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9 Abstract

10 Characterizing metagenomic samples via kmer-based, database-dependent taxonomic classifica-
11 tion methods has provided crucial insight into underlying host-associated microbiome dynamics.
12 However,novel approaches are needed that are able to track microbial community dynamics within
13 metagenomes to elucidate genome flux in response to perturbations and disease states. Here we de-
14 scribe KOMB, a novel approach for tracking homologous regions within microbiomes. KOMB utilizes
15 K-core graph decomposition on metagenome assembly graphs to identify repetitive and homologous
16 regions to varying degrees of resolution. K-core performs a hierarchical decomposition which par-
17 titions the graph into shells containing nodes having degree at least K, called K-shells, yielding
18 O(V + E) complexity compared to exact betweenness centrality complexity of O(V E) found in prior
19 related approaches. We show through rigorous validation on simulated, synthetic, and real metage-
20 nomic datasets that KOMB accurately recovers and profiles repetitive and homologous genomic
21 regions across organisms in the sample. KOMB can also identify functionally-rich regions in Human
22 Microbiome Project (HMP) datasets, and can be used to analyze longitudinal data and identify
23 pivotal taxa in fecal microbiota transplantation (FMT) samples. In summary, KOMB represents a
24 mnovel approach to microbiome characterization that can efficiently identify sequences of interest in
25 metagenomes.

26 Keywords— De Bruijn graph, graph-based analysis, K-core decomposition, metagenome, microbiome,

27 unitigs, functional characterization

» Background

20 Metagenomes are known hotspots for genomic diversity [1, 2, 3]. Communities in metagenomes
30 consist of individual organisms whose genomes are dynamic because of processes such as
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51 gene duplication, gene loss/gain, horizontal gene transfer, and gene rearrangements [4, 5,
22 6, 7]. These dynamic events are a results of complex interactions that underpin the mi-
53 crobiome [8, 9]. Therefore, characterizing metagenomic samples from diverse environments
s« and sample types is essential to understanding community structures, interactions, and
55 underlying functional information [10, 11, 12, 13, 14]. The main approaches to analyze
5o metagenomes include functional characterization and taxonomic classification pipelines [15,
57 16, 17]. These approaches, while informative, do not necessarily capture the dynamic gene
s duplication, gene loss/gain or gene transfer activity found in metagenomic samples over
30 time.

40 In this study, we present KOMB, a novel algorithm for characterizing a metagenome
a1 with a particular emphasis on capturing the structure of how repeated elements appear
2 in the community, both within and across microbes. KOMB uses purely sequence level
.3 information and does not use a reference database. KOMB begins with a set of partially
. assembled sequences (unitigs) from he metagenome which it then partitions into hierarchical
45 "shells”, where higher shells contain repeat regions that have high copy number and are more
46 densely concentrated in a few organisms in the communuity. The result is a profile of a
47 given microbiome driven by how genetic repeats are distributed throughout the community.

s Related Work

s While certain metagenomic communities including some human body sites [18, 19, 20]
so are well studied in different pathological conditions, there exists limited information on a
51 plethora of different microbiomes, hindering their characterization [21, 22, 23, 24]. The
52 difficulty in analyzing these metagenomes can often be attributed to the paucity of curated
53 databases and library of reference sequences [25]. The sheer diversity of organisms in these
s« samples that are yet to be identified and annotated further exacerbates this challenge [26,
55 ].] .

56 In order to deal with high-volume metagenomic data from many sample types that may
57 lack an adequate reference, previous efforts have focused on reference-free approaches to
s quantify variance and diversity. These fall broadly into two classes. First, some methods
so rely on De Bruijn graphs, assembly graphs, or scaffold graphs to identify sequence-level vari-
s ation [27, 28, 29, 30]. An overview of the construction of these various graph types including
61 the contributions of this work are illustrated in Figure 1. These approaches characterize sam-
62 ples by relying on popular graph algorithms like betweenness-centrality to identify repetitive
63 contigs, or finding 2-vertex cuts to extract end points of bubbles, or both. In order to reduce
s« the O(V E) complexity of betweenness-centrality [31, 32, 33], approximation algorithms have
65 sometimes been substituted. Another recent approach has focused on allowing end-users to
66 efficiently query neighbourhoods of interest in metagenomic-compacted De Bruijn graphs,
7 specifically by an indexing approach that approximates minimum r-dominating sets [34].
6s Though the approximation schemes make calculation more tractable on large metagenomic
o datasets, its sample wide accuracy and sensitivity may still be sub-optimal [29].

70 The second category is k-mer based approaches to quantify diversity and inter-sample
7 distances. These rely on statistical properties of k-mers based on their frequencies [35, 36,
72 37]. A recent improvement [38] described a generalization of k-mer based method to use
73 Fibonacci Q-matrix in order to efficiently represent every read in the sample as a quadruplet
74 using a sliding-window approach. This matrix was then used for within-sample diversity and
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75 inter-sample distance calculations. Though k-mer based methods can efficiently summarize
76 differences up to the sample level, they are not well-suited to identify drivers of genome flux
77 (e.g. duplication or transfer) within a microbial communities.

= KOMB

79 KOMB is a novel method of characterizing metagenomes that builds off of previous graph-
s based approaches and incorporates the benefits of k-mer frequency analyses. KOMB relies
s1 on the efficient K-core graph decomposition, which has a desirable complexity of O(V + E).
g2 We aim to unify the strengths of graph based and k-mer based approaches to identify both
83 the sequence level features as well as visualize and quantify sample level differences from
s« longitudinal data. Thus, we provide an efficient way to extract micro-level (sequence spe-
ss  cific) as well as macro-level (inter-sample distances) insights from short-read metagenomic
s data. The hybrid unitig graph constructed by KOMB tracks both repeats and rearrange-
sz ments in metagenomes. To demonstrate KOMB’s usability to profile repeats and capture
ss sequence level features, we apply it to simulated and synthetic data with available ground
g0 truths. We also run KOMB on HMP data to illustrate its ability to identify sample specific
o0 profiles and functionally rich regions. Finally, we also show KOMB’s ability to capture
o1 community disruption events as well as identify markers important to community shifts in
92 longitudinal metagenomic samples on gut microbiome and fecal microbiota transplantation
s (FMT) samples.

