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The probability of two loci, separated by a certain genome length, being in contact can be inferred
using the Chromosome Conformation Capture (3C) method and related Hi-C experiments. How to
go from the contact map, a matrix listing the mean contact probabilities between a large number of
pairs of loci, to an ensemble of three-dimensional structures is an open problem. A solution to this
problem, without assuming an assumed energy function, would be the first step in understanding the
way nature has solved the packaging of chromosomes in tight cellular spaces. We created a theory,
based on polymer physics characteristics of chromosomes and the maximum entropy principles,
referred to as HIPPS (Hi-C-Polymer-Physics-Structures) method, that allows us to calculate the
3D structures solely from Hi-C contact maps. The first step in the HIPPS method is to relate the
mean contact probability (〈p̄ij〉) between loci i and j and the average spatial distance, 〈r̄ij〉. This
is a difficult problem to solve because the cell population is heterogeneous, which means that a
given contact exists only in a small unknown fraction of cells. Despite the population heterogeneity,
we first prove that there is a theoretical lower bound connecting 〈pij〉 and 〈r̄ij〉 via a power-law
relation. We show, using simulations of a precisely solvable model, that the overall organization is
accurately captured by constructing the distance map from the contact map even when if the cell
population is highly heterogeneous, thus justifying the use of the lower bound. In the second step,
the mean distance matrix, with elements 〈r̄ij〉s, is used as a constraint in the maximum entropy
principle to obtain the joint distribution of spatial positions of the loci. Using the two steps, we
created an ensemble of 3D structures for the 23 chromosomes from lymphoblastoid cells using the
measured contact maps as inputs. The HIPPS method shows that conformations of chromosomes are
heterogeneous even in a single cell type. The differences in the conformational heterogeneity of the
same chromosome in different cell types (normal as well as cancerous cells) can also be quantitatively
discerned using our theory. We validate the method by showing that the calculated volumes of the 23
chromosomes from the predicted 3D structures are in good agreement with experimental estimates.
Because the method is general, the 3D structures for any species may be calculated directly from
the contact map without the need to assume a specific polymer model, as is customarily done.

INTRODUCTION

The question of how chromosomes are packed in the
tight space of the cell nucleus has taken center stage in
genome biology, largely due to the spectacular advances
in experimental techniques. In particular, the routine
generation of a large number of contact maps, reporting
on the probabilities that pairs of loci separated by vary-
ing genomic lengths are in proximity, for many species
using the remarkable Hi-C technique [1–6] has provided
us a glimpse into the organization of genomes. A high
contact count between two loci means that they interact
with each other more frequently compared to ones with
low contact count. Thus, the Hi-C data describes the
chromosome structures in statistical terms expressed in
terms of a contact matrix. An element in the contact
matrix is the probability (〈pij〉) that two loci i and j
(genomic length is |i − j|) is in contact. The Hi-C data
provide only a two-dimensional (2D) representation of
the multidimensional organization of the chromosomes.
How can we go beyond the genomic contact information
to 3D distances between the loci, and eventually the spa-
tial location of each locus is an important unsolved prob-
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lem. Imaging techniques, such as Fluorescence In Situ
Hybridization (FISH) and its variations, are the most di-
rect way to measure the spatial distance and coordinates
of the genomic loci [7]. But currently, imaging techniques
are limited in scope because they only provide informa-
tion on a small number of loci pairs. In contrast, the
Hi-C technique yields average contact probabilities for a
large number of loci pairs. Is it possible to harness the
power of the Hi-C technique to construct, at least ap-
proximately, the 3D structures of chromosomes? A major
problem with straight forward use of the Hi-C data arises
due to cell population heterogeneity (referred to as PH).
By PH, we mean that a given contact is present in only
an (unknown) fraction of cells. This means that there
is no straight forward relation connecting the mean dis-
tance (〈r̄ij〉) between loci i and j and 〈pij〉 [8]. Because a
given contact is not present in all the cells, it also implies
that there is conformational heterogeneity (CH) in the
chromosome structures. Despite the prevalence of PH,
we answer the question posed above in the affirmative
by building on the precise results for an exactly solvable
Generalized Rouse Model for chromosomes [8, 9], and by
using the theoretical distance distribution describing the
chromosomes. Unlike many previous studies, we do not
assume any energy function to model chromosomes.

Many data-driven approaches have been developed to
reconstruct 3D structures of genomes from Hi-C data
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[10–17] (see the summary in [18] for additional related
studies). Although these methods are insightful, they do
not take the polymer nature of chromosomes into con-
sideration. Therefore, it would be difficult to calculate
distance distributions between the loci, measured using
imaging experiments, using this approach. On the other
hand, polymer models of chromosomes [19, 20] usually
use Monte Carlo or Molecular Dynamics simulation with
an assumed energy function with parameters that have to
be calculated (typically) by fitting the simulation results
to Hi-C data. In these cases, certain parameters such
as bond length and monomer size need to be set arbi-
trarily to reduce the complexity of the model. Moreover,
these studies have not calculated the coordinates of the
individual loci in chromosomes using only the Hi-C data
as the input. Here, based on analytically solvable gen-
eralized rouse model (GRM), we create a method using
polymer characteristics of chromosomes and maximum
entropy principle to calculate the structures of chromo-
somes solely from Hi-C data. Recently, in a work [21]
that is closely related to certain aspects of the present
study, it was assumed that the energy function in GRM
(referred to as Gaussian Effective Model in [21]) describes
the chromosomes. The spring constants between the loci
determined to match the measured contact map. How-
ever, we do not assume any energy function, but use char-
acteristics that describe the polymeric properties of the
chromosomes to generate the distance map, which is then
used in conjunction with the maximum entropy principle
to construct 3D structures from Hi-C data.

Translating the contact map to 3D structures is a diffi-
cult problem to solve using solely data-driven approaches
without physical considerations that are reflected in the
polymeric nature of the chromosomes. One problem is
the difficulty in reconciling Hi-C (contact probabilities)
and the FISH data (spatial distances) [22–25]. For exam-
ple, in interpreting the Hi-C contact map, one makes the
intuitively plausible assumption that a loci pair with high
contact probability must also be spatially close. However,
it has been demonstrated using Hi-C and FISH data that
high contact frequency does not always imply proximity
in space [22–25]. Elsewhere [8], we showed that because a
given contact is present only in certain cells (PH), a one-
to-one relation between contact probability and spatial
distance between a pair of loci does not exist. The dis-
cordance between Hi-C and FISH experiments makes it
difficult to extract the ensemble of 3D structures of chro-
mosomes using Hi-C data alone without taking into ac-
count the physics driving the condensed state of genomes.
Even if one were to construct polymer models that pro-
duce results that are consistent with Hi-C contact maps,
certain features of the chromosome structures would be
discordant with the FISH data, reflecting the heteroge-
neous genome organization[26]. Thus, one has to con-
tend with two kinds of heterogeneities, which we refer
to as population heterogeneity (PH) and conformational
heterogeneity (CH).

Despite the difficulties alluded to above, we have cre-

ated a theory, based on the theoretical distribution of
distances for polymers and the principle of maximum en-
tropy to determine the 3D structures solely from the Hi-
C data. The resulting physics-based data-driven method,
which translates Hi-C data through polymer physics to
3D coordinates of each locus, is referred to as HIPPS
(Hi-C-Polymer-Physics-Structures). The purposes of cre-
ating the HIPPS method are two-fold. (1) We first es-
tablish that there is a lower theoretical bound for 〈r̄ij〉
expressible in terms of a calculable non-linear function
involving the contact probability even in the presence of
PH. In other words, we prove that 〈r̄ij〉 ≥ φ(pij) where
we compute φ(pij) using familiar polymer physics con-
cepts. We establish this relationship using the General-
ized Rouse Model for Chromosomes (GRMC) for which
accurate simulations can be performed. (2) However,
mean spatial distances, 〈rij〉s, between a large number
of loci pairs do not give the needed 3D structures. In
addition, it is important to determine the variability in
chromosome structures because massive conformational
heterogeneity (CH) has been noted both in experiments
[26, 27] and computations [8]. In order to solve this non-
trivial problem, we use the principle of maximum entropy
to obtain the ensemble of individual chromosome struc-
tures.

The two-step HIPPS method, which allows us to go
from the Hi-C contact map to the three-dimensional co-
ordinates, xi (i = 1, 2, 3, · · · , Nc), where Nc is the length
of the chromosome, may be summarized as follows. First,
we construct the mean distances 〈rij〉s between all loci
pairs, (i, j)s using a power-law relation connecting 〈pij〉s
and 〈rij〉s. Then, using the maximum entropy princi-
ple, we calculate the distribution P ({xi}) with 〈rij〉s as
constraints, from which an ensemble of chromosome 3D
structures (the 3D coordinates for all the loci) is deter-
mined.

