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Abstract 12 

Microbial cells experience physiological changes due to environmental change, such as pH and 13 

temperature, the release of bactericidal agents, or nutrient limitation. This, has been shown to affect 14 

community assembly and other processes such as stress tolerance, virulence or cell physiology. 15 

Metabolic stress is one such physiological changes and is typically quantified by measuring community 16 

phenotypic properties such as biomass growth, reactive oxygen species or cell permeability. However, 17 

community measurements do not take into account single-cell phenotypic diversity, important for a 18 

better understanding and management of microbial populations. Raman spectroscopy is a non-19 

destructive alternative that provides detailed information on the biochemical make-up of each 20 

individual cell. 21 

Here, we introduce a method for describing single-cell phenotypic diversity using the Hill diversity 22 

framework of Raman spectra. Using the biomolecular profile of individual cells, we obtained a metric 23 

to compare cellular states and used it to study stress-induced changes. First, in two Escherichia coli 24 

populations either treated with ethanol or non-treated. Then, in two Saccharomyces cerevisiae 25 

subpopulations with either high or low expression of a stress reporter. In both cases, we were able to 26 

quantify single-cell phenotypic diversity and to discriminate metabolically stressed cells using a 27 

clustering algorithm. We also described how the lipid, protein and nucleic acid composition changed 28 

after the exposure to the stressor using information from the Raman spectra. Our results show that 29 

Raman spectroscopy delivers the necessary resolution to quantify phenotypic diversity within 30 

individual cells and that this information can be used to study stress-driven metabolic diversity in 31 

microbial communities.  32 

Importance 33 

Microbes that live in the same community respond differently to stress. This phenomemon is known 34 

as phenotypic diversity. Describing this plethora of expressions can help to better understand and 35 

manage microbial processes. However, most tools to study phenotypic diversity only average the 36 

behaviour of the community. In this work, we present a way to quantify the phenotypic diversity of 37 

single cells using Raman spectroscopy – a tool that can describe the molecular profile of microbes. We 38 

demonstrate how this tool can be used to quantify the phenotypic diversity that arises after the 39 

exposure of microbes to stress. We also show its potential as an ‘alarm’ system to detect when 40 

communities are changing into a ‘stressed’ type. 41 
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Introduction 42 

Monoclonal microbial populations can exhibit heterogeneous genetic expression, which underlies 43 

phenotypic differences between cells. Phenotypic diversity has been shown to increase population 44 

survival or fitness in a changing environment and allows microorganisms to divide tasks and organize 45 

as a group. This differential gene expression can arise due to environmental pressure, stochastic 46 

events, periodic oscillations or cell-to-cell interactions (Ackermann, 2015; Altschuler & Wu, 2010; 47 

Avery, 2006). When a deviation from optimal growth conditions occurs such as changes in 48 

temperature, pH, nutrients salts and/or oxygen levels, a stress response is triggered in microorganisms 49 

(both prokaryotes and eukaryotes), resulting in a biochemical cascade to promote stress tolerance, 50 

virulence or other physiological changes. These strategies can result in enhanced survival, virulence, 51 

cross-protection or cell death (Ron, 2013; Święciło, 2016; Wesche et al., 2009). Usually, 52 

microorganisms show mixed behavioural strategies, maximizing the chances of survival (Lowery et al., 53 

2017), making phenotypic diversity a crucial characteristic of stress-driven phenotypes. However, 54 

cellular stress is often measured at the community level using bulk technologies, such as cell 55 

concentration, quantity of reactive oxygen species (ROS), cell permeability or protein content. While 56 

these methods reveal important information, they provide the average information for the whole 57 

population, failing to describe cell-to-cell variability and bet-hedging strategies (Veening et al., 2008). 58 

To better understand stress-driven changes, single cell technologies must be used.  59 

There are several single cell technologies available to study the response of individual cells to stress. 60 

For example, fluorescent labels that tag certain cellular functions (membrane potential, intracellular 61 

enzyme activity, a stress reporter) can be used in combination with flow cytometry (Delvigne et al., 62 

2015; Porter et al., 1995) or imaging techniques (Benomar et al., 2015). Single-cell (multi)-omics opens 63 

the door to a very detailed understanding of the metabolism of individual cells, although it is a low-64 

throughput technique that still presents many challenges in its accuracy (Bock et al., 2016). Raman 65 

spectroscopy is an alternative single-cell tool that can detect individual phenotypes without the use 66 

of fluorescent probes. It is an optical method in which the Raman scattering of a cell and/or particle is 67 

collected thereby generating a single-cell fingerprint that contains (semi)quantitative information on 68 

its constituent molecules, such as nucleic acids, proteins, lipids and carbohydrates. This technique has 69 

been used to study stress-induced phenotypic differences of the cyanobacterium Synechocystis sp. 70 

(Tanniche et al., 2020): the fingerprints of cells treated with different concentrations of acetate or 71 

