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Abstract9

Characterizing metagenomic samples via kmer-based, database-dependent taxonomic classifica-10

tion methods has provided crucial insight into underlying host-associated microbiome dynamics.11

However,novel approaches are needed that are able to track microbial community dynamics within12

metagenomes to elucidate genome flux in response to perturbations and disease states. Here we de-13

scribe KOMB, a novel approach for tracking homologous regions within microbiomes. KOMB utilizes14

K-core graph decomposition on metagenome assembly graphs to identify repetitive and homologous15

regions to varying degrees of resolution. K-core performs a hierarchical decomposition which par-16

titions the graph into shells containing nodes having degree at least K, called K-shells, yielding17

O(V +E) complexity compared to exact betweenness centrality complexity of O(V E) found in prior18

related approaches. We show through rigorous validation on simulated, synthetic, and real metage-19

nomic datasets that KOMB accurately recovers and profiles repetitive and homologous genomic20

regions across organisms in the sample. KOMB can also identify functionally-rich regions in Human21

Microbiome Project (HMP) datasets, and can be used to analyze longitudinal data and identify22

pivotal taxa in fecal microbiota transplantation (FMT) samples. In summary, KOMB represents a23

novel approach to microbiome characterization that can efficiently identify sequences of interest in24

metagenomes.25

Keywords— De Bruijn graph, graph-based analysis, K-core decomposition, metagenome, microbiome,26

unitigs, functional characterization27

Background28

Metagenomes are known hotspots for genomic diversity [1, 2, 3]. Communities in metagenomes29

consist of individual organisms whose genomes are dynamic because of processes such as30
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gene duplication, gene loss/gain, horizontal gene transfer, and gene rearrangements [4, 5,31

6, 7]. These dynamic events are a results of complex interactions that underpin the mi-32

crobiome [8, 9]. Therefore, characterizing metagenomic samples from diverse environments33

and sample types is essential to understanding community structures, interactions, and34

underlying functional information [10, 11, 12, 13, 14]. The main approaches to analyze35

metagenomes include functional characterization and taxonomic classification pipelines [15,36

16, 17]. These approaches, while informative, do not necessarily capture the dynamic gene37

duplication, gene loss/gain or gene transfer activity found in metagenomic samples over38

time.39

In this study, we present KOMB, a novel algorithm for characterizing a metagenome40

with a particular emphasis on capturing the structure of how repeated elements appear41

in the community, both within and across microbes. KOMB uses purely sequence level42

information and does not use a reference database. KOMB begins with a set of partially43

assembled sequences (unitigs) from he metagenome which it then partitions into hierarchical44

”shells”, where higher shells contain repeat regions that have high copy number and are more45

densely concentrated in a few organisms in the communuity. The result is a profile of a46

given microbiome driven by how genetic repeats are distributed throughout the community.47

Related Work48

While certain metagenomic communities including some human body sites [18, 19, 20]49

are well studied in different pathological conditions, there exists limited information on a50

plethora of different microbiomes, hindering their characterization [21, 22, 23, 24]. The51

difficulty in analyzing these metagenomes can often be attributed to the paucity of curated52

databases and library of reference sequences [25]. The sheer diversity of organisms in these53

samples that are yet to be identified and annotated further exacerbates this challenge [26,54

1].55

In order to deal with high-volume metagenomic data from many sample types that may56

lack an adequate reference, previous efforts have focused on reference-free approaches to57

quantify variance and diversity. These fall broadly into two classes. First, some methods58

rely on De Bruijn graphs, assembly graphs, or scaffold graphs to identify sequence-level vari-59

ation [27, 28, 29, 30]. An overview of the construction of these various graph types including60

the contributions of this work are illustrated in Figure 1. These approaches characterize sam-61

ples by relying on popular graph algorithms like betweenness-centrality to identify repetitive62

contigs, or finding 2-vertex cuts to extract end points of bubbles, or both. In order to reduce63

the O(V E) complexity of betweenness-centrality [31, 32, 33], approximation algorithms have64

sometimes been substituted. Another recent approach has focused on allowing end-users to65

efficiently query neighbourhoods of interest in metagenomic-compacted De Bruijn graphs,66

specifically by an indexing approach that approximates minimum r-dominating sets [34].67

Though the approximation schemes make calculation more tractable on large metagenomic68

datasets, its sample wide accuracy and sensitivity may still be sub-optimal [29].69

The second category is k-mer based approaches to quantify diversity and inter-sample70

distances. These rely on statistical properties of k-mers based on their frequencies [35, 36,71

37]. A recent improvement [38] described a generalization of k-mer based method to use72

Fibonacci Q-matrix in order to efficiently represent every read in the sample as a quadruplet73

using a sliding-window approach. This matrix was then used for within-sample diversity and74
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inter-sample distance calculations. Though k-mer based methods can efficiently summarize75

differences up to the sample level, they are not well-suited to identify drivers of genome flux76

(e.g. duplication or transfer) within a microbial communities.77

KOMB78

KOMB is a novel method of characterizing metagenomes that builds off of previous graph-79

based approaches and incorporates the benefits of k-mer frequency analyses. KOMB relies80

on the efficient K-core graph decomposition, which has a desirable complexity of O(V +E).81

We aim to unify the strengths of graph based and k-mer based approaches to identify both82

the sequence level features as well as visualize and quantify sample level differences from83

longitudinal data. Thus, we provide an efficient way to extract micro-level (sequence spe-84

cific) as well as macro-level (inter-sample distances) insights from short-read metagenomic85

data. The hybrid unitig graph constructed by KOMB tracks both repeats and rearrange-86

ments in metagenomes. To demonstrate KOMB’s usability to profile repeats and capture87

sequence level features, we apply it to simulated and synthetic data with available ground88

truths. We also run KOMB on HMP data to illustrate its ability to identify sample specific89

profiles and functionally rich regions. Finally, we also show KOMB’s ability to capture90

community disruption events as well as identify markers important to community shifts in91

longitudinal metagenomic samples on gut microbiome and fecal microbiota transplantation92