The application of our theory to determine the 3D
structure of chromosomes from any species is limited only
by the experimental resolution of the Hi-C technique.
Comparisons with experimental data for the sizes and
volumes of chromosomes derived from the calculated 3D
structures are made to validate the theory. Our method
predicts that the structures of a given chromosome within
a single cell and in different cell types are conformation-
ally heterogeneous. Remarkably, the HIPPS method can
detect the differences in the extent of CH of a specific
chromosome between normal and cancer cells.

RESULTS

Inferring the mean distance matrix (R̄) from
the contact probability matrix (P) for a homo-
geneous cell population: The elements, r̄ij , of the R̄
matrix give the mean spatial distance between loci i and
j. Note that rij is the distance value for one realization
of the genome conformation in a homogeneous popula-
tion of cells. Here, we use homogeneous implies that a
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given contact is present with non-zero probability in the
entire cell population. The elements pij of the P ma-
trix is the contact probability between loci i and j. We
first establish a power-law relation between r̄ij and pij
in a precisely solvable model. For the Generalized Rouse
Model for chromosomes (GRMC), described in Appendix
A, the relation between r̄ij and pij is given by,

pij = erf(2rc/
√
πr̄ij)− (4π/rcr̄ij)e

−4r2c/πr̄
2
ij

≡ fGRMC(r̄ij).
(1)

where erf(·) is the error function, and rc is the threshold
distance for determining if contact is established. This
equation provides a way to calculate the distance matrix
(R̄) directly from the contact matrix (P) by inverting
fGRMC(r̄ij). Note that P is inferred only approximately
from Hi-C experiments. However, there are uncertain-
ties, in determining both rc due to systematic errors,
and pij due to inadequate sampling, thus restricting the
use of Eq.1 in practice. In light of these considerations,
we address the following questions: (a) How accurately
can one solve the inverse problem of going from the P
to the R̄? (b) Does the inferred R̄ faithfully reproduce
the topology of the spatial organization of chromosomes?
We first answer these questions using the GRMC.

To answer these two questions, we use a 12 Mbps
length segment of Chromosome 5 (146 Mbps to 158
Mbps) as an example. The loop anchors within this
segment are derived from the experiment data [6]. We
choose the length of polymer to be 10,000, with each
monomer representing 1200 bps. We first constructed
the distance map by solving Eq.1 for r̄ij for every pair
(i, j) with contact probability pij . The P matrix is cal-
culated using simulations of the GRMC, as described in
Appendix B. For such a large polymer, some contacts are
almost never formed even in long simulations, resulting
in pij ≈ 0 for some loci pairs. This would erroneously
suggest that r̄ij →∞, as a solution to Eq.1. Indeed, this
situation arises often in the Hi-C experimental contact
maps where pij ≈ 0 for many (i, j) pairs. To overcome
the practical problem of dealing with pij ≈ 0 for several
pairs, we apply the block average (a coarse-graining pro-
cedure) to P (described in Appendix C), which decreases
the size of the P. This procedure overcomes the prob-
lem of having to deal with vanishingly small values of pij
while simultaneously preserving the information needed
to solve the inverse problem using Eq.1.

The simulated and constructed distance maps are
shown in the lower and upper triangle, respectively in
Fig.1a. We surmise from Fig.1a that the two distance
maps are in excellent agreement with each other. There
is a degree of uncertainty for the loci pairs with large
mean spatial distance (elements far away from the
diagonal (Fig.1a,b) due to the unavoidable noise in the
contact probability matrix P. The Spearman correlation
coefficient between the simulated and theoretically
constructed maps is 0.97, which shows that the distance

matrix can be accurately constructed. However, a single
correlation coefficient is not sufficient to capture the
topological structure embedded in the distance map.
To further assess the global similarity between the R̄
from theory and simulations, we used the Ward Linkage
Matrix [28] (WLM), which can capture the hierarchy
of the 3D structure. We have previously used WLM to
compare the structures of interphase chromosomes [29].
Fig.1c shows that the constructed R̄ indeed reproduces
the hierarchical structural information accurately. These
results show that the matrix R̄, in which the elements
represent the mean distance between the loci, can be
calculated accurately, as long as the P is determined
unambiguously. As is well known, this is not possible
to do in Hi-C experiments, which renders solving the
problem of going from P to R̄, and eventually the
precise three-dimensional structure extremely difficult.

A bound for the spatial distance between loci
pairs inferred from the contact probabilities: The
results in Fig.1 show that for a homogeneous system (spe-
cific contacts are present in all realizations of the poly-
mer), R̄ can be faithfully reconstructed solely from the
P. However, the discrepancies between FISH and Hi-C
data in several loci pairs [30] suggest that there is PH,
which means that contact between i and j loci is present
in only a fraction of the cells. In this case, which one
has to contend with in practice [8, 26], the one-to-one
mapping between the contact probability and the mean
3D distances (as shown by Eq.1) does not hold, leading
to the paradox [22, 23] that a high contact probability
does not imply small inter loci spatial distance.

Due to PH, one cannot determine the mean 3D dis-
tance uniquely from the contact probability, which im-
plies that for certain loci the results of Hi-C and FISH
must be discordant. Recently, we solved the Hi-C-FISH
paradox by calculating the extent of cell population het-
erogeneity using FISH data and concepts and theoretical
distribution of distances between monomers along poly-
mers. The distribution of subpopulations could be used
to reconstruct the Hi-C data. For a mixed population
of cells, the contact probability pij and the mean spatial
distance 〈r̄ij〉 between two loci m and n, are given by,

〈r̄ij〉 =
S∑
m

ηm,ij r̄m,ij (2)

〈pij〉 =
S∑
m

ηm,ijpm,ij (3)

where r̄m,ij and pm,ij are the mean spatial distance and
contact probability between i and j in mth subpopula-
tion, respectively. In the above equation, S is the total
number of distinct subpopulations, and ηm,ij is the f the
subpopulation fraction for m. The ηm,ij satisfy the con-

straint
∑S
m ηm,ij = 1. Although there exists a one-to-one

relation between pm,ij and r̄m,ij in each of the mth sub-
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FIG. 1. Comparison of the distance matrices (DM or R̄) for the GRMC. (a) The simulated R̄ (lower triangle) and the
constructed R̄ (upper triangle) are compared side by side. The color bar indicates the value of the mean spatial distance,
〈Rmn〉. The constructed R̄ is obtained by solving Eq.3 using the contact probability P (calculated using Eq.12). The matrix
size is 2000 × 2000 after the block averaging is applied to the raw data (Appendix C). The threshold value for contact is
rc = 2.0a. The location of the loop anchors are derived from experimental data [6] over the range from 146 Mbps to 158 Mbps
for Chromosome 5 in the Human GM12878 cell line. (b) Relative error δ is represented as a heatmap. The relative error is
calculated as, δ = (dI− dS)/dS, where dI and dS are the inferred and simulated distances, respectively; δ increases for loci with
large genomic distance indicating the tendency to overestimate the distances for loci pais with small probabilities. (c) Ward
Linkage Matrices (WLMs) from the simulation and theoretical predictions, shown in the lower and upper triangle, respectively,
are in excellent agreement with each other.

population, it is not possible to determine 〈pij〉 solely
from 〈r̄ij〉 without knowing the values of each ηm,ij and
vice versa.

More generally, if we assume that there exists a con-
tinuous spectrum of subpopulations, 〈r̄ij〉 and 〈pij〉 can
be expressed as,

〈r̄ij〉 =

∫
dr̄ijK(r̄ij)r̄ij (4)

〈Pij〉 =

∫
dpijQ(pij)pij (5)

where r̄ij and pij are the mean spatial distance and the
contact probability associated with a single population,
respectively. K(r̄ij) and Q(pij) are the probability den-
sity distribution of r̄mn and pmn over subpopulations,
respectively.

We have shown [8] that the paradox arises precisely
because of the mixing of different subpopulations. The
value ηm,ij , K(r̄ij) or Q(pij) in Eq. 2-5 in principle could
be extracted from the distribution of 〈r̄ij〉, which can be
measured using imaging techniques. However, this is usu-
ally unavailable or the data are sparse which leads to the
question: Despite the lack of knowledge of the compo-
sition of the cell populations (quantitative estimate of
PH), can we provide an approximate but reasonably ac-
curate relation between 〈pij〉 and 〈r̄ij〉? In other words,
rather than answer the question (a) posed in the pre-
vious section precisely, as we did for the homogeneous
GRMC, we are seeking an approximate solution. The
GRMC calculations provide the insights needed to con-
struct the approximate relation connecting the distance
and the contact probability matrices.