NaCl and non-treated cells were differentiable using discriminant analysis of principal component 72 

analysis (PCA). Also, Teng and colleagues (Teng et al., 2016) found that Escherichia coli cells exposed 73 

to several antibiotics, alcohols and chemicals had distinct Raman fingerprints. However, there are 74 

currently no quantitative methods to describe phenotypic diversity in single cells using their Raman 75 

spectra. 76 

A widely used set of metrics to quantify the diversity of microbial communities are Hill numbers, also 77 

known as the effective number of species, as they express in intuitive units the number of equally 78 

abundant species that are needed to give the same value of the diversity measure. Hill numbers 79 

respect other important ecological principles, such as the replication principle, that states that in a 80 

group with N equally diverse groups that have no species in common, the diversity of the pooled 81 

groups must be the N times the diversity of a single group (Chao et al., 2014; Daly et al., 2018). They 82 

are commonly used to quantify microbial diversity based on 16S rRNA sequencing techniques but have 83 

also been applied to flow cytometry yielding similar results (Props et al., 2016). However, phenotypic 84 

diversity at the single-cell level has not yet been described. This would require multiparametric 85 

information of individual cells, something Raman spectroscopy can provide. 86 
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Quantifying phenotypic diversity at the single-cell level could be useful to follow and manage stress in 87 

bioproduction: to maintain high bioproduction rates, it is important to find or create stress-tolerant 88 

organisms. For instance, in microbial production of alcohol (considered a sustainable alternative 89 

source for chemicals and fuels), one of the major limitations is the toxicity and/or growth inhibition 90 

caused by the alcohol that is produced. The alcohol increases the fluidity of the cell membrane and 91 

causes a disruption on the phospholipid components that inhibits growth and can lead to death. It 92 

also affects nutrient uptake and ion transport. Therefore, there have been efforts in evolutionary and 93 

synthetic engineering to increase alcohol tolerance in several organisms, for example, E. coli and S. 94 

cerevisiae, widely used in bioproduction (Jia et al., 2010). 95 

We aim to quantify single-cell phenotypic diversity using Raman spectroscopy, based on the Hill 96 

diversity framework. We described the necessary steps to preprocess Raman spectra and 97 

demonstrate its integration into the Hill diversity framework. The necessary functionalities are also 98 

embedded in the open source MicroRaman package (https://github.com/CMET-UGent/MicroRaman). 99 

To illustrate the use of this method, we applied it in two popular strains in bioproduction. First, we 100 

compared an E. coli population in stress conditions (cultivated with ethanol) with a control population. 101 

Secondly, we separated two subpopulations of a S. cerevisiae culture that was under nutrient-limiting 102 

conditions using a GFP tag and analyzed them using Raman spectroscopy. In both cases, we show how 103 

the stress-induced single-cell phenotypic diversity can be quantified using the Raman spectra of the 104 

single cells, and how this information can be used to detect a shift in the phenotype of the population. 105 

Finally, we use this information to explain how the molecular profile of the cells changes after being 106 

exposed to the stressors.        107 

 108 

  109 
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Materials and methods 110 

Data sets  111 

The strains used and the incubation medium are described in Table 1. We did ~450 measurements in 112 

4 axenic cultures using Raman spectroscopy. Samples were cultured at 28°C with 120 rpm orbital 113 

shaking. Each strain was re-cultivated via transferring 10% v/v of active culture in fresh liquid medium 114 

(described in table 1) every 24 to 48h for 2 months. Cultures were harvested by centrifugation at 6603 115 

g for 5 min, washed with 0.1M phosphate buffer saline (PBS) and stored at -4°C until further use. 116 

Table 1: List of organisms and medium used to grow them 117 

Organism Liquid medium 

Cupriavidus necator LMG 1199 Nutrient broth (Oxoid CM0001) 

Methylobacterium extorquens DSM 1338 Nutrient Broth with 1% methanol 

Yarrowia lipolytica ATCC 20362 YM Broth (BD 271120)  

Komagataella phaffii ATCC 76273 Sabouraud Broth (BD 238230) 

 118 

Case studies: single-cell phenotypic diversity quantification in stress-induced 119 

phenotypes 120 

To test the capacity of the single-cell phenotypic diversity (sc-D2) calculation to identify metabolic 121 
changes, we used two case studies. First, we studied two E. coli populations that had been grown 122 
together in different conditions: one was treated with ethanol while the other was not. Secondly, a S. 123 
cerevisiae culture was grown in nutrient limiting conditions, which resulted in differential expression 124 
of the chimeric stress reporter (tagged with eGFP). The two subpopulations (high expressing and low 125 
expressing eGFP) were isolated (Fig 1).  126 
 127 

 128 

Fig 1: Overview of the case studies. A) Study of two E. coli populations grown separately with ethanol in the medium or 129 
non-treated. B) Two subpopulations were isolated from a S. cerevisiae culture based on the expression of the GFP marked 130 
chimeric stress reporter after nutrient limitation. The Raman spectra of single cells were used to calculate their phenotypic 131 
diversity (sc-D2). 132 