(FMT) samples.93

Methods94

KOMB Algorithm95

An overview of the KOMB pipeline is given in Figure 2. The main steps are as follows.96

First a de Bruijn graph is constructed from reads in the sample subject to some initial97

filters, and unitigs are identified from this graph. Second, reads are mapped back to unitigs98

and a graph is constructed on the unitigs by linking them together in two different ways99

using the read-mapping data (called a ”hybrid” graph herein and described in additional100

detail below). Finally, the hybrid unitig graph is partitioned using the K-core decomposition101

into an ordered group of subsets (called ”shells”), where unitigs in higher shells are have102

a higher copy number and are densely concentrated whereas those in the earlier shells are103

more ubiquitous among the organisms in the community. This set of shells along with the104

unitigs contained in each one is called the KOMB profile, and in what follows we show that105

it captures a meaningful property of the community.106

KOMB incorporates three widely-used bioinformatics tools as part of its workflow. Raw107

paired-end reads are input to ABySS [39] for efficient De Bruijn graph creation and unitig108

construction, as well as Bowtie 2 [40] for fast and accurate read mapping. In addition to109

this, our tool also relies on the igraph C [41] and OpenMP [42] libraries for the K-core110

implementation and the fast parallel construction of the hybrid unitig graph, respectively.111

A k-mer based read filtering tool [43] is also available for use as part of the software for112

optional pre-processing of reads.113
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Hybrid unitig graph construction114

KOMB constructs a novel hybrid unitig graph to efficiently mine repetitive topologies using115

K-core graph decomposition. The workflow consists of DBG construction, read mapping,116

and the KOMB core module as shown in Figure 2. All reads are initially input to the DBG117

constuctor ABySS to obtain unitigs. A unitig is a maximal consensus sequence usually118

obtained from traversing a De Bruijn graph. By definition, unitigs terminate at branches119

caused by repeats and variants and, unlike contigs, are non-overlapping. Subsequently, all120

of the reads are mapped to unitigs using Bowtie 2. We then construct our hybrid unitig121

graph with two distinct set of edges. First, for each read we create a set of all unitigs122

that mapped to that read and connect them. We denote these edges as repeat edges,123

which capture repeats in unitigs. Second, for a given forward and reverse read pair, we124

check if each individual read in the pair mapped to different unitigs, which would represent125

potentially adjacent unitigs in the genome. We call these adjacency edges that attempt to126

capture any gene loss/gain events between adjacent unitigs. This incorporates paired-end127

edge information similar to those found in canonical scaffold graphs.128

K-core decomposition129

K-core decomposition is a popular graph-theoretical concept used in network science to130

identify influential nodes in large networks [44, 45, 46]. The K-core of a graph is defined as131

the maximal induced subgraph where every node has (induced) degree at least K. A node132

belongs to the K-shell if it is contained in the K-core but not in the (K + 1)-core. For any133

given graph, one can iteratively and efficiently decompose it into shells with a complexity134

proportional to the size of the graph, which is significantly faster than the computation of135

most exact centrality measures [47]. The shells output as a result of K-core decomposition136

on the hybrid unitig graph reveal unitigs that are connected either to a similar number137

of unitigs as a result of their repeat content (via repeat edges) or are adjacent to unitigs138

with the same properties. At higher shells we observe clique or clique-like behaviours that139

capture unitigs containing repeats with very high copy number and in some cases appearing140

very close to each other (e.g., tandem duplications). Both adjacency edges and pseudo-edges141

are weighted equally in the graph. A more detailed description of K-core decomposition as142

well as theoretical analysis of the KOMB K-core profile can be found in Supplementary143

Figures S1 and S2.144

Identifying anomalous unitigs145

Identification of biologically important unitigs in a given sample is done through ranking146

the nodes with a CORE-A anomaly score [48]. The CORE-A anomaly score calculates the147

deviation from mirror pattern (dmp) as given in Equation 1 where rankd and rankc denote148

the rank of degree and coreness (shell that a vertex belongs to). This has been shown to149

reveal nodes of interest in real-world graphs like social and information networks [48]150

CORE-A score =| log(rankd(v))− log(rankc(v)) | . (1)151

4

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2021. ; https://doi.org/10.1101/2020.05.21.109587doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.21.109587
http://creativecommons.org/licenses/by-nd/4.0/


Datasets152

We tested KOMB on four different datasets to illustrate various properties of KOMB and153

underline different use cases while analyzing metagenomes. The datasets and their use cases154

are briefly described as follows:155

1. Shakya synthetic metagenome: A well-characterized synthetic metagenome con-156

sisting of 64 organisms (48 bacteria and 16 archea)[49]. This dataset is a simple test157

case to demonstrate how KOMB operates in practice, how to interpret the results, and158

how the higher shells reflect the structure of repeated regions in the metagenome.159