A key inequality: Let us consider a special case

where there are only two distinct discrete subpopula-
tions, and the relation between the r̄ij(r̄) and pij(pij)
is given by Eq. 1. A given contact is present with
unity probability in the conformations in one subpop-
ulation and is absent in all the conformations in the
other subpopulation. According to Eqs. 2-3, we have
〈r̄〉 = ηr̄1 + (1− η)r̄2 = ηf−1

GRMC(p1) + (1− η)f−1
GRMC(p2),

and 〈p〉 = ηp1 + (1− η)p2. Note that f−1
GRMC exists since

f is a monotonic function of the argument. Fig.2a gives a
graphical illustration of the inequality f−1

GRMC(〈p〉) ≤ 〈r̄〉.
This inequality states that the mean spatial distance of
the whole population has a lower bound, f−1

GRMC(〈p〉),
which is the mean spatial distance inferred from the mea-
sured contact probability 〈p〉 as if there is only one ho-
mogeneous population (absence of PH). This is a pow-
erful result, which is the theoretical basis for the HIPPS
method, allowing us to go from Hi-C data to an ensemble
of 3D structures.

The inequality f−1
GRMC(〈p〉) ≤ 〈r̄〉 shows that a theoret-

ical lower bound for 〈r̄ij〉 exists, given the value of 〈pij〉
regardless of the compositions of the whole cell popula-
tion. The inequality can be generalized to account for
arbitrary discrete or continuous distribution of subpopu-
lations. Let us assume that for a homogeneous system,
there exists a convex and monotonic decreasing function,
φ, relating the contact probability p and the mean spatial
distance r̄, r̄ = φ(p) (we neglect the suffix ij for better
readability). Note that φ takes the form of Eq. 1 for the
GRMC. It can be shown that the following inequality
holds (Appendix D),

〈r̄〉 ≥ φ(〈p〉) (6)
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The above equation (Eq.6) shows that the lower
bound for the mean spatial distance in the presence
of PH is given by the mean spatial distance computed
from the measured contact probability as if the cell
population is homogeneous. The equality holds exactly
only when the population of cells is precisely homoge-
neous. This finding is remarkably useful in predicting
the approximate spatial organization of chromosomes
from the Hi-C contact map, as we demonstrate below.
Assuming that the single homogeneous population can
be described by the GRMC, then the equality in Eq.1
is satisfied. However, according to Eq. 6, when there
are multiple such coexisting populations, the relation
〈r̄ij〉 ≥ f−1

GRMC(〈pij〉) holds. Thus, the precisely solvable
model suggests that the approximate power law relating
〈pij〉 and 〈r̄ij〉 could be used as a starting point in
constructing the spatial distance matrices using only the
Hi-C contact map for chromosomes.

Validation of the lower bound relating 〈pij〉 and
〈r̄ij〉 in a heterogeneous cell population (PH): In
order to investigate the effect of PH on the quality of
the constructed mean distance matrix 〈R̄〉 from the con-
tact probability matrix 〈P〉, we simulated a model system
with two distinct cell populations. One has all the CTCF
mediated loops present (with fraction η), and the other
is a polymer chain without any loop constraints (with
fraction 1 − η) (See Appendix A for simulation details).
We used the lower bound, f−1

GRMC(〈pij〉), to infer 〈r̄ij〉
from 〈pij〉. The results, shown in Figs.2b,c,d, provide
a numerical verification of the theoretical lower bound
linking the contact probability and the mean spatial dis-
tance. Fig.2b shows the scatter plot for 〈r̄ij〉 versus
〈pij〉 from the simulation. The theoretical lower bound,

f−1
GRMC(〈pij〉) is shown for comparison. Fig.2b shows that

the lower bound holds. Using the f−1
GRMC(〈pij〉), we cal-

culated the 〈R̄〉 (see Fig.2d from the simulated 〈P〉).
Comparison between the inferred and the simulated 〈R̄〉
(middle ad bottom in Fig.2d) shows that the difference
between the two R̄〉s is large near the loops, resulting in
an underestimate of the spatial distances. This occurs
because the constructed 〈R̄〉 is obtained from the sim-
ulated 〈P〉, which is sensitive to the PH. The difference
matrices show that, although the constructed 〈R̄〉 under-
estimated the spatial distances around the loops, most of
the pairwise distances are hardly affected. This exercise
for the GRMC justifies the use of the lower bound as a
practical guide to construct 〈R̄〉 from the 〈P〉.

To show that the constructed 〈R̄〉 using the lower
bound gives a good global description of the chromosome
organization, we also calculated the often-used quantity
〈R(s)〉, the mean spatial distance as a function of the
genomic distance s, as an indicator of the average struc-
ture (Fig.2c). The calculated 〈R(s)〉 differs only negli-
gibly from the simulation results. Notably, the scaling
of 〈R(s)〉 versus s is not significantly altered (inset in
Fig.2c), strongly suggesting that constructing the 〈R̄〉
using the lower bound gives a good estimate of the aver-

age size of the chromosome segment.
Inferring 3D organization of interphase chromo-
somes from experimental Hi-C contact map: To
apply the insights from the results from the GRMC to
determine the 3D structures of chromosomes, we conjec-
ture that a power-law relation [7, 29], relating the contact
probability 〈pij〉 and the spatial distance〈r̄ij〉, holds gen-
erally for chromosomes. Thus, we write,

〈r̄ij〉 = Λ〈pij〉−1/α (7)

where the coefficients α and Λ are unknown. Again, note
that the 〈·〉 and ·̄ represent the average over subpopula-
tions and the average over individual conformations in
a single subpopulation, respectively. In a homogeneous
system, the equalities 〈r̄〉 = r̄ and 〈p〉 = p hold. For
the GRMC, Λ = rc and α = 3.0. For a self-avoiding
polymer, α ≈ 3.71 for two interior loci that are in
contact (see Appendix E). Based on experiments [7] and
simulations using the Chromosome Copolymer Model
[29] a tentative suggestion could be made for a numerical
value for α ≈ 4.0. Given the paucity of data needed to
determine α, we follow the experimental lead [7] and set
it to 4.0. We show below that the power-law relation
given in Eq.7 provides a way to infer the approximate
3D organization of chromosomes from the experimental
Hi-C contact map.

Experimental Validation of Eq7 and choice of α:
Before describing the 3D structures, we first show that
Eq.7 with α = 4 is reasonable. To do so we calculated
the square of the radius of gyration of all the 23 chro-
mosomes using R2

g = (1/2N2
c )
∑
i,j〈r̄ij〉2. The dashed

line in Fig.3a is a fit of R2
g as a function of chromosome

size, which yields Rg ∼ N0.27
c where Nc is the length of

the chromosome. For a collapsed polymer, Rg ∼ N
1/3
c

and for an ideal polymer to be Rg ∼ N
1/2
c . The expo-

nent 0.27 . 1/3 suggests that chromosomes adopt highly
compact, space-filling structures, which is also vividly il-
lustrated in Fig.4. To ascertain if the unusual value of
0.27 is reasonable, we computed the volume of each chro-
mosome using (4/3)πR3

g and compared the results with
experimental data [31]. The scaling of chromosome vol-
umes versus Nc calculated from the predicted 3D chro-
mosome structures is in excellent agreement with the ex-
perimental data (Fig.3b).

Since the value of Λ (Eq.7) is unknown, we estimate
it by minimizing the error between the calculated
chromosome volumes and experimental measurements.
We find that Λ = 117 nm, which is the approximate
size of a locus of 100 kbps (the resolution of the
Hi-C map used in the analysis). It is noteworthy
that the genome density computed using the value of
Λ = (100 · 103/(4/3)πΛ3)bps · nm−3 = 0.015bps · nm−3

is consistent with the typical average genome density of
Human cell nucleus 0.012bps · nm−3 [32]. The value of
Λ does not change the scaling but only the absolute size
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FIG. 2. (Caption next page.)

of chromosomes.

