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Abstract 

 

N-glycosylation is one of the most abundant and diverse post-translational modifications of 

proteins, implicated in protein folding and structural stability, and mediating interactions with 

receptors and with the environment. All N-glycans share a common core from which linear or 

branched arms stem from, with functionalization specific to different species and to the cells’ 

health and disease state. This diversity generates a rich collection of structures, all diversely 

able to trigger molecular cascades and to activate pathways, which also include adverse 

immunogenic responses. These events are inherently linked to the N-glycans 3D architecture 

and dynamics, which remain for the large part unresolved and undetected because of their 

intrinsic structural disorder. In this work we use molecular dynamics (MD) simulations to 

provide insight into N-glycans 3D structure by analysing the effects of a set of very specific 

modifications found in plants and invertebrate N-glycans, which are immunogenic in 

humans. We also compare these structural motifs and combine them with mammalian N-

glycans motifs to devise strategies for the control of the N-glycan 3D structure through 

sequence. Our results suggest that the N-glycans architecture can be described in terms of the 

local spatial environment of groups of monosaccharides. We define these “glycoblocks” as 

self-contained 3D units, uniquely identified by the nature of the residues they comprise, their 

linkages and structural/dynamic features. This alternative description of glycans 3D 

architecture can potentially lead to an easier prediction of sequence-to-structure relationships 

in complex carbohydrates, with important implications in glycoengineering design.  
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Introduction 

 

Complex carbohydrates (or glycans) are an essential class of biomolecules, directly 

implicated in the cell’s interactions with its environment, facilitating communication and 

infection[1,2]. These processes are often initiated by molecular recognition involving 

carbohydrate-binding proteins (lectins) or by glycan-glycan interactions[1,3-5], all events that 

hinge on specific structural and dynamic features of the glycans. This makes the 3D 

complementarity of the glycans architecture key towards the success of these processes and 

an essential piece of information for us to have in order to understand glycan recognition. 

Because of their chemical nature, glycans are intrinsically flexible and highly dynamic at 

room temperature, thus their characterization through experimental structural biology 

methods is hardly straightforward even in cryogenic environments[6]. As an additive layer of 

difficulty, glycosylation is only indirectly dependent on the genome, which often results in a 

micro- (or macro-)heterogeneity of glycan sequences at specific sites[7]. These complexities 

are very difficult to resolve, requiring high levels of expertise and multi-layered orthogonal 

approaches[8-10,7]. Within this framework, the contribution of glycoinformatics tools and 

databases represents an essential resource to advance glycomics[11-15], while molecular 

simulations fit in very well as complementary and orthogonal techniques to support and 

advance structural glycobiology research. Indeed, current high performance computing 

(HPC) technology allows us to study realistic model systems[16,17] and to reach 

experimental timescales[18], so that computing can now contribute as one of the leading 

research methods in structural glycobiology.  

 

One of the most interesting and remarkably challenging areas in glycoscience research that 

HPC simulations can address is the study of the links between glycans sequence and 3D 

structure. This direct relationship is a well-recognized and broadly accepted concept in 

proteins’ structural biology, according to which the amino acid sequence dictates the 

functional 3D fold and its stability. However, the same notion is not generally invoked when 

discussing other biopolymers or complex carbohydrates. In the specific case of glycans, the 

structural complexity, in terms of the diversity of monosaccharides, the linkages’ 

stereochemistry and the branched scaffolds, makes the already difficult case even more 

intricate. Nevertheless, the fact that glycoforms follow recurrent sequence patterns, clearly 

suggests that the glycans 3D structure is also non-random and very likely sequence-

determined. We use computer modelling to gain insight into these relationships and to define 
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a framework to understand how subtle modifications to the glycans sequence can alter their 

3D structure and conformational dynamics, ultimately regulating recognition[19]. In this 

work we use molecular dynamics (MD) simulations to analyse the effects of the inclusion of 

motifs typically found in plants and invertebrates N-glycans and immunogenic in 

mammals[20-23]. More specifically, we investigate how core α(1-3)-linked fucose (Fuc) and 

β(1-2)-linked xylose (Xyl) affect the structure and dynamics of plants N-glycoforms[23] and 

of hybrid constructs with mammalian N-glycoforms[24].   