Population resolution: E. coli exposed to ethanol 133 

The dataset from Teng et al. 2016 was used to validate alpha and beta-diversity calculations. According 134 

to their manuscript, this dataset consists of Raman spectra of Escherichia coli in different time intervals 135 

(5, 10, 20, 30 and 60 min, 3 h and 5 h) after being cultured with different chemical stressors. We used 136 

the ethanol-treated samples and the controls to illustrate our point. The dataset consists of three 137 

biological replicates of the cell culture and measured 20 cells per replicate. 138 
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Subpopulation resolution: S. cerevisiae after nutrient limitation 139 

The prototrophic haploid yeast strain Saccharomyces cerevisiae CENPK 113-7D was used in this study 140 

(Nijkamp et al., 2012). eGFP was produced under the control of a chimeric promoter composed of 141 

fragments of the HSP26 and GLC3 promoters. The promoter sequence was previously published 142 

(chimaera 2 in (Zid & O’Shea, 2014)). A synthetic construct containing the promoter, the eGFP gene 143 

and the G418 resistance marker was integrated in the genome via homologous recombination at the 144 

uga1 site. The correct insertion was confirmed via PCR analysis and lack of growth on gamma-145 

aminobutyrate (GABA) as the sole nitrogen source.  146 

Samples were collected after 10 residence times in a continuous culture operated at D=0.1 h-1 in a 2-147 

liter stirred-tank bioreactor with 1 liter operating volume. Defined yeast mineral medium containing 148 

7.5 g l-1 was used (Verduyn et al., 1992). The culture temperature was maintained at 30° C, the stirrer 149 

speed at 1000 rpm and the air provision at 1 vvm. The culture pH was controlled at 5.0 through the 150 

automated addition of either 25% KOH or 25% M H3PO4. 151 

Before cell sorting, samples were fixed in formaldehyde 4%, following the protocol from García-152 

Timermans et al., 2018. Paraformaldehyde is known to preserve the Raman spectral features better 153 

than other fixatives, such as ethanol or glutaraldehyde (Read & Whiteley, 2015). Upon reaching 154 

steady-state in nutrient limited continuous culture, yeast population was sorted in two distinct sub-155 

populations, i.e. the first one exhibited a high GFP content (high GFP) and the second one exhibiting a 156 

low GFP content (low GFP). Then, the high GFP and low GFP subpopulations were separated using 157 

Fluorescence-activated cell sorting (FACS). For this purpose, cell suspension collected from the 158 

bioreactor was diluted 10 times in PBS (ThermoFischer scientific, Belgium) and was further analyzed 159 

and sorted with a FACSaria (Becton Dickinson, Belgium). Cells have been collected following an 160 

enrichment sorting mode. Fractions containing 106 cells of each subpopulation were collected. (Gating 161 

details used for cell sorting can be found in Supplementary Information).  162 

Raman spectroscopy 163 

For the S. cerevisiae samples, three drops of 2 µL were placed on a CaF2 slide (grade 11 mm diameter 164 

by 0.5 mm polished disc, Crystran Ltd.). In each drop, 65 points were measured using a WITec 165 

Alpha300R+ with a 785nm excitation diode laser (Topotica) and a 100x/0.9 NA objective (Nikon) with 166 

40 s of exposure and 1 accumulation using a 300 -mm/g grating. 167 

For the samples from C. necator, M. extorquens, Y. lipolytica and K. phaffi, ~450 points were measured 168 

using 5 sec of exposure and 1 accumulation with a 300 -mm/g grating. 169 

As a control for the instrument performance, a silica gel slide was measured with a grating of 300 –170 

mm/g, with a 1 s time exposure and 10 accumulations. Laser power was monitored to detect possible 171 

variations. More information can be found in the Raman metadata aid (see Table S1) collected 172 

following the guidelines from García-Timermans (2018).  173 

Data analysis 174 

The data analysis was conducted using R (R version 3.6.2, R Core Team 3.6.2, 2019) in RStudio version 175 

1.2.1335 (RStudio team, 2019). Plots were produced using the package ggplot2 and ggpubr. 176 

(Kassambara, n.d.; Villanueva et al., 2016).  177 

Pre-processing 178 

We manually eliminated the spectra that contained cosmic rays. The remaning spectra were 179 

preproecssed using the R packages ‘MALDIquant’ (v1.16.2)(Gibb & Strimmer, 2012) or ‘HyperSpec’ 180 

(Beleites & Sergo, 2012). To reduce the noise in the spectra, we smoothed it using  the spc.loess() 181 

function. The 400-1800 cm-1 region of the spectrum (which contains the biological information in 182 
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bacteria) was selected for fingerprint. The baseline was corrected for instrumental fluctuations or 183 

background noise using the Sensitive Nonlinear Iterative Peak (SNIP) algorithm (using ten iterations) 184 

and spectra were normalized using the Total Ion current (TIC). Then, the spectra were normalized 185 

using the calibrateIntensity() function and aligned per group with the alignedSpectra() function. These 186 

pre-processed data were used to calculate the single-cell phenotypic diversity and principal coordinate 187 

analysis. 188 

Single-cell phenotypic diversity calculation (sc-D2) for single cells with Raman spectroscopy 189 

