individual subpopula-
tions, respectively. Here, r̄ij and pij are the mean spatial
distance and the contact probability between loci i and
j for a single homogeneous (sub)population. 〈r̄ij〉 and
the 〈pij〉 are the mean spatial distance and the contact
probability between loci i and j measured for the whole
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FIG. 8. (a) Illustration of block average performed on sparse contact map matrix (〈P〉). There are zero value elements in
the original 〈P〉 (matrix on the left). When constructing the distance matrix, 〈R̄〉, from such 〈P〉, the zero value contact
probability would naively imply that 〈r̄〉 → ∞. To overcome this problem, we use block averages. The original N × N 〈P〉
are reconstructed into blocks with size n (red blocks on top left). The value of each block is computed as the mean value of
the original elements in each block (matrix on the right). The size of the matrix is reduced from N to N/n where n is the
normalization factor. The same procedure could also be applied to 〈R̄〉. (b) Block average does not alter the information
embedded in the original 〈P〉 and the calculated 〈R̄〉. R(s) is computed for different values of the normalization factor, n. The
results in the panel do not depend on the normalization factor. The insensitivity of the results to the block averaging justifies
its use in overcoming the problem of missing data points on the 〈P〉.

population. It is easy to see that if the population is
homogeneous, we have 〈r̄ij〉 = r̄ij and 〈pij〉 = pij .

In this appendix, we prove that there exists a theoreti-
cal lower bound for 〈r̄ij〉 for a given 〈pij〉. We assume that
for a homogeneous population where only one population
is present, there exists a convex and monotonic decreas-
ing function relating the contact probability between two
loci and their mean spatial distance, r̄ij = φ(pij). For
better readability, we will neglect the suffix ij from now
on. For a heterogeneous population, the contact proba-
bility is calculated as,

〈p〉 =

∫ rc

0

∫ ∞
0

drdr̄K(r̄)P (r|r̄)

=

∫ ∞
0

dr̄K(r̄)

∫ rc

0

drP (r|r̄)

=

∫ 1

0

pK(φ(p))
dr̄

dp
dp

≡
∫ 1

0

pψ(p)dp

(17)

where K(r̄) is the distribution of r̄ for all the subpopula-
tions, and P (r|r̄) is the distribution of spatial distance for
a single subpopulation given its mean value r̄. rc is the
threshold distance for determining the contact. Note that
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p =
∫ rc

0
drP (r|r̄) by definition. ψ(p) ≡ K(φ(p))(dr̄/dp)

is the probability measure of p over individual subpopula-
tion. Since φ is a convex function, according to Jensen’s
inequality, we have,

φ(〈p〉) ≤ 〈φ(p)〉 =

∫
φ(p)ψ(p)dp (18)

Replace the ψ(p) by K(φ(p))(dr̄/dp). We have,

φ(〈p〉) ≤
∫
φ(p)K(φ(p))

dr̄

dp
dp

=

∫
r̄K(r̄)dr̄ = 〈r̄〉

(19)

Eq. 19 shows that the lower bound for 〈r̄〉 is the mean
spatial distance inferred from the 〈p〉 as if the populations
of genome conformation is homogeneous, i.e. there is only
one single population.

To demonstrate the validity of Eq. 19, we consider the
special case where there are two distinct discrete sub-
populations. In this case, we 〈r̄〉 = ηr̄1 + (1 − η)r̄2

and 〈p〉 = ηp1 + (1 − η)p2. Note that r̄1 = φ(p1) and
r̄2 = φ(p2). Let us denote p1 = x and p2 = y. Given the
value of the contact probability 〈p〉, we show that the
lower bound for 〈r̄〉 is φ(〈p〉). This is equivalent to the
optimization problem,

maximize f(x, y)

subject to g(x, y) = 0
(20)

where f(x, y) = −ηφ(x) − (1 − η)φ(y) ≡ −〈r̄〉 and
g(x, y) = ηx + (1 − η)y − 〈p〉. The Lagrange multiplier
is L(x, y, φ) = f(x, y) − φg(x, y). Using the condition
that ∇x,y,φL(x, y, φ) = 0, it can be shown that f(x, y)
is maximized when x = y. Thus, we proved that 〈r̄〉
is minimized when p1 = p2 and its minimum value is
φ(〈p〉). This is also graphically illustrated in Fig.2a in
the main text.