2. Multi-site HMP samples: This dataset contains 50 samples each from four body160

sites drawn from the Human Microbiome Project (HMP)[50]. These samples are a161

useful test case for KOMB because they demonstrate a) that the KOMB profile for162

samples within a given site are broadly similar to one another, and b) that the overall163

profile for each body site is characteristic and distinct from other body sites in much164

the same way that the taxonomic profile is. In other words, it suggests that the KOMB165

profile is both reproducible and is consistent with what might be expected on highly166

dissimilar communities. This dataset is also used as an example of how the KOMB167

profile specifically recovers functionally rich sequences.168

3. Longitudinal gut microbiome samples: This data is also from a previous study169

[51] and contains samples taken from 6 subjects over two years, including one subject170

that was exposed to antibiotic and bowel cleanse disruption in that time. This is meant171

to go one step further by showing that the KOMB profile can capture both subject-172

specific differences at a common body site and variations in an individual community173

over time as it is subject to perturbations.174

4. Fecal microbiota transplantation (FMT): This data has not been previously175

published and includes samples from two patients undergoing (FMT) from a common176

donor. Specifically, the samples include both pre- and post-FMT from each patient177

as well as one sample from the donor. Anomalous unitigs identified in KOMB profiles178

capture specific taxa that are known to be contributurs to recovery and transition to a179

disease-free state in Post-FMT samples when compared to both Pre-FMT and Donor180

samples.181

Running KOMB182

The following sections contain detailed descriptions of how KOMB was run on each of the183

four datasets as well as any steps required for additional analyses discussed in Results below.184

Shakya synthetic metagenome185

Reads from the Shakya et al. (2014) study were obtained from NCBI SRA (SRR606249).186

Reads were filtered using the kmer-filtering tools packaged as part of Stacks [43]. Ground187

truth for repetitive unitigs was established by using nucmer to map the unitigs to the188

reference genomes with parameters -c 50 -l 50 as the hybrid unitig graph was built on189

matching 50bp exact matches. KOMB was run with the parameters -k (kmer-size) 51 and190

-l (read length) 101. Fraction of repeat unitigs were calculated by dividing the number of191

unitigs marked as repetitive by nucmer to the total number of unitigs in the shell. KOMB192
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repeat density calculated for each shell is given by the formula outlined in Equation 2. We193

calculate the sum of copy numbers of each repetitive unitig and then divide it by the number194

of reference genomes these unitigs map to (number between 1-64) . This number is then195

averaged over the number of repetitive unitigs in a shell.196

KOMB Repeat DensityShell =

∑N
i Copy numberi/Number of reference genomes mappedi

Number of repeat unitigs in shell
. (2)197

Multi-site HMP samples198

HMP 1 data consisting of 50 samples each from four different body sites (anterior nares,199

stool, supragingival plaque, and buccal mucosa) was downloaded from the HMP website200

https://www.hmpdacc.org/HMASM/. Prior to running KOMB, we implemented a homog-201

enizing step where only reads having length equal to the longest read length per sample202

were kept (mostly 100 bp) and the rest were discarded. KOMB was then run with the203

parameter -k (kmer-size) 51. Functional characterization of unitigs obtained and marked204

from the anomaly detection stage is done through SeqScreen [52, 53]. Anomalous unitigs205

are determined by considering all unitigs whose dmp score (see Equation 1) is above a cutoff206

score as determined in Equation 3. In this equation, Q3 represents third quartlie and I.Q.R207

is the inter-quartile range which is the difference between the third and first quartiles (Q3208

- Q1). For the analysis, we combined the anomalous unitigs from each individual sample209

and, separately, we combined the rest of the unitigs from each of the samples to obtain the210

set of unique GO terms and set of anomalous GO terms for each body site. Anomalous GO211

terms refers to the GO terms found in unitigs marked as anomalous by KOMB. Unique GO212

terms refers to a subset of GO terms found only in the anomalous unitigs but not found213

in other unitigs in a given body site. In other words, anomalous GO terms are a superset214

of unique GO terms. All GO terms are filtered for bacterial specific GO terms using the215

https://github.com/AstrobioMike/CoV-IRT-Micro python package. Only GO terms216

belonging to the Biological Process branch were considered for the analysis.217

Cutoff score = Q3 + 1.5 I.Q.R. (3)218

Longitudinal gut microbiome samples219

Reads for the dataset were obtained from the ENA website (ID: ERP009422). The reads220

were filtered using the kmer filter tool packaged as part of Stacks [43]. The reads were run221

with the commands -k (kmer-size) 35 and -l (read length) 80.222

Fecal microbiota transplantation (FMT) samples223

Sample Collection: Two pediatric patients with a recurrent CDI diagnosis received FMT224

under IRB-approved informed consent (#H-31066) at Baylor College of Medicine. The in-225

vestigational nature of FMT was highlighted during consenting in accordance with current226

U.S. Food and Drug Administration (FDA) regulations. CDI diagnosis was based on toxin227

PCR positivity along with clinical complaints of 3 or more diarrheal stools per day. Patients228

reported recurrent (return of symptoms within 2 months) or ongoing diarrheal symptoms229
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despite completing at least two courses of CDI-directed antibiotics that included at least230

one course of metronidazole and vancomycin. Patients received filtered, frozen-thawed fecal231

preparations from a standardized donor (38-40 y male during donations) via colonoscopy.232

The donor screening and fecal preparation procedures were approved by the U.S. Food and233

Drug Administration (IND15743). Fecal samples were collected from patients the day prior234

to FMT and 8-9 weeks following treatment on a follow-up visit. All samples were frozen235

and kept at -80°C until simultaneously thawed for bacterial DNA extraction using the236

PowerSoil DNA isolation kit (MO BIO Laboratories, Carlsbad, California, USA). Shotgun237

metagenomic sequencing was performed with >200 ng of input DNA as previously described238

by us [54] and sequence is submitted to NCBI BioProject database: PRJNA743023.239

240

Analyses: Reads were mapped to GRCh38p12 using bowtie 2.3.5; with preset options241

bowtie2 –local ; read pairs were extracted from resultant SAM file using samtools 1.9 [55]242

using flags samtools fastq -f 13 ; these read pairs were then subjected to KOMB using -k243