Generating ensembles of 3D structures using the
maximum entropy principle: The great variability
in the genome organization (CH) has been noted be-
fore [8, 26, 27]. To determine the structural heterogene-
ity of the chromosomes, we ask the question: how to
generate an ensemble of structures consistent with the
mean pairwise spatial distances between the loci? More
precisely, what is the joint distribution of the position
of the loci, P ({xi}), subject to the constraint that the

mean pairwise distance is 〈||xi − xj ||〉 = 〈r̄ij〉? Gen-
erally, there exists an infinite number of P ({xi}), sat-
isfying the mean pair-wise spatial distance constraints.
We seek the PMaxEnt({xi}), yielding the maximum en-
tropy among all possible P ({xi})s. The maximum en-
tropy principle has been previously used in the context
of genome organization [33, 34] for different purposes.
We note parenthetically that enforcing the constraints
of the mean pairwise distances is equivalent to preser-
vation of the mean squared pairwise distances. In prac-
tice, we found that constraining the squared distances,
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FIG. 2. (a) Lower Bound for the mean spatial distance 〈r̄〉 illustrated graphically. The blue curve is the function f−1
GRMC

which exists since fGRMC is a monotonic function. The orange line is the secant line between the points (p1, f
−1
GRMC(p1)) and

(p2, f
−1
GRMC(p2)). All the points between p1 and p2 on the x-axis can be expressed as ηp1 + (1 − η)p2 ≡ 〈p〉 for some value of

η ∈ [0, 1]. The y-axis value corresponds to 〈p〉 is ηf−1
GRMC(p1) + (1− η)f−1

GRMC(p2) ≡ 〈r̄〉 and f−1
GRMC(〈p〉) for the orange line and

blue curve, respectively. Notice that for any values of p1, p2 and η, the orange line is always above the blue curve, which proves
the inequality f−1

GRMC(〈p〉) ≤ 〈r̄〉. From the graph, it can also be noted the equality holds only when p1 = p2. (b) Scatter plot
for mean pair-wise spatial distances versus the contact probabilities for η = 0.3. Solid black line is the theoretical lower bound,
given by the solution f−1

GRMC(〈pij〉). (c) Plots of 〈R(s)〉 as a function of the genomic distance, s, for η = 0.3 and 0.7. The inset

shows the same data on a log-log scale; 〈R(s)〉 is calculated using 〈R(s)〉 = (1/TM)
∑M

a=1

∑T
t=1

(
r
(a)
ij (t)δ(s− |i− j|)/(N − s)

)
.

The theoretical predictions are in excellent agreement with simulations. (d) Simulated 〈P〉 (top), simulated 〈R̄〉 and inferred
〈R̄〉 side by side (middle), and relative error map (bottom) for η = 0.3 for GRMC. Note that all the maps are block averaged
from N=10,000 to size n=400 as explained in the Appendix C. The inferred 〈R̄〉 is obtained using 〈r̄ij〉 = f−1

GRMC(〈pij〉).
Relative error map is shown with blue color indicating larger error.

〈||xi−xj ||2〉 = 〈r̄2
ij〉, yields better numerical convergence.

The PMaxEnt({xi}) subject to the constraints associated
with the mean squared pairwise spatial distances is given
by,

PMaxEnt({xi}) =
1

Z
exp
(
−
∑
i<j

kij ||xi − xj ||2
)
. (8)

In the above equation, Z is a normalization factor, and
kijs are the Lagrange multipliers that are chosen so that
the average values 〈||xi − xj ||2〉 match 〈r2

ij〉. The latter
could either be inferred from the Hi-C contact map or di-
rectly measured in FISH experiments. The merit of the
maximum entropy distribution (Eq.8) is that it is both
data-driven and physically meaningful since the parame-
ters kij are inferred from experimental data and the term
kij ||xi − xj ||2 may be interpreted as pair-wise potential
energy between two loci i and j. Indeed, Eq. 8 is ex-
actly the same as the generalized Rouse model [9] where
kijs are the spring constants between the genomic loci,
which has been used as basis for modeling chromosomes
recently [35].

The procedure used to generate an ensemble of 3D
chromosome structures is the following: First, we com-
pute the mean spatial distance matrix from the contact
map using Eq. 7 with α = 4.0. The value of the scaling
factor Λ = 117nm was calculated using an additional ex-
perimental constraint (see the previous section). Recall
that Λ only sets the over all length scale but has no ef-
fect on the conformational ensemble of the chromosome.
Using an iterative scaling algorithm [36, 37], we obtain
the values of kij (Appendix G). Once the values of kij
are obtained, PMaxEnt can be directly sampled as a mul-
tivariate normal distribution, which can then be used to
generate an ensemble of chromosome structures.

In Fig.5a we compare the inferred distance matrix
and the distance matrix for Chromosome 1 obtained
using the maximum entropy principle. It is visually
clear that the two distance matrices are in excellent
agreement with each other (see Fig.S2-S7 for the other
chromosomes). We should emphasize that the maximum
entropy method described here, in principle, can achieve
exact match with the inferred distance matrix. The

small discrepancies are due to 1) the quality of conver-
gence, and 2) the intrinsic error in the Hi-C map and
the inferred distance matrix derived from it.

Characteristics of the predicted 3D chromosome
structures: To illustrate the applicability of HIPPS, we
choose the Hi-C data for cell line GM12878 [6]. The
3D conformations are specified by xi, i = 1, 2, 3, · · · , Nc
where Nc is the number of loci at a given resolution
(the centromeres are discarded due to lack to information
about them in the Hi-C contact map). The resolution is
set to be 100 kbps per monomer. The values of Nc for
all the 23 chromosomes are listed in Table.S1. We gen-
erated an ensemble of 1,000 structures for each of the 23
Human interphase chromosomes using the HIPPS pro-
cedure. Fig.4a shows the typical conformations for each
chromosome. Visually it is clear that there is consider-
able shape heterogeneity among the chromosomes. To
quantify their shapes, we calculated the distribution of
relative shape anisotropy κ2 (Appendix H). Fig.4b shows
a violin plot for κ2 (going from the smallest to the largest
value) for the 23 chromosomes. The chromosomes ex-
hibit considerable variations in κ2. Chromosome 13 is
most spherical and chromosome 19, 9 and 21 have the
most elongated shape.

Biological implications based on the 3D struc-
tures: We can draw important conclusions from the
calculated 3D structural ensemble for chromosomes with
some biological implications that we mention briefly here.

Compartments and microphase separation: The prob-
abilistic representation of the Chromosome 1 structures
are shown in Fig.5b,c,d, where we align all the confor-
mations and superimpose them. First, we note that such
a probabilistic representation demonstrates clear hierar-
chical folding of chromosomes. Loci pairs separated by
small genomic distance (similar color) are also close in
space (Fig.5b, see Fig.13 for the other chromosomes).
Long-range mixing between different loci is avoided, sup-
porting the notion of crumpled globule [38–40]. Second,
the chromosome structures exhibit clear microphase sep-
aration (different colors are segregated). These are re-
ferred to as A and B compartments (Fig.5c, see Fig.14
for the other chromosomes), representing the two epige-
netic states (euchromatin and heterochromatin), which
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FIG. 3. (a) Plot of the square of the radius of gyration R2
g as

a function of the chromosome size. The dashed line is a fit to
the data with the slope 0.54, which implies that Rg ∼ N0.27.
The data are for the 23 chromosomes. (b) Volume of each
chromosome versus the length in units of base pairs. The
experimental values (black squares) are computed using the
data in [31]. The dashed line is the fit to the experimental
data with slope=0.8. Volume of each chromosome is calcu-
lated using λVnuc where λ is the percentage of volume of the
nucleus, Vnuc. The values of λ are provided in Fig.S5 in [31],
and Vnuc = (4/3)πr3nuc where rnuc = 3.5µm is the radius of
Human lymphocyte cell nucleus [31]. Volumes of the Chro-
mosomes obtained using theory and computation are calcu-
lated using (4/3)πR3

g (color circles). The Pearson correlation
coefficient between predicted values, without any adjustable
parameters, and the experimental data is 0.79.

we previously determined using the spectral clustering
technique [29]. Each compartment predominantly con-
tains loci belonging to either euchromatin or heterochro-
matin. Contacts within each compartment are enriched.
Interactions between loci within a single epigenetic state
(euchromatin or heterochromatin) are more likely than
between loci belonging to distinct epigenetic states. In
the Hi-C data, the compartments appear as a prominent
checkerboard pattern in the contact maps. Fig.5c shows
that the two compartments are spatially separated and
organized in a polarized fashion, which is consistent with
multiplexed FISH and single-cell Hi-C data[27].

Mapping ATAC-seq to 3D structures: Advances in
sequencing technology have been used to infer epige-

netic information in chromatin without the benefit of
integrating it with structures. In particular, the assay
for transposase accessible chromatin using sequencing
(ATAC-Seq) [41] technique provides chromatin accessi-
bility, which in turn provides insights into gene regula-
tion and other functions. The ATAC-seq read counts
are obtained and processed (Appendix I) from the data
taken from [41] under GEO accession number GSE47753.
Then the data is binned into four quantiles. Fig.5d shows
that the loci with high ATAC and low ATAC signals are
spatially segregated. For the majority of the 23 chromo-
somes, the spatial pattern of ATAC-seq is consistent with
the formation of A/B compartments (Fig.15). With the
structures determined by the HIPPS method in hand, we
mapped the ATAC-Seq data onto an ensemble of confor-
mations for Chromosome 1 from GM 12878 cell in Fig.5d.
It appears that accessibilities in chromosome 1 for vari-
ous functions (such as nucleosome positioning and tran-
scription factor binding regions) are spatially segregated.
Such segregation between loci with high ATAC reads and
those with low ATAC reads are also visually clear in other
chromosomes as well (Fig.15). Remarkably, these results,
derived from the HIPPS method, follow directly from the
Hi-C data without creating a polymer model with param-
eters that are fit to the experimental data.