 

At first glance plants protein N-glycosylation[23] is quite similar to the one of higher 

species[25], carrying the distinctive trimannose core (Man3), which can be further 

functionalised with β(1-2) linked GlcNAc residues on the arms. As a trademark feature, 

shown in Figure 1, plants N-glycans can also have a β(1-2)-Xyl linked to the central 

mannose and core α(1-3)-Fuc, instead of the α(1-6)-Fuc commonly found in mammalian 

complex N-glycans. Additionally, the arms can be further functionalised with terminal 

galactose (Gal) in β(1-3) instead of β(1-4)[23], commonly found in vertebrates, which forces 

the addition of fucose in the α(1-4) position of the GlcNAc and results in the occurrence of 

Lewis A (LeA) instead of Lewis X (LeX) terminal motifs on the arms[26,23]. In a previous 

study, we characterized through extensive sampling the structure and dynamics of complex 

biantennary N-glycans commonly found in the human IgGs Fc region[24]. The results of this 

study indicated a clear sequence-to-structure relationships, especially in the context of the 

dynamics of the (1-6) arm. More specifically, we found that the outstretched (open) 

conformation of the (1-6) arm gets progressively less populated as the functionalization of the 

arm grows, i.e. from 85% in Man3, to 52% in (F)A2, (F)A2[3]G1, and (F)A2[3]G1S1, where 

the (F) indicates the presence or absence of α(1-6) core fucosylation, to 24% in all structures 

with (1-6) arm terminating with Gal-β(1-4)-GlcNAc or Sia-α(2-6)-Gal-β(1-4)-GlcNAc, 

irrespective of the functionalization of the (1-3) arm[24]. As a practical implication of these 

results, positional isomers, such as (F)A2[3]G1 and (F)A2[6]G1, have different 

conformational propensities, the latter with a much lower population of outstretched (1-6) 

arm and therefore quite different 3D average structures, which ultimately explains their 

differential recognition in glycan arrays[27]. Additionally, the different conformation of the 

arms explains the known difficulties in sialylating the (1-6) arm by ST6-Gal1, relatively to 

the (1-3) arm[28]. Also, the different 3D conformational propensity of the arms in function of 

sequence can have important implications in terms of the N-glycans biosynthesis and 
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biodegradation[29]. As an additional interesting point, we found that the folding of the (1-6) 

arm over the chitobiose region is completely independent of core α(1-6) fucosylation[24], 

with the result that core-fucosylated and non-core fucosylated N-glycans with the same 

sequence in the (1-6) arm correspond to the same structural ensemble. 

 

In this work we discuss how core α(1-3)-Fuc and β(1-2)-Xyl regulate the conformational 

propensity of the (1-6) arm to push a predominantly outstretched (open) conformation when 

the arms are functionalized with terminal β(1-3)-Gal. Within this framework, we explored the 

possibility of integrating these motifs in the context of mammalian sequences as an 

exploratory strategy towards the design of N-glycans with the desired 3D structure. For 

simplicity in the presentation and discussion of the results, we refer to N-glycans as either 

“plant” or “hybrid” separately. Nevertheless, it is important to underline that some of these 

motifs, such as β(1-2) xylosylation and difucosylated core are also found in invertebrate N-

glycosylation[30]. Finally, we discuss these findings within a framework where the different 

N-glycoforms can be represented as a combination of spatial self-contained units, named 

“glycoblocks”, rather than in terms of monosaccharides and linkages. We find that this 

approach helps our understanding of N-glycans architecture in terms of equilibrium structures 

and relative populations and also of how specific modifications affect molecular recognition.    

 

 

Figure 1. Representative structures of the plant N-glycans studied in this work with corresponding nomenclature. The letters 
f, x, and g indicate the presence of Fuc, Xyl and β(1-3) Gal, respectively, and ng the absence of β(1-3) Gal. LeA stands for 
Lewis A antigen. The N-glycans structures are shown with the (1-3) and (1-6) arms on the left and on the right, respectively.  
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The monosaccharides colouring follows the SFNG nomenclature. The plants N-glycan characteristic linkages are indicated 
in the legend. Rendering was done with VMD (https://www.ks.uiuc.edu/Research/vmd/).  