The Hill equations were adapted in this manuscript to quantify the phenotypic diversity of single cells 190 

using pre-processed Raman spectra. Every Raman signal corresponds to a single or multiple 191 

metabolite(s), that we have called components (n). The relative abundance of each component was 192 

normalized, by calculating their relative abundance. Then, they were used in the Hill equation as 193 

described in the Results section. 194 

Hill numbers are commonly used to calculate microbial diversity based on 16S rRNA gene sequencing 195 

techniques but have also been applied to flow cytometry yielding similar results (Props et al., 2016; 196 

Wanderley et al., 2019).  Although there are many definitions of alpha diversity, Hill numbers are 197 

widely used. They are also known as the effective number of species, as they express in intuitive units 198 

the number of equally abundant species that are needed to give the same value of the diversity 199 

measure. Hill numbers respect other important ecological principles, such as the replication principle, 200 

that states that in a group with N equally diverse groups that have no species in common, the diversity 201 

of the pooled groups must be the N times the diversity of a single group. The general Hill equation is: 202 

𝐷𝑛 =  (∑ 𝑛𝑖)1/(1−𝑛) (1) 203 

Where q is the sensitivity parameter, known as the order of diversity, that can be 0, 1 or 2. The 204 

diversity index of order 0 (D0, when q=0) corresponds to the species richness (is insensitive to the 205 

species abundance), D1 measures all species by their abundance, and D2 considers both richness and 206 

abundance.  207 

𝐷0 = ∑ 𝑛𝑖 (2) 208 

𝐷1 = exp(− ∑ ln 𝑛𝑖) (3) 209 

𝐷2 =
1

∑
𝑛

∑(𝑛𝑖)

2  (4) 210 

More information on the diversity measures used in microbial ecology and the advantages of Hill 211 

numbers can be found in Chao et al., 2014 and Daly et al., 2018. 212 

Statistical analysis 213 

Normality was studied using ggdensity() and ggqqplot() from the package ‘ggpubr’. 214 

Statistics on the phenotypic diversity (sc-D2) of ethanol and the control group over time was done 215 

using ANOVA with the function aov()and post-hoc testing was done using Tukey_HSD(), both functions 216 

from the package ‘stats’. 217 

The expression of the biomolecules in the two S. cerevisiae subpopulations was analysed using 218 

Wilcoxon test with the function wilcox.test() from the package ‘stats’. 219 
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Principal coordinate analysis (PCoA) 220 

The principal coordinate analysis (PCoA) was calculated as the eigenvalues divided by the sum of the 221 

eigenvalues. 222 

Sampling size 223 

We used a dataset of 4 axenic cultures (described in table 1) and measured ~450 Raman spectra per 224 

sample, for which we calculated their single-cell phenotypic diversity (sc-D2). Then, we did 1000 225 

simulations were the data were permuted, and calculated the average D2 when using a increasing 226 

number of spectra. The average and standard deviation of these 1000 simulations were plotted.  227 

Subpopulation types 228 

Subpopulation types were calculated by adapting the code from for flow cytometry data. The method 229 

was originally intended to separate sample clusters, while in its application for Raman spectroscopy 230 

we aim to identify and differentiate cell clusters (Props et al. 2016). 231 

First a PCA is performed to reduce the dimensionality of the data. A reduced dataset with the principal 232 

components that explain the majority of the variance (>40%) are used to calculate the optimal number 233 

of clusters using the silhouette index, calculated with the pam() function from the package ‘cluster’. 234 

Once every cell is assigned to a phenotype, the median phenotype to which the (sub)population 235 

corresponds to is calculated. 236 

Data availability 237 

The analysis pipeline and the raw data can be found in https://github.com/CMET-238 

UGent/Raman_PhenoDiv 239 

 240 

 241 

  242 
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Results 243 

Phenotypic diversity quantification of Raman spectra using Hill numbers 244 

Single-cell phenotypic changes can be captured by Raman spectroscopy, by which information is 245 

collected on the (bio)molecules present in individual cells. Once the Raman spectra are acquired, the 246 

raw data need to be pre-processed (Fig 2- Pre-processing). This step aims to remove noise from 247 

spectra and to be able to extract meaningful biological information. First, the spectra that contain 248 

cosmic rays need to be removed manually or automatically (Wahl et al., 2020). Then, we select the 249 

spectral region that is most relevant for microbial fingerprinting, around 500-2000 cm-1 (Huang et al., 250 