Conformational Heterogeneity (CH) of A/B
compartmentalization: To quantify the extent of CH
in chromosomes, we examined the variations among the
1,000 conformations generated for chromosome 5. Fig.6a
shows the histogram (P (Rg)) of Rg, the radius of gyra-
tion Rg. There is considerable dispersion in P (Rg) in
chromosome 5, whose overall shape is anisotropic (see
Fig. 4b). We then wondered what is the degree of vari-
ations in the organization of the A/B compartments?
Specifically, we are interested in determining whether
A/B compartments are spatially separated in a single-
cell. To answer this question, we first introduce a quan-
titative measure of the degree of mixing between A/B
compartments, Qk,

Qk =
1

Nc

∑
i

|nA(i; k)/n̂A − nB(i; k)/n̂B |
k

(9)

where k is the number of the nearest neighbors of loci
i. In Eq. 9, nA(i; k) and nB(i; k) are the number of
neighboring loci belonging to A compartment and B
compartment for loci i out of k nearest neighbors, respec-
tively (nA(i; k) + nB(i; k) = k). With Nc = (NA +NB),
the fraction of loci in the A compartment is n̂A = NA/Nc
and n̂B = NB/Nc is the fraction in the B compartment
where NA and NB are the number of A and B loci,
respectively. The k neighbors of i are computed as
follows. First, the distance from i to all the loci are
calculated. From these distances, the k smallest values
are chosen, and this process is repeated for all i. Note
that Qk is length-scale invariant because it is a function
of only the number of nearest neighbors, which allows us
to compare the structures with different values of Rg on
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FIG. 4. (a) Representative 3D reconstructed structures for all the 23 Human interphase chromosomes using the inferred
distance matrices, which are calculated using Eq.7 with Λ = 117 nm and α = 4.0. The colors encode the genomic position of
the loci. The resolution of loci is 100 kbps. Red and purple represent the 5’ and 3’ ends, respectively. The structures with radii
of gyration that are close to the population average are selected. The structures are rendered using bond radius, Λ = 117nm.
More individual conformations are shown in Fig. 16. (b) Violin plot for the relative shape anisotropy κ2 (Appendix H) for all
the 23 chromosomes. The chromosomes are ordered with increasing of 〈κ2〉.
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.

FIG. 5. (a) Comparison between the Hi-C (lower triangle) and the contact maps calculated from an ensemble of 3D structures for
Chromosome 1 using the HIPPS method ((〈P〉 → 〈R̄〉 → 3D structures→ contact map). (b) Comparison between the distance
matrix inferred from the Hi-C data (lower triangle) and the distance matrix calculated from an ensemble of 3D structures for
Chr1 using the HIPPS method (〈P〉 → 〈R̄〉 → 3D structures → mean distance map). A/B compartments, determined using
spectral biclustering [29] are also shown. (c) Comparison between the contact probability profile P (s) inferred from experiment
and the calculated curve using the HIPPS method. (d) Superposition of 1,000 3D structures for Chr1. Each point represents
one locus from one conformation. The cloud representation demonstrates the probabilistic nature of chromosome conformation,
with color representing the genomic location of the loci along the genome. The resolution of the locus is 100 kbps. (e) Same
cloud point representations as (d) with colors indicating the A/B compartments. Phase separation between A/B compartments
is vividly illustrated. (f) Same as (d) and (e) but with ATAC-seq read counts coded in color

equal footing. The value of Qk = 2 for perfect demixing
and Qk = 0 implies perfect mixing between the A/B
compartments. Fig.6b shows the P (Qk) histograms for
different values of k. The distribution is clearly skewed
toward large values, indicating the demixing of the A
and B compartments on the population level. However,
the distributions also show that a small fraction of
single-cell chromosomes conformations with Qk ≈ 0.8,
implying mixing between A and B compartments to
some extent.

Chromosome organizations in different cell types:
Since chromosome conformations in a single cell exhibit
extensive variations, it is natural to wonder how confor-
mational heterogeneous a given chromosome is in differ-
ent cells types, and if the HIPPS method can quantify
these differences at the single-cell level? We are search-
ing for differences in the conformational heterogeneity of
a specific chromosome in different cell types. It is dif-
ficult to answer the question posed above precisely be-

cause the conformational heterogeneity of a chromosome
in a given cell type could overwhelm the analysis. Fur-
thermore, one has to contend with high-dimensional data
(each conformation has 3N coordinates) in the ensemble
of conformations.

In order to delineate the differences in the conforma-
tional heterogeneities of a specific chromosome in differ-
ent cell types, we used a machine learning method for
analyzing large data [42]. To compare two chromosome
conformations, we first normalized the distance matrix
such that

∑
i,j r

2
ij = 1. By so doing, we eliminate the

effect of the overall size of the individual chromosome
conformation, thus allowing us to compare them solely in
terms of their 3D structures. We generated 1,000 struc-
tures for chromosome 21 from 7 cell types using Hi-C
data [6]. Fig.7a shows the tSNE (t-Distributed Stochas-
tic Neighbor Embedding) plot [42] for 7,000 individual
chromosome conformations from 7 different cell types
(1,000 conformations for each cell type). In Fig.7a the
conformations of chromosome 21 in the 2D tSNE rep-
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FIG. 6. (a) Distribution of the radius of gyration, P (Rg),
of Chromosome 5 from GM12878 cell type. Three structures
whose Rg values are in the 0.15 quantile, 0.5 quantile and
0.75 quantile, respectively are shown. (b) Distribution of the
degree of mixing between A/B compartments, P (Qk) (Eq.9),
for Chromosome 5.

resentation are shown as blue (IMR-90), red (HUVEC),
and green (GM12878) dots. It is clear that the structural
ensembles of chromosome 21 from different cell types
have different degrees of overlap with each other. IMR-
90 (fibroblast), HUVEC (umbilical vein endothelium),
and GM12878 (lymphoblastoid), which are normal hu-
man cells, form compact, distinct clusters with negligible
overlap with each other. In sharp contrast, the conforma-
tions of the same chromosome in HMEC (breast epithe-
lial cell), K562 (myeloid leukemia cell in bone marrow),
NHEK (epidermal keratinocytes - type of skin cell), and
KBM7 (a different leukemia cell) cells display very large
variations. They are not as compact and their phase
space structure in terms of the low dimensional tSNE

coordinates show overlapping regions (Fig.7a).
To further distinguish between conformational hetero-

geneity of a given chromosome in different cell types, we
computed the value of Q(k) described above for each
chromosome, and F (k), which quantifies the multi-body
long-range interactions of the chromosome structure. We
define F (k) as,

F (k) =
1

kNcF0(k)

∑
i

∑
j∈mi(k)

|j − i| (10)

where k is the number of nearest neighbors, and mi(k)
is the set of loci that are k nearest neighbors of locus
i; F0(k) = (1/2)(1 + k/2) is the value of F (k) for a
straight chain. From Eq.10, it follows that the presence
of long-range interaction increases the value of F (k).
It is worth noting that F (k) can also be viewed as
a measure of how well the linear relation along the
genome is preserved in the 3D structure. Fig.7b shows
the distributions of F (k) for each cell type. GM12878
cell has the largest enrichment of long-range multi-body
clusters whereas NHEK and HMEC cells have the least.
However, there is extensive overlap between different
cell types, as assessed by F (k). Remarkably, we find
that there are substantial variations in the structural
ensembles of chromosome 21, and by implication others
as well, not only within a single cell but also among
single cells belonging to different tissues. From our per-
spective, it is most interesting that the HIPPS method
when combined with machine learning techniques can
quantitatively predict such differences.

EVOLUTION OF CHROMOSOME STRUCTURES
FROM MITOSIS TO INTERPHASE

We next tested to ensure that our theory can also be
applied to Hi-C data for different time points during the
cell cycle. We apply the HIPPS method to the recent
Hi-C data from Abramo et al [43] in which the Hi-C ex-
periments were performed for HeLa cells at several time
points after the arrest of the prometaphase. Fig. 8a
shows the experiment Hi-C map for HeLa cell chromo-
some 14 at 6 different time points. The 0-hour corre-
sponds to the arrest of prometaphase. The compartment
features emerge during the cell cycle, and are visible after
2 hours. Prior to this time point, the Hi-C contact map
is rather featureless.