« Methods
s KOMB Algorithm

o6 An overview of the KOMB pipeline is given in Figure 2. The main steps are as follows.
o7 First a de Bruijn graph is constructed from reads in the sample subject to some initial
os filters, and unitigs are identified from this graph. Second, reads are mapped back to unitigs
9o and a graph is constructed on the unitigs by linking them together in two different ways
100 using the read-mapping data (called a "hybrid” graph herein and described in additional
11 detail below). Finally, the hybrid unitig graph is partitioned using the K-core decomposition
102 into an ordered group of subsets (called "shells”), where unitigs in higher shells are have
103 a higher copy number and are densely concentrated whereas those in the earlier shells are
104 more ubiquitous among the organisms in the community. This set of shells along with the
105 unitigs contained in each one is called the KOMB profile, and in what follows we show that
106 it captures a meaningful property of the community.

107 KOMB incorporates three widely-used bioinformatics tools as part of its workflow. Raw
s paired-end reads are input to ABySS [39] for efficient De Bruijn graph creation and unitig
100 construction, as well as Bowtie 2 [40] for fast and accurate read mapping. In addition to
110 this, our tool also relies on the igraph C [41] and OpenMP [42] libraries for the K-core
11 implementation and the fast parallel construction of the hybrid unitig graph, respectively.
112 A k-mer based read filtering tool [43] is also available for use as part of the software for
113 optional pre-processing of reads.
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112 Hybrid unitig graph construction

115 KOMB constructs a novel hybrid unitig graph to efficiently mine repetitive topologies using
16 K-core graph decomposition. The workflow consists of DBG construction, read mapping,
17 and the KOMB core module as shown in Figure 2. All reads are initially input to the DBG
s constuctor ABySS to obtain unitigs. A unitig is a maximal consensus sequence usually
110 obtained from traversing a De Bruijn graph. By definition, unitigs terminate at branches
120 caused by repeats and variants and, unlike contigs, are non-overlapping. Subsequently, all
121 of the reads are mapped to unitigs using Bowtie 2. We then construct our hybrid unitig
122 graph with two distinct set of edges. First, for each read we create a set of all unitigs
123 that mapped to that read and connect them. We denote these edges as repeat edges,
122 which capture repeats in unitigs. Second, for a given forward and reverse read pair, we
125 check if each individual read in the pair mapped to different unitigs, which would represent
16 potentially adjacent unitigs in the genome. We call these adjacency edges that attempt to
127 capture any gene loss/gain events between adjacent unitigs. This incorporates paired-end
128 edge information similar to those found in canonical scaffold graphs.

120 K-core decomposition

130 K-core decomposition is a popular graph-theoretical concept used in network science to
131 identify influential nodes in large networks [44, 45, 46]. The K-core of a graph is defined as
122 the maximal induced subgraph where every node has (induced) degree at least K. A node
133 belongs to the K-shell if it is contained in the K-core but not in the (K + 1)-core. For any
13¢  given graph, one can iteratively and efficiently decompose it into shells with a complexity
135 proportional to the size of the graph, which is significantly faster than the computation of
136 most exact centrality measures [47]. The shells output as a result of K-core decomposition
137 on the hybrid unitig graph reveal unitigs that are connected either to a similar number
133 of unitigs as a result of their repeat content (via repeat edges) or are adjacent to unitigs
130 with the same properties. At higher shells we observe clique or clique-like behaviours that
140 capture unitigs containing repeats with very high copy number and in some cases appearing
11 very close to each other (e.g., tandem duplications). Both adjacency edges and pseudo-edges
12 are weighted equally in the graph. A more detailed description of K-core decomposition as
s well as theoretical analysis of the KOMB K-core profile can be found in Supplementary
us  Figures S1 and S2.

15 Identifying anomalous unitigs

s Identification of biologically important unitigs in a given sample is done through ranking
147 the nodes with a CORE-A anomaly score [48]. The CORE-A anomaly score calculates the
e deviation from mirror pattern (dmp) as given in Equation 1 where rankq and rank. denote
149 the rank of degree and coreness (shell that a vertex belongs to). This has been shown to
10 reveal nodes of interest in real-world graphs like social and information networks [48]

151 CORE-A score =| log(rankq(v)) — log(rank.(v)) | . (1)
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152 Datasets

153 We tested KOMB on four different datasets to illustrate various properties of KOMB and
152 underline different use cases while analyzing metagenomes. The datasets and their use cases
155 are briefly described as follows:

156 1. Shakya synthetic metagenome: A well-characterized synthetic metagenome con-

157 sisting of 64 organisms (48 bacteria and 16 archea)[49]. This dataset is a simple test
158 case to demonstrate how KOMB operates in practice, how to interpret the results, and
159 how the higher shells reflect the structure of repeated regions in the metagenome.

160 2. Multi-site HMP samples: This dataset contains 50 samples each from four body
161 sites drawn from the Human Microbiome Project (HMP)[50]. These samples are a
162 useful test case for KOMB because they demonstrate a) that the KOMB profile for
163 samples within a given site are broadly similar to one another, and b) that the overall
164 profile for each body site is characteristic and distinct from other body sites in much
165 the same way that the taxonomic profile is. In other words, it suggests that the KOMB
166 profile is both reproducible and is consistent with what might be expected on highly
167 dissimilar communities. This dataset is also used as an example of how the KOMB
168 profile specifically recovers functionally rich sequences.

169 3. Longitudinal gut microbiome samples: This data is also from a previous study
170 [51] and contains samples taken from 6 subjects over two years, including one subject
171 that was exposed to antibiotic and bowel cleanse disruption in that time. This is meant
172 to go one step further by showing that the KOMB profile can capture both subject-
173 specific differences at a common body site and variations in an individual community
174 over time as it is subject to perturbations.