2010). Once this region of the spectra is selected, the first step in the pre-processing is to correct the 251 

baseline, that can be degraded due to instrument fluctuations or background-signal influence (Liu et 252 

al., 2015; Wahl et al., 2020). Then, the spectra are normalized to avoid that the absolute intensity 253 

masks the variation of signals of interest (Beattie et al., 2009; Gautam et al., 2015). It is also possible 254 

to align and/or smooth the Raman signal, but these steps can introduce noise to the measurements 255 

and should be carefully considered. 256 

After the spectra have been pre-processed, different information can be extracted (Fig 2-Analysis). 257 

For example, peaks of interest can be selected for semi-quantitative analysis or quantitative analysis 258 

using a calibration curve (Butler et al., 2016). Also, the whole spectra can be used to classify cells using 259 

several clustering methods, such as principal component analysis, principal coordinate analysis, non-260 

metric multidimensional scaling or T-distributed stochastic neighbour embedding. This information 261 

can also be used to construct phenotypic trees (Garcia-Timermans 2018).  Here we used the pre-262 

processed spectra to quantify the single-cell phenotypic diversity using Hill numbers. Every Raman 263 

peak corresponds to a different metabolite or a combination of metabolites, called components (x) 264 

(Fig 2). To calculate the relative abundance of each peak, the intensity of the signal of each component 265 

was normalized by the sum of all intensities, and this information was then used in the Hill equations.  266 

The order of diversity (q) can be 0, 1 or 2, meaning that richness, abundance or both richness and 267 

abundance are taken into account in the metric. sc-D0 contains information about the number of 268 

components (ni) in the Raman spectra, and is calculated as shown in equation 2.sc- D1 informs about 269 

the abundance of each component and is described in equation 3. In this paper, we mostly focus on 270 

single-cell D2 (sc-D2) (q=2) as it takes both richness and abundance of the Raman components into 271 

account.   272 

 273 
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 274 

Fig 2: Summary of the pre-processing and analysis of the Raman spectra. First, the baseline is corrected, and the spectra 275 
are normalized. Spectra can be smoothed and aligned; however, smoothing can erase potentially relevant information, and 276 
should be carefully considered. Similarly, alignment can produce faulty spectra by displacing the signal, and thus need to be 277 
used reasonably. Once the spectra are pre-processed, it is possible to (1) extract (semi)quantitative information (2) cluster 278 
cells or create phenotypic trees or (3) calculate the single-cell phenotypic diversity. For the latter, Raman peaks that 279 
correspond to one or several metabolites are considered as components. The intensity of these components (x) is used to 280 
quantify phenotypic diversity. The order of diversity (q) can be 0, 1 or 2, meaning respectively that richness, abundance or 281 
both parameters are considered in the metric. This equation considers richness and estimated abundance of metabolites in 282 
a single cell.  283 

Sample size dependence of phenotypic diversity (sc-D2) measurements 284 

To understand the distribution of single-cell phenotypic diversity in a population, we did ~450 285 

measurements in 4 axenic cultures of C. necator, M. extorquens, Y. lipolytica and K. phaffi. We 286 

calculated the average diversity estimation for an increasing number of spectra and bootstrapped 287 

1000 times. The average of the total number of measurements is plotted in grey, and the 5% of this 288 

average is represented with a dotted grey line. 289 
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 290 

Fig 3: Effect of sampling size on the single-cell phenotypic diversity average. We calculated the average single-cell 291 
phenotypic diversity using the Hill equations (single-cell D0, D1 and D2) for an increasing number of measurements and 292 
repeated the calculation picking spectra randomly 1000 times. We used the Raman spectra of four pure cultures and  ~450 293 
measurements on each. The smear represents the standard deviation. The grey line represents the average sc-D value of the 294 
total population, and the dashed lines a 5% deviation from the mean.  295 

We looked at how many mreasurements were needed to calculate the population average (grey line) 296 

and how many are needed to have an accurate estimation (95%, dashed lines). For the estimation of 297 

sc-D0, few measurements (~10-50) are were needed to obtain the population average. The sc-D1 298 

calculation grants a greater weight to high-intensity wavenumber and/or peaks of these components, 299 

and required ~100 measurements. Although M. extorquens reaches it after ~20 measurements. The 300 

sc-D2 estimation takes both the number of components and their abundance into account and needed 301 

between ~50 (C. necator) to ~180 (Y. lipolytica) measurements to estimate the population average.  302 

Case studies: phenotypic diversity quantification in stress-induced phenotypes 303 

When stress is applied in a microorganism, a set of genes and proteins are expressed, changing the 304 

metabolic phenotype of the cell. This metabolic change can be captured by Raman spectroscopy, that 305 

collects information on the (bio)molecules present in individual cells. To compare stressed and non-306 

stressed cells, we quantified their phenotypic diversity using our proposed methodology, as shown in 307 

Fig 1. First, we compared two E. coli cultures growing in different conditions: with ethanol (stressed) 308 

or non-treated (control). Then, we compared two subpopulations of the same S. cerevisiae culture, 309 

separated based on their expression of the GFP stress reporter in nutrient-limiting conditions. 310 

Tracking E. coli population diversification dynamics following exposure to ethanol stress 311 