Using the HIPPS, we obtained the ensembles of 3D
structures corresponding to the 6 time points. Fig. 8b
shows the superposition of 1,000 3D structures. Similar
to Fig.8, each point represent one locus from one con-
formation. The color encodes the genomic location of
each locus along the genome. Individual chromosome
conformations are also shown in Fig.17. Fig. 8b shows
that the shape of the chromosome changes dramatically
during the progression from the mitotic stage to the in-
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FIG. 7. (a) tSNE plot for the ensemble of chromosomes 21
structures for 7 cell types (IMR-90, HMEC, GM12878, HU-
VEC, K562, NHEK, KBM7). We used 1,000 independent
conformations for each cell type. A conformation is repre-
sented by the distance matrix. The metric used to compare
two single chromosomes is the squared Euclidean norm be-
tween the distance matrices. (b) The distribution of F (k)
(Eq.10) for different cell types. We take k = 8, corresponding
to 8 nearest neighbors.

terphase. At 0 hour, the chromosome adopts a curved
cylinder shape while at 12 hours it is more rounded. To
quantitatively investigate the changes in the chromosome
shape and size during the cell cycle, we compute κ2 and
the radius of gyration Rg at various time points for all the
chromosomes. The results show that the κ2 is roughly a
constant during the first 2 hours, and slowly decreases
as time increases from 2 to 12 hours (Fig. 8d). The
size of the chromosomes (measured by Rg) , in general,
increases after the cell exits mitosis (Fig. 8e).

Next we investigate the sequestration of A/B compart-
ments. As Fig. 8a suggests, the compartments are ab-
sent during the mitotic and only start appearing after 2
hours. The distribution of A/B locus shown in Fig. 8c
are largely consistent with the Hi-C data. Visually, the
degree of segregation between A/B compartments at 0
hour is less than that at 12 hour end point. To quantify
this trend, we compute the Qk (Eq. 9) for the available
time points for all the chromosomes. We find that Qk

values are nearly constant before 2 hour, and start to in-
crease afterwards and reach a plateau after 6 hours when
the segregation between the compartments is complete
(Fig. 8f).

ARE MITOTIC CHROMOSOMES HELICAL?

We have shown that the HIPPS method can be ap-
plied to the Hi-C data for different cell states, including
the mitosis. We then wondered if the mitotic chromo-
some structures are helical. Gibcus et al [44] recently
suggest that during the prometaphase the Chicken cell
chromosomes adopts a helical backbone stabilized by con-
densin II proteins. We apply our HIPPS to Gibcus et al
data [44] to test if our HIPPS method can recover such
structure. Since the mitotic Hi-C maps are featureless
(without any compartments or TADs), we convert the
P (s) curve (computed from the Hi-C contact map) to a
theoretical Hi-C map to reduce the noise and sampling
error in the contact map, and then applied the HIPPS
method on the resulting contact map. Furthermore, since
the value of α (Eq.7) for mitotic chromosomes is not
known, we test our model using four different α values,
α = 3.0, 3.5, 4.0, 4.5. The results show that the HIPPS
can reasonably reproduce the contact map (Fig. 9a) and
the dependence of P (s) on s (Fig. 9b). For α = 3.0,
the P (s) matches the experimental curve well for all s,
and quantitatively for s > 106 bps. The optimal value
of α = 3.0 suggests that mitotic chromosomes may be
approximately treated as a near ideal polymer. It is re-
markable that without almost no adjustable parameter
we can reproduce the experimental P (s) curve including
the bump at s ≈ 6Mbps (Fig. 9b).

To quantitatively investigate whether the mitotic chro-
mosomes structures are helical or have other periodicity,
we compute the angle correlation for each individual con-
formations. The angle correlation is defined as,

c(s, d) = 〈~ri,i+d · ~ri+s,i+s+d〉 (11)

where ~ri,i+d is the vector between ith and (i + d)th loci,
and d is the control parameter. For a perfect helical
structure, c(s, d) would exhibit oscillations reflecting the
helix pitch as the period. Fig. 9c shows the results for
c(s, d) with d = 32. The value of d is chosen to be 32
because the resulting periodicity is most prominent. Re-
markably, we find that there is clear evidence of peri-
odicity. The Fourier transform of c(s) (Fig. 9d) shows
that the most prominent peak in the amplitude spec-
trum is at s ≈ 7.8Mbps which is in very good agreement
with the value reported in Gibcus et al [44]. These au-
thors suggested through a combination of experiments
and simulations inspired by the data that 7-8 Mbps is
the length of each helical turn. In addition to this peak,
we also find a few less prominent peaks as marked in Fig.
9d, which suggests that the periodicity also are present
at s ≈ 2Mbps and s ≈ 1Mbps. Finer scale periodicity,
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FIG. 8. (a) Comparison between Hi-C CM and the simulated CM using the HIPPS method for HeLa cell line chromosome
14 at 0, 2, 4, 6, 12 hours after the release from prometaphase. The experiment Hi-C data is taken from Gene Expression
Omnibus (GEO) repository under accession number GSE133462. The simulated CM is calculated from an ensemble of 10,000
3D conformations with a chosen contact threshold whose value is determined to minimize the squared difference between the
Hi-C and simulated CM. (b) Superposition of 1,000 3D structures for Chr 14 at each time point. Each point represent one locus
from one conformation. The color encodes the genomic location of the loci along the genome. (c) Same cloud representation
as b with colors indicating the A/B compartments. (d) Top: The change of κ2 as a function of time. κ2 is normalized by its
initial (t = 0) value κ2(0). Bottom: the histogram of κ2(0). (e) Top: The change of the radius gyration Rg as a function of
time. Rg is normalized by its initial value Rg(0). Bottom: the histogram of Rg(0). (f) Top: The time evolution of the degree
of compartmentalization Qk, which is calculated using Eq. 9. Bottom: The histogram of Qk(0).

which was not reported in Gibcus et al [44], could be
tested using higher resolution experiments.

Next we compute the “average” structure defined as
follows. First, we generate an ensemble of 100,000 in-

dependent individual conformations. Next, we align all
structures to a reference structure, with accounting for
handedness. Then, the coordinates for each locus in the
averaged structure is computed as the mean value of the
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coordinates of that locus in each individual conformation.
The results are shown in Fig. 9f for different value of α.
Clear helical pattern can be observed for α = (3.0, 3.5)
whereas it is less transparent for α = (4.0, 4.5). Fig. 9e
shows the angle correlation c(s, d) with d = 32 in which
the oscillation pattern is clearly observed. We note that
such helical pattern is not obvious visually for individ-
ual conformation (Fig.18), suggesting that mitotic chro-
mosome conformations display a degree of heterogeneity
with the presence of helical periodicity.

DISCUSSION AND CONCLUSION

Using an analytic expression for the distance distri-
bution of distances between monomers in polymers and
the principle of maximum entropy, and precise numeri-
cal simulations of a non-trivial model, we have provided
an approximate solution to the problem of how to con-
struct an ensemble of three-dimensional coordinates of
each locus in a chromosome from the measured probabil-
ities (〈pij〉s) that loci pairs are in contact. The key find-
ing that makes our theory possible is that 〈pij〉 is related
to 〈r̄ij〉 through a power law [7, 8]. The inferred mean
spatial distances are then used as constraints to obtain
an ensemble of structures using the maximum entropy
principle. The physically well-tested theory, leading to
the HIPPS method, allowed us to use the Hi-C contact
map and create an ensemble of three-dimensional chro-
mosome structures without any underlying model. The
theory is general enough that sparse data from Hi-C and
FISH experiments may be combined to produce the 3D
structures of chromosomes for any species.

The HIPPS method could be improved in at least two
ways. First, the theory relies on Eq.7, which relates the
average contact probability between two loci to the mean
distance between them. Even though choosing α = 4.0
in Eq.7 provides a reasonable description of the sizes of
all the chromosomes it should be treated as a tentative
estimate. More precise data, accompanied by an ana-
lytically solvable polymer model containing consecutive
loops, as is prevalent in the chromosomes, could produce
more accurate structures. Second, as the resolution of
Hi-C map improves the size of the contact matrix will
not only increase but the matrix would be increasingly
sparse because of the intrinsic population and conforma-
tional heterogeneities. Thus, mathematical theories for
dealing with sparse matrices will have to be utilized in
order to extract chromosome structures.

We should emphasize that if the chromosome struc-
tures are used in conjunction with an underlying accu-
rate polymer model then the HIPPS method could also
be used to predict structures of chromosomes in single
cells, which would shed light on the extent of their con-
formational heterogeneity. Ultimately, this might well be
the single most important utility of our theory.