 

Computational Methods 

 

All starting structures were generated with the GLYCAM Carbohydrate Builder 

(http://www.glycam.org). For each sequence we selected the complete set of torsion angle 

values obtained by variation of the 1-6 dihedrals, namely the three gg, gt and tg 

conformations for each 1-6 torsion. The topology file for each structure was obtained using 

tleap[31], with parameters from the GLYCAM06-j1[32] for the carbohydrate atoms and with 

TIP3P for water molecules[33]. All calculations were run with the AMBER18 software 

package[31] on NVIDIA Tesla V100 16GB PCIe (Volta architecture) GPUs installed on the 

HPC infrastructure kay at the Irish Centre for High-End Computing (ICHEC). Separate 

production steps of 500 ns each were run for each rotamer (starting system) and convergence 

was assessed based on conformational and clustering analysis, see Supplementary Material 

for all relevant Tables. Simulations were extended, if the sampling was not deemed 

sufficient, i.e. in case standard deviation values measured were significantly larger than 15° 

for each cluster in each trajectory. All trajectories were processed using cpptraj[31] and 

visually analysed with the Visual Molecular Dynamics (VMD) software package[34]. 

Backbone Root Mean Square Deviation (RMSD) and torsion angles values were measured 

using VMD. A density-based clustering method was used to calculate the populations of 

occupied conformations for each torsion angle in a trajectory and heat maps for each dihedral 

were generated with a kernel density estimate (KDE) function. Statistical and clustering 

analysis was done with the R package and data were plotted with RStudio 

(www.rstudio.com). Further details on the simulation set-up and running protocol are 

included as Supplementary Material.  

 

Results 

 

Core α(1-3) fucose in plant N-glycans. One distinctive feature of plants N-glycans is the 

occurrence of core fucosylation in α(1-3), rather than α(1-6)-Fuc, normally found in 

mammalian N-glycans[24,23]. To understand the effects on the 3D structure of this 

modification, we have considered two biantennary systems, one terminating with β(1-2)-

GlcNAc on both arms (ngf) and the other with terminal β(1-3)-Gal on both arms (gf), shown 
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in Figure 1. In both glycoforms core α(1-3)-Fuc occupies a stable position, with one single 

conformer populated (100%), see Tables S.1 and S.2. This conformation is supported by a 

stacking interaction between the core α(1-3)-Fuc and β(1-4) GlcNAc of the chitobiose in a 

“closed” conformation, which resembles the stable conformation of LeX[35]. This spatial 

arrangement imposes a 20° rotation of the GlcNAc-β(1-4)-GlcNAc linkage, see Tables S.1 

and S.2, relative to the α(1-6) core fucosylated or non-fucosylated chitobiose[24], where the 

average psi value is -127.8° (14.8)[24], but doesn’t affect the structure of the linkage to the 

central mannose. As shown by the low standard deviation values and by the lack of multiple 

minima (clusters), the N-glycan core remains relatively rigid throughout the trajectories. The 

slight torsion of the GlcNAc-β(1-4)-GlcNAc linkage imposed by the α(1-3)-Fuc has a 

dramatic effect on the conformational dynamics of the (1-6) arm, which is found 

predominantly in an outstretched (66%, cluster 1) conformation, rather than folded over 

(34%, clusters 1 and 2), see Table S.1. The addition of a terminal β(1-3)-Gal in the gf  N-

glycan pushes the equilibrium towards an outstretched (1-6) arm even further, with the open 

conformation populated at 72%, see Table S.2. Interestingly, in the case of α(1-6) core 

fucosylated N-glycans, and with double fucosylation as discussed later on, the equilibrium of 

the (1-6) arm was the exact opposite, with a predominance of the folded conformation, 

especially in the presence of terminal β(1-4) Gal[24]. To note, the folded (1-6) arm 

conformation can be either a ‘front fold’, see Figure 2 panel a, where the torsion around the 