175 4. Fecal microbiota transplantation (FMT): This data has not been previously
176 published and includes samples from two patients undergoing (FMT) from a common
177 donor. Specifically, the samples include both pre- and post-FMT from each patient
178 as well as one sample from the donor. Anomalous unitigs identified in KOMB profiles
179 capture specific taxa that are known to be contributurs to recovery and transition to a
180 disease-free state in Post-FMT samples when compared to both Pre-FMT and Donor
181 samples.

122 Running KOMB

153 The following sections contain detailed descriptions of how KOMB was run on each of the
1.2 four datasets as well as any steps required for additional analyses discussed in Results below.

155 Shakya synthetic metagenome

155 Reads from the Shakya et al. (2014) study were obtained from NCBI SRA (SRR606249).
157 Reads were filtered using the kmer-filtering tools packaged as part of Stacks [43]. Ground
18 truth for repetitive unitigs was established by using nucmer to map the unitigs to the
180 reference genomes with parameters -c 50 -1 50 as the hybrid unitig graph was built on
190 matching 50bp exact matches. KOMB was run with the parameters -k (kmer-size) 51 and
101 -1 (read length) 101. Fraction of repeat unitigs were calculated by dividing the number of
192 unitigs marked as repetitive by nucmer to the total number of unitigs in the shell. KOMB
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103 repeat density calculated for each shell is given by the formula outlined in Equation 2. We
104 calculate the sum of copy numbers of each repetitive unitig and then divide it by the number
105 of reference genomes these unitigs map to (number between 1-64) . This number is then
196 averaged over the number of repetitive unitigs in a shell.

va Copy number; /Number of reference genomes mapped;

107 KOMB Repeat Densitygspen = (2)

Number of repeat unitigs in shell

105 Multi-site HMP samples

199 HMP 1 data consisting of 50 samples each from four different body sites (anterior nares,
200 stool, supragingival plaque, and buccal mucosa) was downloaded from the HMP website
201 https://www.hmpdacc.org/HMASM/. Prior to running KOMB, we implemented a homog-
202 enizing step where only reads having length equal to the longest read length per sample
203 were kept (mostly 100 bp) and the rest were discarded. KOMB was then run with the
204 parameter -k (kmer-size) 51. Functional characterization of unitigs obtained and marked
205 from the anomaly detection stage is done through SeqScreen [52, 53]. Anomalous unitigs
200 are determined by considering all unitigs whose dmp score (see Equation 1) is above a cutoff
207 score as determined in Equation 3. In this equation, Qg represents third quartlie and I.Q.R
208 is the inter-quartile range which is the difference between the third and first quartiles (Qs
200 - Qp). For the analysis, we combined the anomalous unitigs from each individual sample
210 and, separately, we combined the rest of the unitigs from each of the samples to obtain the
a1 set of unique GO terms and set of anomalous GO terms for each body site. Anomalous GO
212 terms refers to the GO terms found in unitigs marked as anomalous by KOMB. Unique GO
13 terms refers to a subset of GO terms found only in the anomalous unitigs but not found
214 in other unitigs in a given body site. In other words, anomalous GO terms are a superset
15 of unique GO terms. All GO terms are filtered for bacterial specific GO terms using the
216 https://github.com/AstrobioMike/CoV-IRT-Micro python package. Only GO terms
217 belonging to the Biological Process branch were considered for the analysis.

218 Cutoff score = Q3 + 1.51.Q.R. (3)

210 Longitudinal gut microbiome samples

20 Reads for the dataset were obtained from the ENA website (ID: ERP009422). The reads
221 were filtered using the kmer filter tool packaged as part of Stacks [43]. The reads were run
22 with the commands -k (kmer-size) 35 and -1 (read length) 80.

23  Fecal microbiota transplantation (FMT) samples

24 Sample Collection: Two pediatric patients with a recurrent CDI diagnosis received FMT
25 under IRB-approved informed consent (#H-31066) at Baylor College of Medicine. The in-
26 vestigational nature of FMT was highlighted during consenting in accordance with current
227 U.S. Food and Drug Administration (FDA) regulations. CDI diagnosis was based on toxin
28  PCR positivity along with clinical complaints of 3 or more diarrheal stools per day. Patients
20 reported recurrent (return of symptoms within 2 months) or ongoing diarrheal symptoms
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230 despite completing at least two courses of CDI-directed antibiotics that included at least
231 one course of metronidazole and vancomycin. Patients received filtered, frozen-thawed fecal
232 preparations from a standardized donor (38-40 y male during donations) via colonoscopy.
233 The donor screening and fecal preparation procedures were approved by the U.S. Food and
23 Drug Administration (IND15743). Fecal samples were collected from patients the day prior
235 to FMT and 8-9 weeks following treatment on a follow-up visit. All samples were frozen
236 and kept at -80°C until simultaneously thawed for bacterial DNA extraction using the
257 PowerSoil DNA isolation kit (MO BIO Laboratories, Carlsbad, California, USA). Shotgun
233 metagenomic sequencing was performed with >200 ng of input DNA as previously described
230 by us [54] and sequence is submitted to NCBI BioProject database: PRIJNA743023.