APPENDIX A: SIMULATION DETAILS

The GRMC is a variant of a model introduced previ-
ously [9] as a caricature of physical gels. Recently, we
used the GRMC [8] as the basis to characterize the mas-
sive heterogeneity in chromosome organization. The en-
ergy function for the GRMC is [8],

U(r1, ..., rN ) =
N−1∑
i=1

USi +
∑
{p,q}

UL{p,q}. (12)

For the bonded stretch potential, USi , we use,

USi =
κ

2
(|ri+1 − ri| − a)2, (13)

where a is the equilibrium bond length. The interaction
between the loop anchors is modeled using,

UL{p,q} =
ω

2
(|rp − rq| − a)2 (14)

where the spring constant may be associated with the
CTCF facilitated loops. The labels {p, q} represent the
indices of the loop anchors, which are taken from the
Hi-C data [6].

The energy function for the ideal Rouse chain simu-
lated in this work is,

U(r1, ..., rN ) =
N−1∑
i=1

USi , (15)

which is obtained from the energy function for GRMC by
eliminating the loop constraints (setting ω = 0 in Eq.14).

In order to accelerate conformational sampling, we per-
formed Langevin Dynamics simulations at low friction
[45]. The total number, N , of monomers is 10, 000. We
simulated each trajectory for 108 time steps, and saved
the snapshots every 10, 000 time steps. We generated ten
independent trajectories, which are sufficient to obtain
reliable statistics (see Fig.S8).

APPENDIX B: DATA ANALYSES OF THE
SIMULATION DATA

The contact probability between the mth and nth loci
in the simulation is calculated using,

Pmn =
1

TM

M∑
a=1

T∑
t=1

Θ(rc − |r(a)
m (t)− r(a)

n (t)|), (16)

where Θ(·) is the Heaviside step function, rc is the thresh-
old distance for determining the formation of contacts,
the summation is over the snapshots along the trajectory,
and M is the total number of independent trajectories,
and T is the number of snapshots in a single trajectory.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 13, 2021. ; https://doi.org/10.1101/2020.05.21.109421doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.21.109421
http://creativecommons.org/licenses/by-nc/4.0/


15

FIG. 9. (a) Comparison between the theoretical Hi-C CM (described in the text) and the simulated CM for α = 3.0, 3.5, 4.0, 4.5.
(b) Experimental and simulated contact probability profiles P (s) for different values of α. (c) Angle correlation function c(s; d)
for individual structures and the average curve 〈c(s; d)〉 (black curve). The value of d is 32. (d) Fourier transform of average
c(s; d). Three peaks are marked with corresponding length scales in terms of number base pairs. (e) Angle correlation function
c(s; d) with d = 32 computed from the average structures shown in (f). (f) The averaged structure for α = 3.0, 3.5, 4.0, 4.5. A
total number of 100,000 random independent individual structures are used to compute the average structure.

The mean spatial distance between the ith and the jth loci in the simulations is calculated using,
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〈Rmn〉 =
1

TM

M∑
a=1

T∑
t=1

|r(a)
m (t)− r(a)

n (t)|. (17)

The objective is to calculate 〈Rmn〉 from Pmn , and to
determine, if in so doing, we get reasonably accurate re-
sults. Because these quantities can be computed pre-
cisely for the GRMC, the [Pmn, 〈Rmn〉] relationship can
be rigorously tested.

APPENDIX C: BLOCK AVERAGE

Fig.10 shows the procedure used for the block average
procedure when dealing with several vanishing (or very
small) contact probabilities Pmns. Such a method could
be used for (almost) any sparse matrix. Let the size of
original contact matrix (CM) be N × N . By setting a
coarse-grained level n, the original CM is divided into
blocks, each with size n×n. The new coarse-grained CM
is constructed in such a way that the values of elements
in the (N/n) × (N/n) are the arithmetic average of el-
ements in each block. We then demonstrate that this
coarse-graining procedure does not alter the structural
information embedded in the original CM.

APPENDIX D: DERIVATION OF A LOWER
BOUND FOR THE SPATIAL DISTANCE IN

TERMS OF CONTACT PROBABILITY

Let us use ·̄ and 〈·〉 to denote the average over each
genome conformations in a single homogeneous popula-
tion and the average over each individual subpopulations,
respectively. The separate averages account for PH and
CH. Here, r̄ij and pij are the mean spatial distance and
the contact probability between loci i and j for a single
homogeneous (sub)population. 〈r̄ij〉 and the 〈pij〉 are
the mean spatial distance and the contact probability
between loci i and j measured for the whole population.
It is easy to see that if the population is homogeneous,
we have 〈r̄ij〉 = r̄ij and 〈pij〉 = pij .

In this appendix, we prove that there exists a theoret-
ical lower bound for 〈r̄ij〉 for a given value of 〈pij〉. We
assume that for a homogeneous population, where only
one cell population is present, there exists a convex and
monotonic decreasing function relating the contact prob-
ability between two loci and their mean spatial distance,
r̄ij = φ(pij). For better readability, we will neglect the
suffix ij from now on. For a heterogeneous population,
the contact probability is calculated as,

〈p〉 =

∫ rc

0

∫ ∞
0

drdr̄K(r̄)P (r|r̄)

=

∫ ∞
0

dr̄K(r̄)

∫ rc

0

drP (r|r̄)

=

∫ 1

0

pK(φ(p))
dr̄

dp
dp

≡
∫ 1

0

pψ(p)dp

(18)

where K(r̄) is the distribution of r̄ for all the subpopula-
tions (accounts for PH), and P (r|r̄) is the distribution of
spatial distance for a single subpopulation (accounts for
CH) given its mean value r̄. rc is the threshold distance
for determining the contact. Note that p =

∫ rc
0

drP (r|r̄)
by definition. ψ(p) ≡ K(φ(p))(dr̄/dp) is the probability
measure of p over individual subpopulation. Since φ is
a convex function, according to Jensen’s inequality, we
have,

φ(〈p〉) ≤ 〈φ(p)〉 =

∫
φ(p)ψ(p)dp (19)

Replace the ψ(p) by K(φ(p))(dr̄/dp). We obtain,

φ(〈p〉) ≤
∫
φ(p)K(φ(p))

dr̄

dp
dp

=

∫
r̄K(r̄)dr̄ = 〈r̄〉

(20)

Eq. 20 shows that the lower bound for 〈r̄〉 is the mean
spatial distance inferred from the 〈p〉 as if the population
of genome is homogeneous. In other words there is only
one single population without PH.

To demonstrate the validity of Eq. 20, we consider the
special case where there are only two distinct discrete
subpopulations. In this case, it is obvious that 〈r̄〉 =
ηr̄1 + (1 − η)r̄2 and 〈p〉 = ηp1 + (1 − η)p2. Note that
r̄1 = φ(p1) and r̄2 = φ(p2). Let us denote p1 = x and
p2 = y. Given the value of the contact probability 〈p〉,
we show that the lower bound for 〈r̄〉 is φ(〈p〉). This is
equivalent to the optimization problem,

maximize f(x, y)

subject to g(x, y) = 0
(21)

where f(x, y) = −ηφ(x) − (1 − η)φ(y) ≡ −〈r̄〉 and
g(x, y) = ηx + (1 − η)y − 〈p〉. The Lagrange multiplier
is L(x, y, φ) = f(x, y) − φg(x, y). Using the condition
that ∇x,y,φL(x, y, φ) = 0, it can be shown that f(x, y)
is maximized when x = y. Thus, we proved that 〈r̄〉
is minimized when p1 = p2 and its minimum value is
φ(〈p〉). This is also graphically illustrated in Fig.2a in
the main text.
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FIG. 10. (a) Illustration of block average performed on sparse contact map matrix (〈P〉). There are zero value elements in
the original 〈P〉 (matrix on the left). When constructing the distance matrix, 〈R̄〉, from such 〈P〉, the zero value contact
probability would naively imply that 〈r̄〉 → ∞. To overcome this problem, we use block averages. The original N ×N 〈P〉 are
replaced by blocks with size n (red blocks on top left). The value of the matrix element in each block is computed as the mean
value of the original elements in each block (matrix on the right). The size of the matrix is reduced from N to N/n where n is
the normalization factor. The same procedure could also be applied to 〈R̄〉. (b) Block average does not alter the information
embedded in the original 〈P〉 and the calculated 〈R̄〉. R(s) is computed for different values of the normalization factor, n. The
insensitivity of the results to the block averaging justifies its use in overcoming the problem of missing data points on the 〈P〉.