51 -l 150 . Taxonomic analysis of the anomalous unitigs was done by running the unitigs244

through Kraken2 [56]. Kraken2 was run with the miniKraken2 database v1 (8GB). Unitigs245

that were successfully classified at genus level or below were considered for the analysis.246

All unitigs classified at species level were assigned to their corresponding genus. For each247

sample, anomalous unitigs are obtained by selecting those whose dmp score (Equation 1)248

is above the cutoff score in Equation 3. For each genus present in anomalous unitigs, we249

calculate the Ratio of Ratios score for each genus as given in Equation 4, where numag250

and numog are the number of unitigs classified at genus g in the set of anomalous unitigs251

and other (background) unitigs, respectively. The denominators refer to the sum of all252

unitigs of all genus present in the set. The total number of unique genus present in both253

the sets (anomalous and other) are Na and No, respectively. For the analysis, we selected254

those genera with the ratio of ratios greater than or equal to one (≥ 1) which we term as255

over-represented genus in the anomalous unitigs.256

Ratio of Ratios scoreg =
numag/

∑Na
i=1 numai

numog/
∑No

i=1 numoi
. (4)257

Calculating the L1 norm between KOMB Profiles258

In order to calculate the distance between two KOMB profiles, we use the L1 norm of the259

difference between their normalized coreness profiles. More precisely, we first divide the size260

of each shell by the total number of unitigs in each profile. The shorter of the two profiles is261

then padded with zeros to equalize the number of shells, i.e., we can represent each profile262

as a vector of the same size. We then compute the distance between the profiles as the L1263

norm of the difference between these two vectors.264

Results265

KOMB profile example and interpretation266

The Shakya synthetic community was used as a simple example to demonstrate the KOMB267

profile and provide some evidence to support the assertion that it captures the pattern of268
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repeated regions in the community.269

An input to the De Bruijn graph construction is k: the exact k-mer size used to join270

reads. The shells in the KOMB profile are labeled incrementally as they are produced in the271

K-core decomposition. The number of a given shell is approximately the copy number of a272

family of exact repeats of size k−1 if the unitig is repetitive or the degree of a non-repetitive273

unitig that is in close proximity to a repetitive unitig with copy number greater than the274

shell number.275

First, Figure 3(A) shows how the full set of unitigs is distributed according to each shell,276

with a total of 320 K-core shells obtained after decomposition. (For simplicity, we exclude277

shell 0 which represents isolate unitigs.) Early shells (i.e. 1-4) contain the majority of the278

unitigs and overall the density declines steeply as the shell number grows, similar to what279

we might expect in a random graph. However, by contrast with a random graph there280

are a number of small peaks occurring at higher nodes after the initial drop-off (marked281

with red triangles). Most of these peaks are followed by regions of empty cores indicating282

that these peaks mark dense cliques that all share the 50 bp exact match (as 51 was the283

k-mer size used). A similar behaviour was observed in our validation on simulated genomes284

(Supplementary Figures S3, S4 and S5), where these topological features represented the285

artificially inserted repeats. These peaks in higher shells are endemic the nature of the286

KOMB profile, and the number and size of the peaks captured in this figure are a simple287

summary of the KOMB profile for a given community.288

Beyond simply showing the KOMB profile for this community, it is worth verifying that289

higher shells do indeed represent regions with more repeats and of higher repeat-number.290

Here, we have used nucmer to quantify the repeat number of each unitig, and the stacked291

bar charts in Figures 3(B) and 3(C) show how shells compare to one another according to the292

fraction of unitigs considered a repeat and average repeat density, respectively. The nucmer293

repeat quantification is imperfect and the shells are grouped by quartile, but nonetheless294

the third and fourth quartiles are skewed to the right in each graph, indicating that indeed295

the higher shells contain unitigs with a heavier density of repeats. This is a fundamental296

property of the shells in a KOMB profile. Nucmer analysis of repeat unitigs also revealed297

that the repeats in the higher shells mapped only to a few organism in the sample but had298

relatively high copy numbers resulting in a higher density. Combining these observations299

with those from the KOMB profile, we can infer that the majority of shells containing true300

repeats are likely to lie beyond shell 161. It is important to note here that the topology of301

the hybrid unitig graph in addition to repeats the KOMB profile also captures unitigs that302

are adjacent (as defined by paired-end edges) to repetitive unitigs across copy numbers.303

Hence, it is expected result that some of shells will not consist a high number of repeats304

and would instead contain these adjacent unitigs.305

KOMB vis-a-vis beta-diversity and functional annotation306

A key test for a novel descriptive profile is whether it is reproducible and whether it shows307

broad differences where they would intuitively be expected. A key insight about the human308

microbiome is that the bacterial communities differ substantially by body site, and that309

communities from the same body site across different individuals are more similar than310

across body site. We would therefore expect KOMB profiles to follow this same pattern.311

Figure 4(A) shows the same distribution of unitig density by shell number as in the previous312
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dataset, but here it is presented as a violin plot. Specifically, the plots for all 50 samples313

from the same site are overlaid to visualize their variability. Each site has its own evident314

shape, and notably the anterior nares site appears to have the largest range of variability315

for individual samples. We also analyzed the site-specific profiles for intra-site and inter-site316

distances which are discussed in Supplementary Data SD1.317

This dataset also served as a test case for a hypothesis that the KOMB profile could be318

used to identify highly ”important” segments. The K-core decomposition has been useful319

for this in other contexts, specifically by identifying anomalous nodes in the graph (CITE).320