α(1-6) linkage brings the arm towards the reader, or a ‘back fold’ where the (1-6) arm 

interacts with the α(1-3)-Fuc, away from the reader. As shown in Tables S.1 and S.2, the 

equilibrium of the (1-3) arm is not affected by core α(1-3)-Fuc.  
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Figure 2. A representative structure of the non-galactosylated N-glycan with α(1-3)-linked core fucose (ngf) is shown in 
panel a), with on the right-hand side the corresponding heat map showing the conformations accessible to the (1-6) arm in 
terms of the phi/psi torsion angles. A representative structure of the non-galactosylated N-glycan with β(1-2)-linked xylose 
(ngx) is shown in panel b), with on the right-hand side a heat map showing the conformations accessible to the (1-6) arm in 
terms of the phi/psi torsion angles. The N-glycans structures are shown with the (1-3) and (1-6) arms on the left and on the 
right, respectively. The monosaccharides colouring follows the SFNG nomenclature. The structure rendering was done with 
VMD and the graphical statistical analysis with RStudio (www.rstudio.com).  

 

 

Figure 3. β-D-xylose ring pucker analysis over 3 μs of cumulative MD sampling of the ngx N-glycan. The two snapshots on 
the right-hand side are representative ngx conformations corresponding to the two different ring puckers. The Xyl1 and Xyl2 
axis labels refer to the torsion angles C1C2C3C4 and C2C3C4C5, respectively. The N-glycans structures are shown with the 
(1-3) and (1-6) arms on the left and on the right, respectively. The monosaccharides colouring follows the SFNG 
nomenclature. The structure rendering was done with VMD and the graphical statistical analysis with RStudio 
(www.rstudio.com).  
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β(1-2) xylose in plant N-glycans. Because the β(1-2)-Xyl sits in front of the two arms, it 

greatly affects their dynamics. Because of steric hindrance, the (1-3) arm is much more rigid 

relative to non-xylosylated species, see Table S.3, losing its “two conformer” dynamics 

characteristic of the biantennary mammalian N-glycans[24], also retained in the plant N-

glycans with only α(1-3)-Fuc discussed above, see also Tables S.1 and S.2. In regards to the 

(1-6) arm, as shown in Figure 2 panel b, tshe presence of β(1-2)-Xyl has a very similar 

effect as the α(1-3)-Fuc, pushing the equilibrium towards an open conformation. To note, in 

the presence β(1-2)-Xyl, the (1-6) arm cannot fold over the chitobiose core in a ‘front fold’ 

either, because of steric hindrance. Also, similarly to the α(1-3) fucosylated glycans, the 

stability of the open structure is slightly increased when the arm is further functionalized with 

terminal β(1-3)-Gal, see Table S.4. As an additional interesting feature, through the 

cumulative 3 μs MD sampling, the xylose ring repeatedly inverts its conformation from the 

all equatorial 4C1 chair, to the 1C4 chair, where all hydroxyl groups are axial, see Figure 3. 

This transition may be energetically facilitated by the hydrogen bonding interaction xylose is 

able to form when in a 1C4 chair with the α(1-6)-Man, which may compensate for the steric 

compression, making the 1C4 chair the highest populated conformer at 76% within an N-

glycan scaffold. Both experimental and ab-initio theoretical studies[36-38] have shown that 
1C4 chair is energetically accessible in isolated β-D-Xyl at room temperature in different 

dielectric conditions. 

 

Core α(1-3) fucose and β(1-2) xylose in plant N-glycans. The presence of both α(1-3)-Fuc 

and β(1-2)-Xyl brings in the characteristic features highlighted earlier in the analysis of the 

structures with either α(1-3)-Fuc or β(1-2)-Xyl. Indeed, we see here again the 20° rotation of 

the chitobiose GlcNAc-β(1-4)-GlcNAc psi angle caused by the stacking of the α(1-3)-Fuc to 

the chitobiose β(1-4)-GlcNAc and the conformational restraints imposed by the β(1-2)-Xyl 

on the (1-3) arm, see Table S.5. We also observed that both α(1-3)-Fuc and β(1-2)-Xyl push 

the (1-6) arm equilibrium towards an open conformation, which is also the case when both 

are present in the ngfx N-glycan and to an even higher degree, i.e. 87%, in the gfx N-glycan, 

when both arms are functionalized with terminal β(1-3)-Gal, see Table S.6. One feature 