We used a dataset from Teng 2016, consisting of spectra of Escherichia coli sampled at different time 312 

points (5, 10, 20, 30 and 60 min, 3 h and 5 h) after being cultured in standard conditions or with 313 

ethanol. There were three biological replicates of the cell culture and 20 cells were measured per 314 

replicate. 315 
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The stress-induced metabolic diversity of single cells was quantified using the sc-D2 Hill equation and 316 

the average diversity for each population (stress and non-stressed) was plotted (Fig 4A). After testing 317 

for normality, a two-way ANOVA test showed a significant difference between treatments and 318 

treatments over time (p < 0.0001). A post-hoc Tukey test showed that the ethanol and control groups 319 

were significantly different at time point 60 min and 180 min (p < 0.0001). Then we used PCoA, a 320 

common clustering method to visualize the dissimilarities in the fingerprints. The Raman fingerprint 321 

of the stressed and control cells is similar at the beginning and then shift over time (Fig 4B). We used 322 

a clustering algorithm to define exactly when this shift takes place: after 20 min for the ethanol-323 

treated population and 180 min for the control population (Fig 4C).  324 

 325 

Fig 4: A) Single-cell phenotypic diversity (sc-D2) of the stressed (ethanol treated) and non-stressed (non-treated) E. coli 326 
populations. Treatments and treatments over time are significantly different (two-way ANOVA, p < 0.0001). A post-hoc 327 
Tuckey test showed that the ethanol and control groups are significantly different on timepoint 60 min and 180 min (p < 328 
0.0001). B) Raman fingerprint of the stressed (ethanol treated) and non-stressed (non-treated) E. coli populations, plotted 329 
using principal component analysis (PCoA). The time progression is represented with a darker colour. Every point represents 330 
a single cell. C) The clustering algorithm shows the phenotypic shift happens after 20 min for the ethanol-treated population 331 
and after 180 min for the control. Two phenotypes were found. Every point represents the average “phenotypic type” of the 332 
population. N=60 333 
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Discriminating S. cerevisiae subpopulations following exposure to nutrient limitation  334 

A S. cerevisiae population was cultured in nutrient-limiting conditions. Based on GFP expression as an 335 

indicator of stress activation, we separated two subpopulations (one that activated the stress 336 

reporter, and one that did not) using FACS. Then, we analyzed 65 cells in each subpopulation using 337 

Raman spectroscopy.    338 

First, we calculated the single-cell phenotypic diversity (sc-D2) of the subpopulations with high (+) or 339 

low(-) stress reporter expression. To prove that sc-D2 calculations are quantitative, we also created an 340 

in silico group by mixing the two subpopulations (Fig 5A). The in silico mix group was expected to have 341 

an average sc-D2. Then, we checked the dissimilarity of the fingerprints using PCoA (Fig 5B). Two 342 

clusters are differentiated depending on the reporter expression. 343 

 344 

 345 

Fig 5: A) Single-cell phenotypic diversity of a S. cerevisiae subpopulations with high or low stress reporter expression and an 346 
in silico mix of both groups. The in silico mix is a random selection of cells coming from the stressed and non-stressed 347 
population B) Visualization of the stress-induced phenotypic change of Saccharomyces cerevisiae subpopulations with high 348 
or low stress reporter expression using principal coordinates analysis (PCoA). Every dot is a single cell. The size of the dot 349 
corresponds to the single-cell phenotypic diversity (sc-D2).. N= 65. 350 

The information of the Raman spectra from each group was used to understand the effect of the stress 351 

reporter activation on the metabolic response of S. cerevisiae. The intensity of the Raman peaks that 352 

correlate well to the content in proteins, lipids, nucleic acids and unsaturated lipids (Teng et al., 2016) 353 

was compared in the subpopulations with a high or low stress-reporter expression (Fig 6). We found 354 

that both groups have a significantly different metabolism: the subpopulation with a high (+) 355 

expression of the stress reporter had more unsaturated lipids and proteins, but contained less lipids 356 

and nucleic acids (Wilcoxon rank-sum test, p < 0.0001).  357 
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 358 

Fig 6: Raman spectra of S. cerevisiae subpopulations with high (+) or low (-) expression of the stress reporter (A,B). The 359 
average of the spectra is plotted with a black line and the standard deviation in grey. The putative peaks corresponding to 360 
proteins, lipids, nucleic acids and unsaturated lipids according to Teng and colleagues (2016) are plotted over the spectra. C) 361 
The intensity of the metabolic peaks highlighted in plot A and B for the subpopulations with high or low expression of the 362 
stress reporter. The p values for the Wilcoxon test for every metabolite is shown. N=65 363 

 364 

  365 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 22, 2020. ; https://doi.org/10.1101/2020.05.21.109934doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.21.109934
http://creativecommons.org/licenses/by-nc-nd/4.0/