Here, we hypothesize that ”importance” of a unitig could be represented by functional321

richness.322

We utilize the anomaly detection algorithm as proposed by [48]. Figure 4(B) shows the323

Coreness vs Degree graph of the unitigs for each body site. The color gradient indicates324

the CORE-A score with the unitigs having high CORE-A score mainly being high core-325

ness and low degree or low coreness and high degree. Unitigs were separated into those326

marked as anomalous and those not, then we functionally annotated the unitigs marked as327

anomalous by assigning GO terms. Then, GO terms occuring only in anomalous unitigs328

(”unique GO terms”) were expressed as a percentage of all GO terms. For comparison, we329

conducted simulations in which GO terms were randomly assigned to contigs and ran the330

same calculation of ”unique GO terms”.331

Figure 4(C) shows the results: the bar for each body site is the overall % unique, while332

the black line (and error bars) represent the values obtained by simulation. The actual333

values are well above the error bars for all body sites, indicating that anomalous unitigs334

contain a disproportionate share of gene functions that are found only in these unitigs. Fur-335

thermore, previous studies [57, 58, 59] have described the relative evenness and low diversity336

of the buccal mucosa community especially in comparison to other oral communities like337

supragingival plaque which is reflected in our functional analysis of anomalous unitigs.338

Further, we analyzed how the unique GO terms in a given body site compare with339

the GO terms found in anomalous unitigs from other body site. We then calculated the340

jaccard similarities of these sets. We hypothesized that samples from similar regions (eg.341

oral) would be more similar functionally than others which we recapitulate in a taxonomy-342

oblivious manner through KOMB. In Figure 4(D), we see that the jaccard similarities are343

overall low (< 0.2) indicating that these unique GO terms are generally specific to the344

microbiome in a given body site. The GO terms in stool were the most dissimilar to345

those found in anomalous unitigs in other samples (average jaccard similarity=0.05). The346

similarity scores of unique GO terms in anterior nares and supragingival plaque had greater347

similarity with the anomalous GO terms buccal mucosa (0.19). Figure 4(E) shows the348

jaccard similarities of anomalous GO terms between each body site. The oral sites, buccal349

mucosa and supragingival plaque, had the most similar anomalous GO terms (0.43). Similar350

to the case with unique GO terms, anterior nares had a higher similarity with buccal mucosa351

(0.35) than supragingival plaque (0.26). We also observed that anomalous unitigs in stool352

had the lowest functional similarity to other body sites (average jacaard similarity =0.186).353

The GO term ID and names can be found in Supplementary Data SD2.354
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KOMB characterizes community shifts in longitudinal samples355

Longitudinal gut microbiome samples356

To demonstrate KOMB’s ability to derive insights from large scale metagenomic analysis,357

we considered a temporal gut metagenome study. This study contains git microbiome358

samples collected from 7 subjects (5 male and 2 female) at different time points spread359

over two years. Figure 5(A) shows the KOMB profiles of each of the 6 analyzed subjects360

(one subject was excluded because of missing data point) from the initial three time points361

(Days 0, 2, 7), each labeled by an alias given in the original study. These violin plots362

show that the gut samples from the six subjects all have relatively similar KOMB profile363

distributions, although some idiosyncrasy does appear in subjects Daisy and Bugkiller. To364

quantify these profiles, The intra-subject and inter-subject sample distances were analyzed365

and are discussed in Supplementary Data SD3.366

To get a more quantitative understanding of the data and the effects of external dis-367

ruptions on the gut microbiome we focus our attention on the subject Alien who was the368

only subject exposed to an antibiotic intervention and bowel cleanse procedure during the369

course of the study.370

Figure 5(B) outlines the entire longitudinal trajectory of Alien’s gut microbiome over the371

course of 14 time points spread across two years. The KOMB profiles as displayed focus on372

the first 200 shells at each time point. We observe a significant change of shape in the profile373

on Days 376, 377, 378, and 380 which coincides with samples taken after antibiotic intake374

and which correspond to a significant perturbation community composition as reported in375

the study. This is also mirrored by the unitig counts in the samples, which decreases by an376

order of magnitude. Importantly, the total number of reads in the samples from each time377

point are similar and, hence, the change in unitig count is most likely caused by a shift in378

the community composition. Thus, antibiotic intervention causes not only a reduction in379

the total number of shells but also alters the unitigs present in the initial shells, though this380

tends to recover slightly towards the end of the antibiotic cycle on Day 380. The distirbution381

of unitigs to shells has returned to form twelve days after the last post-antibiotic sample382

(Day 392), and the raw number of unitigs has returned to earlier levels by Day 600. We383

observe similar but less drastic shell compression and quick recovery after a bowel cleanse384

(Days 630, 632) indicating that antibiotics cause a far greater disruption in microbiome385

community structure, a finding corroborated by the authors in [51] as well as an earlier386

study [60].387

To further quantify the perturbation, we calculated the L1 norm between the KOMB388

profiles of the subjects. Supplementary Figure S6 shows the pairwise distances as calculated389

by the proposed measure. To get a better estimate of the difference between each probability390

distribution we grouped samples from three of the subjects Alien, Bugkiller, and Peacemaker391

according to time points, namely initial comprising Days 0, 2, 7, and 60, post-antibiotic392

comprising Days 376, 377, 378, and 380, and only from Alien and later comprising Days393