APPENDIX E: CONNECTION BETWEEN THE
CONTACT PROBABILITY AND MEAN

SPATIAL DISTANCE

For a self-avoiding homopolymer, the distance distri-
bution between two monomers along a polymer chain is
[46],

P (r|r̄) = A(r/r̄)2+gexp(−B(r/r̄)δ) (22)

where r is the distance between two monomers, r̄ is the
mean distance between them. g is “correlation hole”
exponent, and δ is related to the Flory exponent by
δ = 1/(1 − ν). Given the contact threshold, the contact

probability p between the two monomers is

p =

∫ rc

0

P (r|r̄)dr (23)

If the contact threshold is small compared to the size
of the chain r � r̄, the integral can be approximately
evaluated as,

p = lim
rc→0

∫ rc

0

P (r|r̄)dr

= lim
rc→0

∫ rc

0

A(r/r̄)2+gexp(−B(r/r̄)δ)dr

∼ r̄−(3+g)

(24)
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Thus, the contact probability between two monomers, p,
is connected to their mean distance r̄ by a scaling expo-
nent, −(3 + g). For an ideal chain, g = 0, we recover the
asymptotically exact relation p ∼ r̄−3. For a self-avoiding
chain, there are three cases [46]: (i) two monomers are
at the two ends of the chain. (ii) one monomer is in the
chain interior, while the other is at the end. (iii) two
monomers are located in the central part of a chain. The
correlation hole exponents corresponding to the three
cases [46] are g1 = 0.273, g2 = 0.46 and g3 = 0.71. Thus,
we have p = r̄−3.273 for the contact between two ends of
a self-avoiding chain. p = r̄−3.46 for contact between two
monomers in case (ii), and p = r̄−3.71 for the contacts
between two monomer located in the chain interior.

For polymers in poor solvents (likely more relevant
to the Human interphase chromosomes), the value of g
is not well known. Using simulations, Bohn et al [47]
showed that for an equilibrium collapsed homopolymer
chain, g = −0.11 for two ends of the chain. This leads
to the contact probability between two ends of an
equilibrium homopolymer globule and the mean distance
p = r̄−2.89. But the values of g for scenarios (ii) and
(iii) are unknown. In addition, copolymer and out of
equilibrium states of chromosomes further complicate
the theoretical calculations. Hence, the theoretical esti-
mate of the relation between p and r̄ for chromosomes is
not known rigorously. Nevertheless, we expect based on
the arguments given here that a power law connecting
p and r̄ ought to exist. We use the relation based on
experimental data and our previous study [29].

APPENDIX G: ITERATIVE SCALING
ALGORITHM FOR MAXIMUM ENTROPY

PRINCIPLE

Here, we describe the algorithm for obtaining the kijs
in Eq.8. The algorithm we adopted is iterative scaling
[36, 37]. Denote kij(t) as the value of kij at tth iteration,
it is updated according to,

kij(t+ 1) = kij(t) +
r∑

i<j〈r2
ij(t)〉

ln
〈r2
ij(t)〉
〈r2
ij〉

(25)

where r is the learning rate. 〈r2
ij(t)〉 is the average

squared pairwise distance at tth iteration and 〈r2
ij〉 is

the targeted squared pairwise distance. Generally, the
value of 〈r2

ij(t)〉 can be estimated by numerical sampling
methods, such as Monte-Carlo simulation or Langevin
Dynamics, under the values of parameters kij(t). In this
particular case, 〈r2

ij(t)〉 can be directly computed since

PMaxEnt is a multivariate normal distribution. Following
the derivation in our previous work [8],

〈r2
ij(t)〉 = 3σ2

ij(t) (26)

where σ2
ij = Ωii + Ωjj − 2Ωij . Ωii, Ωjj and Ωij are

the elements of the matrix Ω which is defined as Ω =
−V Λ−1V T . V and Λ are computed through the eigen-
decomposition of the connectivity matrix K such that
K = V ΛV T . The connectivity matrix K is defined as,
Kij = kij for i 6= j and Kii = −

∑
j,j 6=i kij .

To demonstrate the effectiveness of the algorithm,
Fig.11 shows the comparison between targeted average
distance matrix and simulated average distance matrix
at different iteration steps. It is clear that after a suf-
ficient number of steps, the simulated distance matrix
converges to the targeted one with high accuracy.

APPENDIX H: RELATIVE SHAPE
ANISOTROPY

To quantify the shape of each chromosome conforma-
tion, we calculate the relative shape anisotropy (κ2) uing,

κ2 =
3

2

λ2
1 + λ2

2 + λ2
3

(λ1 + λ2 + λ3)2
− 1

2
(27)

where λ1,2,3 are the eigenvalues of the gyration tensor.
The bounds for κ2 is 0 ≤ κ2 ≤ 1, where 0 is for highly
symmetric conformation and 1 corresponds to a rod.

APPENDIX I: PROCESSING ATAC-SEQ DATA

Each monomer/locus in the 3D structures generated
is assigned a value representing its ATAC signal. We
use ATAC BED file from GEO repository GSE47753.
The original data, however, needed to be processed in
order to use in conjunction with our model. The proce-
dure is illustrated in Fig.12. Each line in the BED file
corresponds to a ATAC peak, associated with the peak
value and the start and end genomic positions of the seg-
ment. In our model, each monomer represents a 100kbps
genome segment. We count how many basepairs are over-
lapped between the segment represented by a single locus
in our model and the segment in the ATAC-seq data. The
contribution of the locus to ATAC signal value is com-
puted proportionally from the peak value. For instance,
the segment in the ATAC data that has a peak value of
100, and whose length is 50 kpbs, would have an overlap
of length 30kbps with te locus. Then the contribution
of ATAC signal from the segment in the ATAC data is
(30/50)∗100 = 60. If a segment has no data in the ATAC
BED file, we set the peak value to zero.

APPENDIX J: CODE AVAILABILITY

The code for the HIPPS method presented in this
work and its detailed user instruction can be accessed
at the Github repository https://github.com/anyuzx/
HIPPS-DIMES.
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FIG. 11. (a) Comparison between the targeted distance matrix (lower triangle) and the distance matrix at different iteration
steps. At iteration step 1,000, we achieve good agreement with targeted distance matrix. (b) The error as a function iteration
steps. The error is defined as the L2 norm between targeted distance matrix and simulated distance matrix. (c) The scatter
plot between targeted 〈r2ij〉 and 〈r2ij(t)〉 at t = 1000. The pearson correlation coefficient between 〈r2ij〉 and 〈r2ij(t = 1000)〉 is
0.92.

The program is used as a Python script. The script
accepts a Hi-C contact map or a mean spatial distance
map as an input, and generates an ensemble of individual
conformations. The Hi-C contact map can be in either
cooler format or pure text format. The output con-
formations are in .xyz format, which users can use to
compute various quantities of interest or can be rendered
using VMD or other compatible softwares.

The script accepts a number of options. A partial list
of available options are the following,

• Number of individual conformations to be gener-
ated.

• Number of iterations of iterative scaling

• Value of learning rate r in Eq.25

• The Chromosome region of interest

A detailed set of instructions and examples are pro-
vided on the Gihub page.

100 700 NA 500

100+350 350+100 400

ATAC-seq read counts (raw)
Sequence

ATAC-seq read counts (converted)

Polymer model

FIG. 12. The procedure for processing ATAC-seq peak data.
The raw ATAC-seq read counts data is illustrated at the top
track. Each chromatin segment has a read count value. The
segments are not distributed uniformly, but have different
lengths, and have missing parts. In our model, each locus has
a fixed genomic length. Thus, to estimate the read counts as-
sociated with each locus, we calculate the contribution from
the original ATAC-seq segments (blue track) to the segments
represented by the locus (yellow track).
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FIG. 13. Superposition of an ensemble of 3D structures for all 23 chromosomes. A total number of 1,000 conformations
are aligned and superimposed for each chromosome. Each point represents one locus from a single conformation, with color
representing the genomic location of the locus along the genome
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FIG. 14. Superposition of an ensemble of 3D structures for all 23 chromosomes. A total number of 1,000 conformations are
aligned and superimposed for each chromosome. Each point represents a single locus from one conformations, with colors
representing the A/B compartments. Note that the A/B compartments do not necessarily correspond to the same epigenetic
state across different chromosomes since the assignment of label A or label B is arbitrary.
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FIG. 15. An ensemble of 3D structures for all 23 chromosomes obtained from 1,000 conformations that are aligned and
superimposed for each chromosome. Each point represent one locus from one conformation. The colors encode the ATAC-seq
signal values.
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FIG. 16. More individual conformation for all 23 chromosomes for GM12878 cell line. Six individual conformations are shown
for each chromosome. The colors encode the genomic position of the loci. Red and blue represent the 5’ and 3’ ends, respectively.
The resolution of loci is 100 kbps.
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FIG. 17. Individual conformation for chromosome 14 for HeLa cell line at 0, 2, 4, 6, 12 hours. Four individual conformations
are shown for each time point. Each individual conformation is generated randomly. The colors encode the genomic position
of the loci. Red and blue represent the 5’ and 3’ ends, respectively.
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Chicken DT-40 cell Chromosome 7

FIG. 18. Individual conformation for chromosome 7 for chicken DT-40 cell line. Six individual conformations are shown. Each
individual conformation is generated randomly. The colors encode the genomic position of the loci. Red and blue represent
the 5’ and 3’ ends, respectively.
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