240

21 Analyses: Reads were mapped to GRCh38pl2 using bowtie 2.3.5; with preset options
222 bowtie2 —local ; read pairs were extracted from resultant SAM file using samtools 1.9 [55]
23 using flags samtools fastq -f 13 ; these read pairs were then subjected to KOMB using -k
224 51 -1 150 . Taxonomic analysis of the anomalous unitigs was done by running the unitigs
25 through Kraken2 [56]. Kraken2 was run with the miniKraken2 database v1 (8GB). Unitigs
26 that were successfully classified at genus level or below were considered for the analysis.
27 All unitigs classified at species level were assigned to their corresponding genus. For each
2 sample, anomalous unitigs are obtained by selecting those whose dmp score (Equation 1)
210 is above the cutoff score in Equation 3. For each genus present in anomalous unitigs, we
250 calculate the Ratio of Ratios score for each genus as given in Equation 4, where num,,
251 and numgg are the number of unitigs classified at genus g in the set of anomalous unitigs
22 and other (background) unitigs, respectively. The denominators refer to the sum of all
253 unitigs of all genus present in the set. The total number of unique genus present in both
254 the sets (anomalous and other) are N, and N, respectively. For the analysis, we selected
25 those genera with the ratio of ratios greater than or equal to one (> 1) which we term as
256 over-represented genus in the anomalous unitigs.

numgg/ Zf\;al numy;

257 Ratio of Ratios score, = .
g No
NuMeg/ > ;1% NUM,;

»s  Calculating the L1 norm between KOMB Profiles

250 In order to calculate the distance between two KOMB profiles, we use the L1 norm of the
60 difference between their normalized coreness profiles. More precisely, we first divide the size
261 of each shell by the total number of unitigs in each profile. The shorter of the two profiles is
22 then padded with zeros to equalize the number of shells, i.e., we can represent each profile
263 as a vector of the same size. We then compute the distance between the profiles as the L1
26« norm of the difference between these two vectors.

s Results

xs KOMB profile example and interpretation

267 'The Shakya synthetic community was used as a simple example to demonstrate the KOMB
268 profile and provide some evidence to support the assertion that it captures the pattern of
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260 repeated regions in the community.

270 An input to the De Bruijn graph construction is k: the exact k-mer size used to join
o1 reads. The shells in the KOMB profile are labeled incrementally as they are produced in the
o2 K-core decomposition. The number of a given shell is approximately the copy number of a
073 family of exact repeats of size k—1 if the unitig is repetitive or the degree of a non-repetitive
274 unitig that is in close proximity to a repetitive unitig with copy number greater than the
275 shell number.

276 First, Figure 3(A) shows how the full set of unitigs is distributed according to each shell,
277 with a total of 320 K-core shells obtained after decomposition. (For simplicity, we exclude
27s - shell 0 which represents isolate unitigs.) Early shells (i.e. 1-4) contain the majority of the
279 unitigs and overall the density declines steeply as the shell number grows, similar to what
230 we might expect in a random graph. However, by contrast with a random graph there
251 are a number of small peaks occurring at higher nodes after the initial drop-off (marked
22 with red triangles). Most of these peaks are followed by regions of empty cores indicating
23 that these peaks mark dense cliques that all share the 50 bp exact match (as 51 was the
28+ k-mer size used). A similar behaviour was observed in our validation on simulated genomes
25 (Supplementary Figures S3, S4 and S5), where these topological features represented the
236 artificially inserted repeats. These peaks in higher shells are endemic the nature of the
257 KOMB profile, and the number and size of the peaks captured in this figure are a simple
238 summary of the KOMB profile for a given community.

289 Beyond simply showing the KOMB profile for this community, it is worth verifying that
200 higher shells do indeed represent regions with more repeats and of higher repeat-number.
201 Here, we have used nucmer to quantify the repeat number of each unitig, and the stacked
202 bar charts in Figures 3(B) and 3(C) show how shells compare to one another according to the
203 fraction of unitigs considered a repeat and average repeat density, respectively. The nucmer
204 repeat quantification is imperfect and the shells are grouped by quartile, but nonetheless
205 the third and fourth quartiles are skewed to the right in each graph, indicating that indeed
206 the higher shells contain unitigs with a heavier density of repeats. This is a fundamental
207 property of the shells in a KOMB profile. Nucmer analysis of repeat unitigs also revealed
208 that the repeats in the higher shells mapped only to a few organism in the sample but had
200 relatively high copy numbers resulting in a higher density. Combining these observations
so0  with those from the KOMB profile, we can infer that the majority of shells containing true
501 repeats are likely to lie beyond shell 161. It is important to note here that the topology of
502 the hybrid unitig graph in addition to repeats the KOMB profile also captures unitigs that
503 are adjacent (as defined by paired-end edges) to repetitive unitigs across copy numbers.
s0  Hence, it is expected result that some of shells will not consist a high number of repeats
s05 and would instead contain these adjacent unitigs.

w0 KOMB vis-a-vis beta-diversity and functional annotation

507 A key test for a novel descriptive profile is whether it is reproducible and whether it shows
508 broad differences where they would intuitively be expected. A key insight about the human
500 microbiome is that the bacterial communities differ substantially by body site, and that
310 communities from the same body site across different individuals are more similar than
s across body site. We would therefore expect KOMB profiles to follow this same pattern.
52 Figure 4(A) shows the same distribution of unitig density by shell number as in the previous
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s13  dataset, but here it is presented as a violin plot. Specifically, the plots for all 50 samples
314 from the same site are overlaid to visualize their variability. Each site has its own evident
sis shape, and notably the anterior nares site appears to have the largest range of variability
si6  for individual samples. We also analyzed the site-specific profiles for intra-site and inter-site
317 distances which are discussed in Supplementary Data SD1.

318 This dataset also served as a test case for a hypothesis that the KOMB profile could be
s0 - used to identify highly "important” segments. The K-core decomposition has been useful
20 for this in other contexts, specifically by identifying anomalous nodes in the graph (CITE).
31 Here, we hypothesize that "importance” of a unitig could be represented by functional
32 richness.

323 We utilize the anomaly detection algorithm as proposed by [48]. Figure 4(B) shows the
3¢ Coreness vs Degree graph of the unitigs for each body site. The color gradient indicates
35 the CORE-A score with the unitigs having high CORE-A score mainly being high core-
326 ness and low degree or low coreness and high degree. Unitigs were separated into those
327 marked as anomalous and those not, then we functionally annotated the unitigs marked as
38 anomalous by assigning GO terms. Then, GO terms occuring only in anomalous unitigs
20 ("unique GO terms”) were expressed as a percentage of all GO terms. For comparison, we
330 conducted simulations in which GO terms were randomly assigned to contigs and ran the
;31 same calculation of "unique GO terms”.