392 (3 samples) and 773. This grouping was motivated by the hypothesis that the distance394

between Alien initial and Alien post-antibiotic was significantly greater than a change that395

could be explained merely by a difference in time duration. From Supplementary Figure S6396

we indeed observe that Alien post-antibiotic has significantly greater pairwise distance to397

all other samples (Avg dist = 0.622). This also happens to be far more than the distance398

between samples of subjects at initial and later time points (Avg dist = 0.312). Observing399
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samples collected from Alien, the average pairwise distance between Alien initial and other400

samples (excluding Alien post-antibiotic) is 0.227 and that between Alien later and other401

samples (excluding Alien post-antibiotic) is 0.38. No statistical testing was done given the402

novelty of these metrics and small number of data point, but nonetheless the distances403

appear to reinforce the conclusion that antibiotic intervention does in fact cause significant404

perturbation in KOMB profiles.405

FMT samples pre, post, and donor406

We analyzed two patient samples at two different time-points namely, Pre-FMT and Post-407

FMT using KOMB to understand shift in microbiome communities after an FMT procedure.408

We also compared the KOMB anomaly profiles of Pre-FMT and Post-FMT samples to409

the Donor sample to track common patterns between them. The Pre-FMT samples were410

collected from the patients post vancomycin treatment. In Figure 6(A), we observe that411

the anomaly profiles of Pre-FMT samples are distinctly shrunk (less coreness) compared to412

the Post-FMT and Donor samples indicating similar trends previously observed after the413

antibiotic treatment in the gut microbiome study [51]. We also see that Patient 1 shows414

some partial recovery towards the Donor profile whereas Patient 2 shows a higher similarity415

to the Donor in terms of coreness and anomaly score.416

The unitigs obtained after KOMB analysis from one of the Post-FMT samples were too417

short and fragmented to annotate functionally using SeqScreen. In lieu of this, we examined418

the taxa represented by anomalous unitigs with the thinking that they may indicate impor-419

tant organisms driving the change in host microbiome post-FMT. For unitigs identified as420

anomalous (and which could be classified at the genus level, See Methods), over-represented421

taxa were determined by the score defined in Equation 4. In Figure 6(B) we see that, in422

general, there is a low similarity between over-represented taxa across the samples. We still423

observe that for both Patients 1 and 2, the Post-FMT samples have a higher taxa similar-424

ity to Donor compared to the Pre-FMT samples (highlighted by the black box in Figure425

6(B)) as captured in the anomalous unitigs despite a substantial difference in their anomaly426

profiles.427

As seen in Figure 6(C), Pre-FMT samples had three genera in common; Akkermansia,428

Selenomonas and Lactobacillus whereas Post-FMT had eleven: Lactobacillus, Blautia, Veil-429

lonella, Paeniclostridium, Ruminoccocus, Oscillibacter, Paenibacillus, Turicibacter, Actino-430

myces, Dialister, Faecalibacterium in common. We compared the relative levels of these431

taxa in Pre-FMT and Post-FMT and Donor. The values in the heatmap represent the av-432

erage of the Ratio of Ratios score in both patients. Compared to Pre-FMT levels, we saw a433

substantial increase in two taxa Akkermansiaand Lactobacillus in the Post-FMT anomalous434

unitigs. Akkermansia was only overexpressed in Patient 2, while Lactobacillus was found435

in both Patient 1 and Patient 2 at Post-FMT. Further analysis showed that Akkerman-436

sia was also present in anomalous unitigs in Patient 1 but at a much lower level than the437

background. Interestingly, previous studies have shown that higher levels of some species438

belonging to Akkermansia and Lactobacillus were helpful to combat Clostridium difficile439

infections [61, 62]. In contrast to Pre-FMT and Post-FMT Akkermansia, Selenomonas and440

Lactobacillus were also present in the anomalous unitigs in the Donor sample but were not441

over-represented compared to the other (background) unitigs.442

Among the taxa common in Post-FMT Samples, roughly half (6/11) were similarly over-443
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Table 1. Time and memory usage for KOMB. Shakya: Shakya et al (2013); HMP (Av); average
across HMP samples, TGM(Av); average across Temporal Gut Microbiome samples and FMT (Av);
average across FMT samples. Read filtering is treated as a pre-processing step, therefore the time
and memory usage for it is not reported in this table. KOMB was run with 20 threads.

Dataset Performance metrics
Reads Nodes Edges Wall clock CPU time RAM

Shakya 53,997,046 96,901 1,080,012 77m50s 1296m21s 25.29 GB
HMP (Av) 16,872,599 303,171 2,414,541 26m34s 445m1s 9.59 GB
TGM (Av) 26,520,076 776,058 7,286,158 44m41s 810m48s 20.22 GB
FMT (Av) 34,173,634 323,431 22,994,009 93m56s 1576m38s 23.16 GB

represented in Donor sample anomalous unitigs, though the levels were much higher in the444

former. However, Turicibacter and Dialister had a highest level of over-representation. This445

is noteworthy because Turicibacter is a well characterized taxa which is one of the most446

abundant in other reported studies on FMT inoculums and Post-FMT communities [63, 64,447

65] whereas the presence of Dialister has been found to be essential in Post-FMT recovery448

and non-disease states [66, 67]. Kraken 2 outputs and unitig classifications can be found in449

Supplementary Data SD4.450

Performance451

KOMB is written in C++. It uses the igraph C graph library [41] for the unitig construction452

and K-core decomposition implementations. Table 1 shows the runtime and memory usage453

of KOMB on the datasets used in our study. The experiments were run on a server with454

64 Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz processors having 372 GB of RAM. While455

analyzing the runtimes of specific stages of the KOMB pipeline we observed that the ABySS456

unitig generation is the most memory intensive step in the pipeline while read mapping457

using Bowtie2 is the most computationally intensive step in the pipeline. As KOMB is also458

extremely memory efficient, one can process multiple metagenomic samples simultaneously459

on any modern workstation to reduce the runtime on entire datasets even further.460