Discussion 366 

Raman spectroscopy can quantify stress-driven metabolic heterogeneity at the single cell level to 367 

detect how and when bacteria diversify their metabolism. This tool is relatively fast and non-368 

destructive, and can provide (semi)quantitative information about the composition of cells. Once the 369 

spectra are measured, they need to be pre-processed to remove as much noise as possible. First, the 370 

samples with cosmic rays can be removed manually, or the cosmic rays can be subtracted 371 

automatically. Then the baseline is corrected, and spectra are normalized (Fig 2), although there is 372 

some discussion as to whether these calculations should be performed in a single step (Liu et al., 2015; 373 

Wahl et al., 2020). There are other possible data transformations, such as the aligning the spectra, to 374 

avoid the small instrumental variations that can show up (García-Timermans et al., 2018). However, 375 

this step might introduce noise (i.e. by misplacing Raman signals) and should be carefully considered. 376 

Smoothing can be also used, but this step can erase small points in the spectra, removing relevant 377 

information. In our case, we noticed the spectra were noisy, and decided to smooth the spectra. We 378 

also aligned the samples per group, although this had very little effect in the dataset. 379 

Once the spectra have been pre-processed, they can be used to investigate the phenotypic 380 

heterogeneity among or within cells. Although Raman spectroscopy has been previously used to 381 

detect stress-driven phenotypes (Tanniche et al., 2020), we argue that there is a need for single-cell 382 

quantitative measurements for phenotypic diversity and propose the use of Hill numbers. We chose 383 

Hill numbers for our calculations because they are widely used in microbial ecology. As previously 384 

stated, they are easy to understand because they represent the effective number of species - the 385 

number of equally abundant species needed to give the same value of diversity measure – and respect 386 

important ecological principles such as monotonicity in the number of species and the replication 387 

principle (Daly et al., 2018). 388 

To estimate phenotypic diversity using Hill numbers, we considered that each Raman signal 389 

corresponds to a component (a single or multiple molecules), and that the intensity of these 390 

components is correlated with their quantity (Tang et al., 2013; Wu et al., 2011). After normalizing the 391 

components, they were used in the Hill equations (Fig 2). Although we chose to use the whole 392 

spectrum for this calculation, it is possible to select only the peaks. However, this could influence the 393 

resolution: algorithms for peak detection typically divide the spectrum according to a certain window 394 

size and look for the local maximum (Gibb & Strimmer, 2012). Using this algorithm would not take into 395 

account the width of components, which is a characteristic of the molecules. Also, some components 396 

with a close signal would be ignored, and the choice of window size would affect the final result. How 397 

the Raman spectra are preprocessed will have an impact on the results. The region used for 398 

fingerprinting needs to be considered so that all the relevant biomolecules to address the hypothesis 399 

are reported. Both the baseline correction and normalization will have an impact on the intensity 400 

reported for the different components. Smoothing functions assume spectra are noise, and erase 401 

certain signal. Finally, aligning spectra when unnecessary can misplace the signals. Using the same 402 

preprossing steps when comparing samples is crucial, as well as detailing the preprocessing steps and 403 

providing the raw data. 404 

To explore the importance of the sample size in these estimations, we used a large dataset consisting 405 

of ~450 Raman spectra from 2 axenic bacterial cultures (C. necator and M. extorquens) and 2 axenic 406 

yeast cultures (Y. lipolytica and K. phaffi). Then, the effect of the sampling size on the average single-407 

cell phenotypic diversity and its standard deviation was calculated. Our results show that this is highly 408 

population-dependent: for example, while C. necator only needed 15 spectra to approach the 409 

expected sc-D2 average, Y. lipolytica needed more than 150 measurements (Fig 3). This could be due 410 
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to a different degree of phenotypic diversity in the populations. Sample size should be explored for 411 

every experiment, to make sure that the estimations are representative.   412 

After developing the methodology to quantify single-cell phenotypic diversity, we applied it to two 413 

case studies to demonstrate its use. We focused on sc-D2, as it considers how many components are 414 

being expressed per cell, and their abundance. In the first case study, we compared an ethanol-treated 415 

and a control E. coli population. We found that when E. coli is grown in standard conditions, there is a 416 

phenotypic shift after 60 min. This shift happens earlier in stressed cells (20 min) (Fig 4C). The shift in 417 

the fingerprint in the control group could be due to the entering in the log phase. Our group previously 418 

showed how E. coli start their log phase after ~1h of cultivation in rich medium, and how at different 419 

growth stages bacteria change their phenotype (García‐Timermans et al., 2019). Although both the 420 

ethanol-treated and the control populations end up having a similar phenotype after 60 min, the 421 

stressed population has a lower metabolic diversity (Fig 4A), a lower nucleic acid content and a higher 422 

protein and lipid content. Clustering algorithms are useful to automatically identify phenotypes and 423 

quickly asses when the phenotype of a population has changed in a reproducible way. While here we 424 

use PCA, other metrics can be used, such as non-metric multidimensional scaling (NMDS), t-distributed 425 