APPENDIX E: CONNECTION BETWEEN THE
CONTACT PROBABILITY AND MEAN

SPATIAL DISTANCE

For a self-avoiding homopolymer, the distance distri-
bution between two monomers along a polymer chain is
[39],

P (r|r̄) = A(r/r̄)2+gexp(−B(r/r̄)δ) (21)

where r is the distance between two monomers, r̄ is the
mean distance between them. g is “correlation hole”
exponent, and δ is related to the Flory exponent by

δ = 1/(1 − ν). Given the contact threshold, the contact
probability p between the two monomers is

p =

∫ rc

0

P (r|r̄)dr (22)

When the contact threshold is small compared to the size
of the chain r � r̄, the integral can be approximately
evaluated as,

p = lim
rc→0

∫ rc

0

P (r|r̄)dr

= lim
rc→0

∫ rc

0

A(r/r̄)2+gexp(−B(r/r̄)δ)dr

∼ r̄−(3+g)

(23)

Thus, the contact probability between two monomers,
p, is connected to their mean distance r̄ by a scaling
exponent −(3 + g). For an ideal chain, g = 0, we recover
the asymptotically exact relation p ∼ r̄−3. For a self-
avoiding chain, we need to consider three cases [39]: (i)
two monomers are at the two ends of the chain. (ii) one
monomer is in the chain interior, while the other is at the
end. (iii) two monomers are located in the central part
of a chain. The correlation hole exponents corresponding
to the three cases [39] are g1 = 0.273, g2 = 0.46 and g3 =
0.71. Thus, we have p = r̄−3.273 for the contact between
two ends of a self-avoiding chain. p = r̄−3.46 for contact
between two monomers in case (ii), and p = r̄−3.71 for
the contacts between two monomer located in the chain
interior.

For polymers in poor solvents (likely more relevant
to the Humam interphase chromosomes), the value of
g is not well known. Using simulation, Bohn et al [40]
showed that for a equilibrium collapsed homopolymer
chain, g = −0.11 for two ends of the chain. This leads
to the contact probability between two ends of an
equilibrium homopolymer globule and the mean distance
p = r̄−2.89. But the values of g for scenarios (ii) and
(iii) are unknown. In addition, copolymer and out of
equilibrium states of chromosomes even complicate the
theoretical calculations. Hence, the theoretical estimate
of the relation between p and r̄ for chromosomes is not
known rigorously. Nevertheless, we expect based on the
arguments given here that a power law connecting p
and r̄ ought to exist. We determine the precise relation
based on experimental data and our previous study [25].

APPENDIX G: ITERATIVE SCALING
ALGORITHM FOR MAXIMUM ENTROPY

PRINCIPLE

Here, we describe the algorithm for obtaining the kijs
in Eq.8. The algorithm we adopted is iterative scaling.

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 22, 2020. ; https://doi.org/10.1101/2020.05.21.109421doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.21.109421
http://creativecommons.org/licenses/by-nc/4.0/


16

100 101 102 103

iterations

0.5

1.0

1.5

2.0

2.5

3.0

3.5

e
rr

o
r

DM (inferred)

Iteration 1

DM (inferred)

Iteration 10

DM (inferred)

Iteration 100

DM (inferred)

Iteration 1000
C

h
r2

1

a

b c

FIG. 9. (a) Comparison between the targeted distance map (DM) (lower triangle) and the distance matrix at different iteration
steps. At iteration step 1,000, we achieve good agreement with targeted DM. (b) The error as a function iteration steps. The
error is defined as the L2 norm between targeted DM and simulated DM. (c) The scatter plot between targeted 〈r2ij〉 and

〈r2ij(t)〉 at t = 1000. The pearson correlation coefficient between 〈r2ij〉 and 〈r2ij(t = 1000)〉 is 0.92.