332 Figure 4(C) shows the results: the bar for each body site is the overall % unique, while
533 the black line (and error bars) represent the values obtained by simulation. The actual
33 values are well above the error bars for all body sites, indicating that anomalous unitigs
335 contain a disproportionate share of gene functions that are found only in these unitigs. Fur-
336 thermore, previous studies [57, 58, 59] have described the relative evenness and low diversity
337 of the buccal mucosa community especially in comparison to other oral communities like
338 supragingival plaque which is reflected in our functional analysis of anomalous unitigs.

339 Further, we analyzed how the unique GO terms in a given body site compare with
ss0 the GO terms found in anomalous unitigs from other body site. We then calculated the
s jaccard similarities of these sets. We hypothesized that samples from similar regions (eg.
322 oral) would be more similar functionally than others which we recapitulate in a taxonomy-
13 oblivious manner through KOMB. In Figure 4(D), we see that the jaccard similarities are
s overall low (< 0.2) indicating that these unique GO terms are generally specific to the
35 microbiome in a given body site. The GO terms in stool were the most dissimilar to
16 those found in anomalous unitigs in other samples (average jaccard similarity=0.05). The
a7 similarity scores of unique GO terms in anterior nares and supragingival plaque had greater
s similarity with the anomalous GO terms buccal mucosa (0.19). Figure 4(E) shows the
a0 jaccard similarities of anomalous GO terms between each body site. The oral sites, buccal
550 mucosa and supragingival plaque, had the most similar anomalous GO terms (0.43). Similar
351 to the case with unique GO terms, anterior nares had a higher similarity with buccal mucosa
552 (0.35) than supragingival plaque (0.26). We also observed that anomalous unitigs in stool
53 had the lowest functional similarity to other body sites (average jacaard similarity =0.186).
352 The GO term ID and names can be found in Supplementary Data SD2.
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s KOMB characterizes community shifts in longitudinal samples
356 Longitudinal gut microbiome samples

357 ' To demonstrate KOMB’s ability to derive insights from large scale metagenomic analysis,
355 we considered a temporal gut metagenome study. This study contains git microbiome
550 samples collected from 7 subjects (5 male and 2 female) at different time points spread
30 over two years. Figure 5(A) shows the KOMB profiles of each of the 6 analyzed subjects
561 (one subject was excluded because of missing data point) from the initial three time points
52 (Days 0, 2, 7), each labeled by an alias given in the original study. These violin plots
363 show that the gut samples from the six subjects all have relatively similar KOMB profile
364 distributions, although some idiosyncrasy does appear in subjects Daisy and Bugkiller. To
365 quantify these profiles, The intra-subject and inter-subject sample distances were analyzed
36 and are discussed in Supplementary Data SD3.

367 To get a more quantitative understanding of the data and the effects of external dis-
38 ruptions on the gut microbiome we focus our attention on the subject Alien who was the
360 only subject exposed to an antibiotic intervention and bowel cleanse procedure during the
370 course of the study.

371 Figure 5(B) outlines the entire longitudinal trajectory of Alien’s gut microbiome over the
sz course of 14 time points spread across two years. The KOMB profiles as displayed focus on
573 the first 200 shells at each time point. We observe a significant change of shape in the profile
s+ on Days 376, 377, 378, and 380 which coincides with samples taken after antibiotic intake
375 and which correspond to a significant perturbation community composition as reported in
376 the study. This is also mirrored by the unitig counts in the samples, which decreases by an
s77 - order of magnitude. Importantly, the total number of reads in the samples from each time
378 point are similar and, hence, the change in unitig count is most likely caused by a shift in
379 the community composition. Thus, antibiotic intervention causes not only a reduction in
;30 the total number of shells but also alters the unitigs present in the initial shells, though this
;81 tends to recover slightly towards the end of the antibiotic cycle on Day 380. The distirbution
;32 of unitigs to shells has returned to form twelve days after the last post-antibiotic sample
53 (Day 392), and the raw number of unitigs has returned to earlier levels by Day 600. We
s8¢ observe similar but less drastic shell compression and quick recovery after a bowel cleanse
s (Days 630, 632) indicating that antibiotics cause a far greater disruption in microbiome
36 community structure, a finding corroborated by the authors in [51] as well as an earlier
7 study [60].

388 To further quantify the perturbation, we calculated the LL1 norm between the KOMB
;30 profiles of the subjects. Supplementary Figure S6 shows the pairwise distances as calculated
s00 by the proposed measure. To get a better estimate of the difference between each probability
501 distribution we grouped samples from three of the subjects Alien, Bugkiller, and Peacemaker
302 according to time points, namely initial comprising Days 0, 2, 7, and 60, post-antibiotic
303 comprising Days 376, 377, 378, and 380, and only from Alien and later comprising Days
500 392 (3 samples) and 773. This grouping was motivated by the hypothesis that the distance
305 between Alien initial and Alien post-antibiotic was significantly greater than a change that
396 could be explained merely by a difference in time duration. From Supplementary Figure S6
307 we indeed observe that Alien post-antibiotic has significantly greater pairwise distance to
08 all other samples (Avg dist = 0.622). This also happens to be far more than the distance
300 between samples of subjects at initial and later time points (Avg dist = 0.312). Observing
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a0 samples collected from Alien, the average pairwise distance between Alien initial and other
s01 samples (excluding Alien post-antibiotic) is 0.227 and that between Alien later and other
w02 samples (excluding Alien post-antibiotic) is 0.38. No statistical testing was done given the
a3 novelty of these metrics and small number of data point, but nonetheless the distances
a4 appear to reinforce the conclusion that antibiotic intervention does in fact cause significant
a5 perturbation in KOMB profiles.

a0 FMT samples pre, post, and donor

a7 We analyzed two patient samples at two different time-points namely, Pre-FMT and Post-
a8 FMT using KOMB to understand shift in microbiome communities after an FMT procedure.
a0  We also compared the KOMB anomaly profiles of Pre-FMT and Post-FMT samples to
a0 the Donor sample to track common patterns between them. The Pre-FMT samples were
a1 collected from the patients post vancomycin treatment. In Figure 6(A), we observe that
a1z the anomaly profiles of Pre-FMT samples are distinctly shrunk (less coreness) compared to
a3 the Post-FMT and Donor samples indicating similar trends previously observed after the
s antibiotic treatment in the gut microbiome study [51]. We also see that Patient 1 shows
a5 some partial recovery towards the Donor profile whereas Patient 2 shows a higher similarity
416 to the Donor in terms of coreness and anomaly score.