Discussion461

We have underlined the usefulness of characterizing metagenomes with KOMB through462

three separate use-cases. First, KOMB can be used to obtain a repeat profile of a sample463

capturing the more repetitive unitigs in the later shells. Second, KOMB can be used to464

identify and extract functionally rich unitigs and visualize sample-specific or subject-specific465

profiles as observed in our analysis of HMP samples from four distinct body sites. Finally,466

we also show how KOMB profiles can help with analyzing community shifts and disruption467

events in longitudinal samples.468

Though KOMB is not intended to be a repeat detection tool for metagenomes, it offers469

a convenient way of obtaining a sample-wide profile of repetitive unitigs. Repeat detection470

in metagenomes is a complex task and several previous methods have attempted to iden-471
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tify repeats and/or repeat families through different methods. KOMB attempts to identify472

sequences containing a small subset of exact repeats of length equal to k-1 where k is the473

k-mer size used to build the De Bruijn graph. One advantage of KOMB is that, given our474

hybrid unitig graph construction, the K-core decomposition gives a sample wide profile of475

exact repeats depending on their copy number. The hybrid unitig graphs draws inspiration476

from other previously studied De Bruijn graph types with embeddings or support for effi-477

cient repeat retrieval like A-bruijn graphs [68],Linked De Bruijn Graphs [69] and SIGAR478

graphs [70]. As seen by our results in the synthetic metagenome dataset, denser repeats are479

likely to be found in the higher shells. These could refer to certain inter-genomic repeats480

or intra-genomic repeats based on their relative copy numbers as well as the number of481

genomes the unitig is shared by. In addition to this, a single shell could contain multiple482

unitigs representing different repeat families if they share the same copy number (or occur483

in similar parts of the genome). A natural extension of this work would be to incorporate484

inexact repeats to the existing framework, which would help capture more biologically rel-485

evant relationships and account for subtle homology differences between regions of similar486

organisms at the cost of a longer runtime.487

KOMB leverages the underlying topology of the hybrid unitig graph to use the K-core488

graph decomposition algorithm to identify anomalous unitigs that could identify function-489

ally rich unitigs. These anomalous unitigs had the highest CORE-A score. Nodes having490

high CORE-A score exhibit high coreness and low degree or low coreness and high degree.491

The latter resembles topologies picked up by betweenness centrality measures described492

in previous works [28, 29, 30]. Identification of unitigs having high coreness and low de-493

gree is a unique feature of KOMB that enables identification of regions of dense repeats494

in a metagenome. A significant advantage KOMB offers in comparison to centrality based495

methods is the favourable O(E + V ) runtime to identify both kinds of anomalous unitigs.496

Another advantage is that KOMB performs a de-novo decomposition of the hybrid unitig497

graph and does not depend on user-defined neigborhood queries or taxonomic labels to498

characterize samples. Results on the HMP data from four body sites show that functional499

enrichment of the anomalous unitigs highlight important functional differences between500

the communities in each sample. KOMB was able to capture unique functional terms at501

a statistically significant level which could be useful to generate functional summaries of502

microbiome communities.503

Through taxonomic validation on our analysis of the KOMB profiles of FMT samples,504

we were able to show how the unitigs marked as anomalous can potentially belong to505

species indicative of the condition of FMT patients. Genera over-represented in anomalous506

unitigs in the Post-FMT samples were indicative of a transitional shift in the microbiome507

community as compared to Pre-FMT (Vancomycin treated) and Donor Samples underlying508

KOMB’s usefulness in summarizing community shifts in loongitudinal samples.509

KOMB, to the best of our knowledge, represents the first method to unify the extraction510

of graph based topological features and k-mer based methods to characterize metagenomes.511

Compared to previous graph based methods, KOMB offers the ability to visualize and512

calculate intra-sample distances. Compared to k-mer based methods, KOMB allows for513

de-novo analysis and extraction of functionally rich as well as relevant taxonomic sequences514

in metagenomic samples. Despite its strengths, there are some natural future enhancements515

that could be explored. First, KOMB is slower and much more memory intensive than some516

of the k-mer based methods. While some of this cost is necessary to gain a more sequence517
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level view of the sample, other efficient (or lossy) De Bruijn graph constructors could be518

considered to make the process more scalable to extremely large metagenomic samples with519

billions of reads. Second, KOMB relies exclusively on topology suited for retrieval by K-core520

decomposition i.e it relies on extracting clique or clique-like regions that are connected due521

to repeats or paired-end information . Future work to analyze other biologically relevant522

topologies that can be extracted by hybrid unitig graphs or its variants of the graph could523

be useful. Third, K-core profile of the unitigs can be used to obtain an approximate value of524

the entropy in samples, KOMB still lacks a direct conversion to popular diversity measures525

as provided by other k-mer based approach which would need further theoretical analysis.526