Denote kij(t) as the value of kij at tth iteration, it is
updated according to,

kij(t+ 1) = kij(t) +
r∑

i<j〈r2
ij(t)〉

ln
〈r2
ij(t)〉
〈r2
ij〉

(24)

where r is the learning rate. 〈r2
ij(t)〉 is the average

squared pairwise distance at tth iteration and 〈r2
ij〉 is

the targeted squared pairwise distance. Generally, the
value of 〈r2

ij(t)〉 can be estimated by simulation under

the values of kij(t). In this particular case, 〈r2
ij(t)〉 can

be numerically computed since PMaxEnt is a multivariate
normal distribution.

To demonstrate the effectiveness of the algorithm,
Fig.9 shows the comparison between targeted average
distance matrix and simulated average distance matrix
at different iteration steps. It is clear that after a suf-
ficient number of steps, the simulated distance matrix
converges to the targeted one with high accuracy.

APPENDIX H: RELATIVE SHAPE ANISTROPY

To quantify the shape of each chromosome conforma-
tion, we calculate the relative shape anistropy (κ2) as
following,

κ2 =
3

2

λ2
1 + λ2

2 + λ2
3

(λ1 + λ2 + λ3)2
− 1

2
(25)

where λ1,2,3 are the eigenvalues of the gyration tensor.
The bounds for κ2 is 0 ≤ κ2 ≤ 1, where 0 is for highly
symmetric conformation and 1 corresponds to a rod.

APPENDIX I: PROCESSING ATAC-SEQ DATA

Each monomer/loci in the 3D structures generated is
assigned a value representing its ATAC signal. We use
ATAC BED file from GEO repository GSE47753. The
original data, however, needed to be processed in order to
use in our model. The procedure is illustrated in Fig.10.
Each line in the BED file corresponds to a ATAC peak,
associated with the peak value and the start and end
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FIG. 10. The procedure for processing ATAC-seq peak data.
The raw ATAC-seq read counts data is illustrated at the top
track. Each chromatin segment has a read count value. The
segments are not distributed uniformly, but have different
lengths, and have missing parts. In our model, each monomer
represents a fixed length segment. Thus, to estimate the read
counts associated with each monomer, we calculate the con-
tribution from the original ATAC-seq segments (blue track)
to the segments represented by the monomer (yellow track).

genomic positions of the segment. In our model, each
monomer represents a 100kbps genome segment. We
count how many basepairs are overlapped between the
segment represented by the monomer in our model and
the segment in the ATAC-seq data. The contribution to
the monomoer’s ATAC signal value is computed propor-
tionally from the peak value. For instance, the segment
in the ATAC data has a peak value 100, and its length is
50kpbs, and it has overlap of length 30kbps with a given
monomer. Then the contribution of ATAC signal from
the segment in the ATAC data is (30/50) ∗ 100 = 60. If
a segment has no corresponding data in the ATAC BED
fle, we treat it as it has peak value zero.
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FIG. 11. Superpositions of an ensemble of 3D structures for all 23 chromosomes. A total number of 1,000 conformations are
aligned and superimposed for each chromosome. Each point represent one loci from one conformations, with color representing
the genomic location of the loci along the genome
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FIG. 12. Superpositions of an ensemble of 3D structures for all 23 chromosomes. A total number of 1,000 conformations are
aligned and superimposed for each chromosome. Each point represent one loci from one conformations, with color representing
the A/B compartments. Note that the A/B compartments do not necessarily correspond to the same state across different
chromosomes since the assignment of label A or label B is arbitrary.
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FIG. 13. Superpositions of an ensemble of 3D structures for all 23 chromosomes. A total number of 1,000 conformations are
aligned and superimposed for each chromosome. Each point represent one loci from one conformations, with color encoding
the ATAC-seq signal values
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