a17 The unitigs obtained after KOMB analysis from one of the Post-FMT samples were too
a5 short and fragmented to annotate functionally using SeqScreen. In lieu of this, we examined
a9 the taxa represented by anomalous unitigs with the thinking that they may indicate impor-
20 tant organisms driving the change in host microbiome post-FMT. For unitigs identified as
21 anomalous (and which could be classified at the genus level, See Methods), over-represented
22 taxa were determined by the score defined in Equation 4. In Figure 6(B) we see that, in
a3 general, there is a low similarity between over-represented taxa across the samples. We still
224 observe that for both Patients 1 and 2, the Post-FMT samples have a higher taxa similar-
425 ity to Donor compared to the Pre-FMT samples (highlighted by the black box in Figure
26 6(B)) as captured in the anomalous unitigs despite a substantial difference in their anomaly
427 profiles.

428 As seen in Figure 6(C), Pre-FMT samples had three genera in common; Akkermansia,
29 Selenomonas and Lactobacillus whereas Post-FMT had eleven: Lactobacillus, Blautia, Veil-
20 lonella, Paeniclostridium, Ruminoccocus, Oscillibacter, Paenibacillus, Turicibacter, Actino-
w1 myces, Dialister, Faecalibacterium in common. We compared the relative levels of these
42 taxa in Pre-FMT and Post-FMT and Donor. The values in the heatmap represent the av-
433 erage of the Ratio of Ratios score in both patients. Compared to Pre-FMT levels, we saw a
a3¢  substantial increase in two taxa Akkermansiaand Lactobacillus in the Post-FMT anomalous
435 unitigs. Akkermansia was only overexpressed in Patient 2, while Lactobacillus was found
16 in both Patient 1 and Patient 2 at Post-FMT. Further analysis showed that Akkerman-
437 sta was also present in anomalous unitigs in Patient 1 but at a much lower level than the
138 background. Interestingly, previous studies have shown that higher levels of some species
130 belonging to Akkermansia and Lactobacillus were helpful to combat Clostridium difficile
wo  infections [61, 62]. In contrast to Pre-FMT and Post-FMT Akkermansia, Selenomonas and
a1 Lactobacillus were also present in the anomalous unitigs in the Donor sample but were not
w2 over-represented compared to the other (background) unitigs.

443 Among the taxa common in Post-FMT Samples, roughly half (6/11) were similarly over-
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Table 1. Time and memory usage for KOMB. Shakya: Shakya et al (2013); HMP (Av); average
across HMP samples, TGM(Av); average across Temporal Gut Microbiome samples and FMT (Av);
average across FMT samples. Read filtering is treated as a pre-processing step, therefore the time
and memory usage for it is not reported in this table. KOMB was run with 20 threads.

Dataset Performance metrics

Reads Nodes Edges Wall clock CPU time RAM
Shakya 53,997,046 96,901 1,080,012 77m50s 1296m21s  25.29 GB
HMP (Av) 16,872,599 303,171 2,414,541 26ma34s 445m1s 9.59 GB
TGM (Av) 26,520,076 776,058 7,286,158 44m4ls 810m48s 20.22 GB
FMT (Av) 34,173,634 323,431 22,994,009 93mb6s 1576m38s  23.16 GB

as  represented in Donor sample anomalous unitigs, though the levels were much higher in the
a5 former. However, Turicibacter and Dialister had a highest level of over-representation. This
w6 is noteworthy because Turicibacter is a well characterized taxa which is one of the most
w7 abundant in other reported studies on FMT inoculums and Post-FMT communities [63, 64,
us  65] whereas the presence of Dialister has been found to be essential in Post-FMT recovery
w9 and non-disease states [66, 67]. Kraken 2 outputs and unitig classifications can be found in
0 Supplementary Data SD4.

s Performance

s KOMB is written in C++. It uses the igraph C graph library [41] for the unitig construction
453 and K-core decomposition implementations. Table 1 shows the runtime and memory usage
ssa of KOMB on the datasets used in our study. The experiments were run on a server with
55 64 Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz processors having 372 GB of RAM. While
16 analyzing the runtimes of specific stages of the KOMB pipeline we observed that the ABySS
457 unitig generation is the most memory intensive step in the pipeline while read mapping
w8 using Bowtie2 is the most computationally intensive step in the pipeline. As KOMB is also
150 extremely memory efficient, one can process multiple metagenomic samples simultaneously
w60 on any modern workstation to reduce the runtime on entire datasets even further.

w0 DDiscussion

162 We have underlined the usefulness of characterizing metagenomes with KOMB through
w63 three separate use-cases. First, KOMB can be used to obtain a repeat profile of a sample
164 capturing the more repetitive unitigs in the later shells. Second, KOMB can be used to
w65 identify and extract functionally rich unitigs and visualize sample-specific or subject-specific
a6 profiles as observed in our analysis of HMP samples from four distinct body sites. Finally,
w67 we also show how KOMB profiles can help with analyzing community shifts and disruption
s6s events in longitudinal samples.