Conclusions527

In summary, KOMB can be used to obtain sample-wide repeat profiles, visualize com-528

munity shifts and disruption events in longitudinal gut microbiome samples, and quantify529

inter-sample distances across various time points. Combined with its ability to identify530

sample-specific and biologically important unitigs, KOMB can be used to get a holistic531

characterization of metagenomic samples both at a macro(sample) as well as at micro(se-532

quence) level.533
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Figure 1. Different graph types for metagenomic analyses and their construction.
Graphs construction a set of five reads are shown. A. Overlap graph [Directed]: built directly
from read with an overlap size of 3 base pairs(bp) . B. De Bruijn graph with kmer size (k) = 4bp
[Directed]: joins successive kmers obtained from reads having overlap size of length k-1. The kmers
in blue represented repeated kmers. C. Unitig scaffold graph [Directed]: joins unitigs according to
their relative positions in a De Bruijn Graph D. Hybrid Unitig Graph [Undirected]: An extension
of the Unitig scaffold graph but is also repeat-aware and joins unitigs containing repeats of size
k-1 where k is the kmer size used to build the De Bruijn graph. Edge carried forward from the
unitig scaffold graph are marked in black and called paired-end edges whereas newly added edges
are marked in red and are called repeat edges. 3-mers marked in bold (GTG and GCT) are the
repetitive regions connected by the repeat edge.
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Figure 2. Overview of the KOMB pipeline. 1. As a pre-processing step users can use k-
mer filtering to discard low-quality erroneous reads. 2. KOMB uses ABySS for memory efficient
De Bruijn graph construction and unitig generation 3. Paired-end reads are mapped back to the
unitigs obtained in 2 in order to connect unitigs. Paired-end reads with just one read mapping
are discarded. 4. The hybrid unitig graph is constructed. Edges connecting unitigs mapped by the
same read are termed as repeat edges whereas edges between unitigs mapped by paired-end reads are
called paired-end edges. The latter are similar to edges in a scaffold graph. 5. The obtained unitig
graph is partitioned into K-shells using the K-core decomposition algorithm. Anomalous unitig are
marked using the CORE-A anomaly score algorithm.
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Figure 3. Characterization of a synthetic metagenome sample using KOMB. (A) KOMB
profile of the Shakya et al (2013) dataset representing the shell number on the x-axis and the
number of unitigs in the y-axis. Red triangles indicate higher shells with greater than 200 nodes,
which represent clique or clique-like regions in the hybrid unitig graph. (B) Histogram representing
the fraction of unitigs in each of the shells that are repeats as determined by comparing with the
nucmer output. (C) KOMB repeat density is defined as the average copy number per number of
genomes for the repeat unitigs in the shell (see Equation 2). Larger shells have repeats with high
copy number but more specific to a single (or group of related) organisms. For figures (B) and (C),
shell 0 (disconnected nodes) and shells that contained no unitigs are not considered. Shells are split
into four different groups (1-80, 81-160, 160-240, 241-320) for visualization.
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Figure 4. Characterizing community shifts in Human Microbiome Project (HMP)
samples. (A) KOMB profiles from 4 different body sites containing 50 samples each obtained from
HMP datasets. The y-axis of the violin plots represent shell number (cutoff at 1000 for visualization)
and the width represents the number of unitigs in each shell. (B) Anomaly profiles for each body
site, x-axis represents the degree of unitigs and y-axis represents the coreness (or shell number) of
the unitigs. The gradient on the color bar represents the CORE-A anomaly score with the darker
shade representing higher scores within the samples. (C) Bar plot showing the percentage of unique
GO terms from the set of unitigs marked as anomalous. Black dots represent median of 100,000
random split simulations of GO terms obtained per body site, the whiskers represent 95th (top) and
5th (bottom) percentile indicating significance of the bar plot. (D) Jaccard similarity between the
set of unique GO term (y-axis) and the entire set of GO terms from the unitig marked as anomalous
for each pair of body sites. (E) Jaccard similarity between the entire set of anomalous GO terms for
each pair of body sites.
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Figure 5. Characterizing community shifts in longitudinal gut microbiome samples.
(A) KOMB profiles from 6 different subjects from samples collected Days 0, 2 and 7. The y-axis
of the violin plots represent shell number (cutoff at 100 for visualization) and the width represents
the number of unitigs in each shell. Alien, Bugkiller, Peacemaker, and Scavenger are male subjects
while Daisy and Tigress are female subjects. (B) KOMB profile for subject Alien over the course of
the 14 different time points in the study. The y-axis (cutoff at 200 for visualization) represent shell
number and x-axis represents the day of sample collection. Days 376, 377, 378, and 380 represent
profiles during which the subject was exposed to antibiotics, causing compression in the total shell
count as well as a significant change in the unitig distribution of the initial shells. Days 630 and 632
indicate time points when the subject underwent a bowel cleanse procedure with a similar but less
prominent effect on unitig count and distribution.
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Figure 6. Characterizing community shifts in fecal microbiota transplantation (FMT)
samples. (A) (Left) Anomaly profiles of two patients undergoing FMT therapy at two different
time points namely Pre-FMT and Post-FMT. (Right) Anomaly profiles of the donor sample, which is
common for both patients. The x-axis represents the degree of unitigs and y-axis represents the core-
ness (or shell number) of the unitigs. The gradient on the colorbar indicates the CORE-A anomaly
scores of unitigs in the sample. (B) Jaccard similarity between sets of taxa over-represented at the
genus level found in unitigs marked as anomalous in each of the 5 samples. The row highlighted
in black indicates the jaccard similarities of each patient across time points as compared to Donor.
(C) Common taxa over-represented in anomalous unitigs for Pre-FMT, Post-FMT and Donor sam-
ples. The numbers indicate the ratio of ratios of counts of taxa, indicating the relative level of
presence of the corresponding taxa in the anomalous unitig compared to the other unitigs in the
sample. The numbers in the figures have been averaged for Pre-FMT and Post-FMT samples from
both Patients. The first three genus Akkermansia, Selenomonas and Lactobacillus were common in
Pre-FMT while Lactobacillus, Blautia, Veillonella, Paeniclostridium, Ruminoccocus, Oscillibacter,
Paenibacillus, Turicibacter, Actinomyces, Dialister, Faecalibacterium were common in Post-FMT
samples.

26

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2021. ; https://doi.org/10.1101/2020.05.21.109587doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.21.109587
http://creativecommons.org/licenses/by-nd/4.0/