Stochastic Neighbor Embedding (t-SNE) and other clustering methods. The choice of the clustering 426 

method should be based on the hypothesis, and how important it is to conserve the distances between 427 

the cells and the relative size of the cluster. 428 

In the second case study, we analyzed the response of two S. cerevisiae subpopulations. When in 429 

nutrient-limiting conditions, S. cerevisiae resorts to a bet-hedging strategy where some yeasts will 430 

enter a quiescent state, while others will activate a stress-induced response (Gray et al., 2004). The 431 

strain used in this experiment produces GFP upon activation of nutritional stress, so when the S. 432 

cerevisiae culture diversified into two populations -with either high or low expression of the stress 433 

reporter- these were separated using FACS and analyzed with Raman spectroscopy. Because the 434 

Raman spectroscope used has a 785 nm laser, we do not expect the fluorescent signal (excited at 510 435 

nm) to be picked up with this instrument. Single-cell phenotypic diversity (sc- D2) in the stressed 436 

subpopulation is higher than the non-stressed (Fig 5A).  As expected, the in silico mix shows a diversity 437 

that is close to the average of both subpopulations. We then checked that the subpopulations with 438 

high and low stress reporter expression had a different fingerprint using PCoA, a tool widely used for 439 

Raman spectra in microbial ecology. This confirmed that the fingerprint of both subpopulations is 440 

visibly different (Fig 5B). Using the metabolic information contained in the Raman spectra, we found 441 

a higher nucleic acid content in the non-stressed subpopulation (in line with the findings of Teng 2016 442 

in stressed E. coli cells). This could be explained by the higher ribosome content in non-stressed cells. 443 

We also found that the stress response triggered by the activation of the chimeric promoter results in 444 

a raise of protein and unsaturated lipids production (Fig 6), similar to the results found in stressed E. 445 

coli cells. However, it could be that the protein responsible for this difference is (at least partially) the 446 

GFP protein itself. The choice of this promoter based on a fusion of glc3 and hsp26 as a single proxy 447 

to define a metabolically stressed population is cross validated by these findings, that show two clearly 448 

metabolically distinct subpopulations. 449 

Finally, we explored whether the number of cells measured in both case studies was enough to 450 

capture the diversity of the cultures. In S. cerevisiae, 65 cells were enough to estimate single-cell 451 

diversity, and most biomolecules (Fig S2, Fig S3). However, to properly estimate the protein content 452 

in the non-stressed subpopulation more cells would have been needed. In the E. coli population, we 453 

tested the sample size in the ethanol-treated population at timepoint 5 min and 300 min. Very few 454 

cells are needed to have a representative single-cell diversity estimation: the sc-D0 is the same for all 455 

cells (Fig S4). This metric looks at the number of components present in each cell, which in this case 456 
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seem to be the same for all individuals. It could be that these cells express the same molecules, but 457 

different amounts, and/or an artefact of the pre-processing carried out by Teng et al, that could have 458 

erased some of the smaller peaks. This highlights the importance of making the raw data available, 459 

following the trends of other disciplines such as new generation sequencing (NGS) or flow cytometry. 460 

Inferring metabolic expression from Raman spectra in microbial cells is not without challenges. For 461 

instance, many databases propose different peaks to identify the same biomolecules. In this 462 

manuscript, we have chosen those presented in Teng et al. 2016 to be able to compare the results 463 

they found in E. coli and we found in S. cerevisiae. Some molecules are not Raman active, and thus will 464 

not be reflected in the spectra. Conversely, some Raman active molecules can be overrepresented in 465 

the analysis. Also, there can be Raman peaks that correspond to several compounds. These limitations 466 

should be considered when using Raman spectroscopy for microbial ecology. A better assignment of 467 

the Raman signals will also contribute to an improved understanding of the metabolic changes driving 468 

single-cell phenotypic heterogeneity. 469 

Raman spectroscopy is a promising single-cell technology, able to quantify phenotypic diversity in 470 

individual cells, identify changes in phenotypes and estimate metabolic information 471 

(semi)quantitatively. Single-cell tools represent the next challenge of microbial ecologists: they can go 472 

beyond community measurements, based mostly on single marker-gene expression or low-473 

dimensional physiological data, and shed light on how heterogeneity shapes communities.   474 
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Conclusions 475 

• Raman spectroscopy can be used to quantify single-cell stress-driven phenotypic diversity in 476 

microbial communities.  477 

 478 

• Each Raman spectral point corresponds to a different metabolite (or to multiple metabolites), 479 

that are expressed with a certain abundance (intensity). Using this information in the Hill 480 

diversity framework, we can estimate the phenotypic diversity in single cells. We show that 481 

these methods work to study changes at the population and subpopulation level in both 482 

prokaryotes and eukaryotes.  483 

 484 

• The Raman spectra contain information about the biomolecules present in a cell, and can be 485 

used to study the metabolic shift in stressed cells. 486 

 487 

 488 

• We propose an automatic classification of phenotypes using clustering methods. This is a 489 

useful tool to track changes in singe-cell physiology.  490 

  491 
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