460 Though KOMB is not intended to be a repeat detection tool for metagenomes, it offers
a0 a convenient way of obtaining a sample-wide profile of repetitive unitigs. Repeat detection
411 in metagenomes is a complex task and several previous methods have attempted to iden-
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a2 tify repeats and/or repeat families through different methods. KOMB attempts to identify
4713 sequences containing a small subset of exact repeats of length equal to k-1 where k is the
a7+ k-mer size used to build the De Bruijn graph. One advantage of KOMB is that, given our
475 hybrid unitig graph construction, the K-core decomposition gives a sample wide profile of
476 exact repeats depending on their copy number. The hybrid unitig graphs draws inspiration
a7 from other previously studied De Bruijn graph types with embeddings or support for effi-
a3 cient repeat retrieval like A-bruijn graphs [68],Linked De Bruijn Graphs [69] and SIGAR
a0 graphs [70]. As seen by our results in the synthetic metagenome dataset, denser repeats are
a0 likely to be found in the higher shells. These could refer to certain inter-genomic repeats
w1 or intra-genomic repeats based on their relative copy numbers as well as the number of
42 genomes the unitig is shared by. In addition to this, a single shell could contain multiple
453 unitigs representing different repeat families if they share the same copy number (or occur
s+ in similar parts of the genome). A natural extension of this work would be to incorporate
a5 inexact repeats to the existing framework, which would help capture more biologically rel-
a6 evant relationships and account for subtle homology differences between regions of similar
se7  organisms at the cost of a longer runtime.

488 KOMB leverages the underlying topology of the hybrid unitig graph to use the K-core
a0 graph decomposition algorithm to identify anomalous unitigs that could identify function-
a0 ally rich unitigs. These anomalous unitigs had the highest CORE-A score. Nodes having
a1 high CORE-A score exhibit high coreness and low degree or low coreness and high degree.
12 The latter resembles topologies picked up by betweenness centrality measures described
403 in previous works [28, 29, 30]. Identification of unitigs having high coreness and low de-
a4 gree is a unique feature of KOMB that enables identification of regions of dense repeats
205 In a metagenome. A significant advantage KOMB offers in comparison to centrality based
206 methods is the favourable O(E + V') runtime to identify both kinds of anomalous unitigs.
207 Another advantage is that KOMB performs a de-novo decomposition of the hybrid unitig
208 graph and does not depend on user-defined neighborhood queries or taxonomic labels to
a0 characterize samples. Results on the HMP data from four body sites show that functional
s0 enrichment of the anomalous unitigs highlight important functional differences between
500 the communities in each sample. KOMB was able to capture unique functional terms at
500 a statistically significant level which could be useful to generate functional summaries of
503 microbiome communities.

504 Through taxonomic validation on our analysis of the KOMB profiles of FMT samples,
sos we were able to show how the unitigs marked as anomalous can potentially belong to
s06 species indicative of the condition of FMT patients. Genera over-represented in anomalous
so7 unitigs in the Post-FMT samples were indicative of a transitional shift in the microbiome
sos community as compared to Pre-FMT (Vancomycin treated) and Donor Samples underlying
s00 KOMB’s usefulness in summarizing community shifts in loongitudinal samples.

510 KOMB, to the best of our knowledge, represents the first method to unify the extraction
sii - of graph based topological features and k-mer based methods to characterize metagenomes.
sz Compared to previous graph based methods, KOMB offers the ability to visualize and
s1i3 calculate intra-sample distances. Compared to k-mer based methods, KOMB allows for
s de-novo analysis and extraction of functionally rich as well as relevant taxonomic sequences
515 in metagenomic samples. Despite its strengths, there are some natural future enhancements
si6 that could be explored. First, KOMB is slower and much more memory intensive than some
si7 - of the k-mer based methods. While some of this cost is necessary to gain a more sequence
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sis level view of the sample, other efficient (or lossy) De Bruijn graph constructors could be
510 considered to make the process more scalable to extremely large metagenomic samples with
s20 billions of reads. Second, KOMB relies exclusively on topology suited for retrieval by K-core
51 decomposition i.e it relies on extracting clique or clique-like regions that are connected due
52 to repeats or paired-end information . Future work to analyze other biologically relevant
523 topologies that can be extracted by hybrid unitig graphs or its variants of the graph could
524 be useful. Third, K-core profile of the unitigs can be used to obtain an approximate value of
525 the entropy in samples, KOMB still lacks a direct conversion to popular diversity measures
526 as provided by other k-mer based approach which would need further theoretical analysis.

> Conclusions

58 In summary, KOMB can be used to obtain sample-wide repeat profiles, visualize com-
520 munity shifts and disruption events in longitudinal gut microbiome samples, and quantify
s30 inter-sample distances across various time points. Combined with its ability to identify
531 sample-specific and biologically important unitigs, KOMB can be used to get a holistic
s3> characterization of metagenomic samples both at a macro(sample) as well as at micro(se-
533 quence) level.
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so0 Availability of data and materials

sa1 - Python jupyter notebooks used for analysis and generating figures can be found here:
s2 https://rb.gy/zxrvliz. KOMB outputs and files used for analysis for the experiments
53 can be found at https://tinyurl.com/f42t96rb

s« Availability and requirements

sss The latest version of KOMB (v1.0) is also available for download through bioconda at:
sa6 https://anaconda.org/bioconda/komb

57 Project name: KOMB

ss Project home page: https://gitlab.com/treangenlab/komb

s29  Operating system(s): OSx and Linux

5o Programming language: C/C++

551 Other requirements: Requirements installed as part of bioconda install. At least 64GB of
52 RAM recommended.

553 License: GNU GPL v3.0 or later
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Construction of different graph types used for metagenome analysis

Reads: | GTGTAAG | | AAGTAAG | [ AAGCGCT | | AAGTGCT GCTTAAG

AAGTAAG

— AAGTGCT

GTGT — TGTA | GTAA 1LAEH A AGTA > GTAA
GCTT | CTTA —> TTAA | [LVEll GTGC —» TGCT

GTGTAAG AAGCGCT GCTTAAG
Overlap Graph, overlap size=3bp De Bruijn Graph, Kmer size=4bp
c D
Repeat edge
GTGTAA AGTAA GIGIAR ~_, el

AN - e
GCTTAA / GTGCT GCTTAA Paired-end edges GTGCT
Unitig Scaffold graph Hybrid unitig graph

(This Work)

Figure 1. Different graph types for metagenomic analyses and their construction.
Graphs construction a set of five reads are shown. A. Overlap graph [Directed]: built directly
from read with an overlap size of 3 base pairs(bp) . B. De Bruijn graph with kmer size (k) = 4bp
[Directed]: joins successive kmers obtained from reads having overlap size of length k-1. The kmers
in blue represented repeated kmers. C. Unitig scaffold graph [Directed]: joins unitigs according to
their relative positions in a De Bruijn Graph D. Hybrid Unitig Graph [Undirected]: An extension
of the Unitig scaffold graph but is also repeat-aware and joins unitigs containing repeats of size
k-1 where k is the kmer size used to build the De Bruijn graph. Edge carried forward from the
unitig scaffold graph are marked in black and called paired-end edges whereas newly added edges
are marked in red and are called repeat edges. 3-mers marked in bold (GTG and GCT) are the
repetitive regions connected by the repeat edge.
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Figure 2. Overview of the KOMB pipeline. 1. As a pre-processing step users can use k-
mer filtering to discard low-quality erroneous reads. 2. KOMB uses ABySS for memory efficient
De Bruijn graph construction and unitig generation 3. Paired-end reads are mapped back to the
unitigs obtained in 2 in order to connect unitigs. Paired-end reads with just one read mapping
are discarded. 4. The hybrid unitig graph is constructed. Edges connecting unitigs mapped by the
same read are termed as repeat edges whereas edges between unitigs mapped by paired-end reads are
called paired-end edges. The latter are similar to edges in a scaffold graph. 5. The obtained unitig
graph is partitioned into K-shells using the K-core decomposition algorithm. Anomalous unitig are
marked using the CORE-A anomaly score algorithm.
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A KOMB Profile of Shakya et. al. (2013) dataset
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Figure 3. Characterization of a synthetic metagenome sample using KOMB. (A) KOMB
profile of the Shakya et al (2013) dataset representing the shell number on the x-axis and the
number of unitigs in the y-axis. Red triangles indicate higher shells with greater than 200 nodes,
which represent clique or clique-like regions in the hybrid unitig graph. (B) Histogram representing
the fraction of unitigs in each of the shells that are repeats as determined by comparing with the
nucmer output. (C) KOMB repeat density is defined as the average copy number per number of
genomes for the repeat unitigs in the shell (see Equation 2). Larger shells have repeats with high
copy number but more specific to a single (or group of related) organisms. For figures (B) and (C),
shell 0 (disconnected nodes) and shells that contained no unitigs are not considered. Shells are split
into four different groups (1-80, 81-160, 160-240, 241-320) for visualization.
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A
KOMB Profiles of 50 HMP samples for 4 different body sites
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Figure 4. Characterizing community shifts in Human Microbiome Project (HMP)
samples. (A) KOMB profiles from 4 different body sites containing 50 samples each obtained from
HMP datasets. The y-axis of the violin plots represent shell number (cutoff at 1000 for visualization)
and the width represents the number of unitigs in each shell. (B) Anomaly profiles for each body
site, x-axis represents the degree of unitigs and y-axis represents the coreness (or shell number) of
the unitigs. The gradient on the color bar represents the CORE-A anomaly score with the darker
shade representing higher scores within the samples. (C) Bar plot showing the percentage of unique
GO terms from the set of unitigs marked as anomalous. Black dots represent median of 100,000
random split simulations of GO terms obtained per body site, the whiskers represent 95 (top) and
5! (bottom) percentile indicating significance of the bar plot. (D) Jaccard similarity between the
set of unique GO term (y-axis) and the entire setqpf GO terms from the unitig marked as anomalous
for each pair of body sites. (E) Jaccard similarity between the entire set of anomalous GO terms for
each pair of body sites.
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A. KOMB Profiles for six subjects reported at Days 0, 2 and 7
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Figure 5. Characterizing community shifts in longitudinal gut microbiome samples.
(A) KOMB profiles from 6 different subjects from samples collected Days 0, 2 and 7. The y-axis
of the violin plots represent shell number (cutoff at 100 for visualization) and the width represents
the number of unitigs in each shell. Alien, Bugkiller, Peacemaker, and Scavenger are male subjects
while Daisy and Tigress are female subjects. (B) KOMB profile for subject Alien over the course of
the 14 different time points in the study. The y-axis (cutoff at 200 for visualization) represent shell
number and x-axis represents the day of sample collection. Days 376, 377, 378, and 380 represent
profiles during which the subject was exposed to antibiotics, causing compression in the total shell
count as well as a significant change in the unitig distribution of the initial shells. Days 630 and 632
indicate time points when the subject underwent a bowel cleanse procedure with a similar but less
prominent effect on unitig count and distribution.
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Anomaly Profiles for Pre-FMT, Post-FMT and Donor samples
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Figure 6. Characterizing community shifts in fecal microbiota transplantation (FMT)
samples. (A) (Left) Anomaly profiles of two patients undergoing FMT therapy at two different
time points namely Pre-FMT and Post-FMT. (Right) Anomaly profiles of the donor sample, which is
common for both patients. The x-axis represents the degree of unitigs and y-axis represents the core-
ness (or shell number) of the unitigs. The gradient on the colorbar indicates the CORE-A anomaly
scores of unitigs in the sample. (B) Jaccard similarity between sets of taxa over-represented at the
genus level found in unitigs marked as anomalous in each of the 5 samples. The row highlighted
in black indicates the jaccard similarities of each patient across time points as compared to Donor.
(C) Common taxa over-represented in anomalous unitigs for Pre-FMT, Post-FMT and Donor sam-
ples. The numbers indicate the ratio of ratios of counts of taxa, indicating the relative level of
presence of the corresponding taxa in the anomalous unitig compared to the other unitigs in the
sample. The numbers in the figures have been averaged for Pre-FMT and Post-FMT samples from
both Patients. The first three genus Akkermansia, Selenomonas and Lactobacillus were common in
Pre-FMT while Lactobacillus, Blautia, Veillonella, Paeniclostridium, Ruminoccocus, Oscillibacter,
Paenibacillus, Turicibacter, Actinomyces, Dialister, Faecalibacterium were common in Post-FMT
samples.
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