specific to the ngfx N-glycan is the higher flexibility of the core Man-β(1-4)-GlcNAc linkage, 

which allows for the rotation of the trimannose group relative to the chitobiose core. This 

conformation was accessible, but only populated around 2% when either β(1-2)-Xyl or α(1-
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3)-Fuc are present, see Tables S.1 to S.4. When both fucose and xylose are present, the 

population of the rotated trimannose reaches above 20%, see Table S.5, which can be 

considered a synergistic effect as this conformation is stabilized by a hydrogen bonding 

network involving the core fucose, the GlcNAc on the (1-6) arm and the xylose, as shown in 

Figure S.1. Such folding event has been observed as a stable conformation in two 

independent simulations. To note, the functionalization of the arms to include terminal β(1-

3)-Gal reduces the occurrence of this event down to around 5%, see Table S.6.  

 

 
Figure 4. Comparison of the different conformational equilibria of the (1-6) arm in a core α(1-3)-Fuc β(1-2)-Xyl A2 N-
glycan with terminal LeA and LeX groups on the left- and right-hand side, respectively. Representative structures from 1.5 
μs MD sampling of each system are shown to illustrate the conformations corresponding to the different minima. The N-
glycans structures are shown with the (1-3) and (1-6) arms on the left and on the right, respectively. The monosaccharides 
colouring follows the SFNG nomenclature. The structure rendering was done with VMD and the graphical statistical 
analysis with RStudio (www.rstudio.com).  

 

Terminal LeA and LeX motifs in plant N-glycans. To understand how an increased 

complexity on the arms would affect the dynamics of the α(1-3) fucosylated and β(1-2) 

xylosylated N-glycans, we considered the functionalization with terminal LeA antigens 

present in plants N-glycans[26] and with LeX for comparison. As expected[35] the LeA and 

LeX structures are quite rigid, see Tables S.7 and S.15, and remain in what is known as the 

“closed” conformation throughout the 1.5 μs cumulative sampling time for each system. One 

interesting point is that the branching introduced by functionalizing the terminal GlcNAc 

residues with α(1-4)-Fuc and β(1-3)-Gal, i.e. LeA, promotes the interaction between the two 

arms, which is not observed when the arms are linear, neither here for plants N-glycans, nor 

for mammalian IgG-type complex biantennary N-glycans[24]. The interaction between the 

arms is promoted by the ability to form complex hydrogen bonding networks, which in this 

specific case, may also involve the central xylose. As outcomes of the complex interaction 

the branched arms can establish, the equilibrium of the (1-6) arm is restrained in 
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conformations previously not significantly populated, see Figure 4 and Table S.7, and the 

GlcNAc-β(1-2)-Man linkage in both arms is remarkably flexible, which is also not observed 

when the arms are not branched. Although not natural in plants, to check the corresponding 

symmetry, we built a core α(1-3)-Fuc and β(1-2)-Xyl N-glycan with terminal LeX on both 

arms, a feature actually found in schistosome N-glycosylation[30]. Remarkably, as shown in 

Figure 4 and Table S.15, within this framework the dynamics of the (1-6) arm is completely 

different. Contrary to the N-glycan with terminal LeA groups, the two arms with LeX are not 

interacting and the (1-6) arm is predominantly (90%) in an extended (open) conformation, 

while the closed conformation, which accounts for the remaining 10% is achieved through a 

rotation around the core Man-β(1-4)-GlcNAc. The lack of interaction between the arms is 

due to the inability to establish the same stable hydrogen bonding network due to the non-

complementary position of the deoxy-C6 of the fucose in LeX relative to LeA. 

 

Hybrid N-glycans. To understand how characteristic plant N-glycan motifs can affect the 

structure of mammalian N-glycoforms, we have designed and analysed the dynamics of a set 

of hybrid systems. In particular, we were interested in the effect of the addition of β(1-2)-Xyl 

and α(1-3)-Fuc to (F)A2G2 N-glycans scaffolds in terms of potential alteration of the (1-6) 

arm dynamics.  

 

 
Figure 5. Conformational analysis of the (1-6) arm in four hybrid N-glycoforms, β(1-2)-xylosylated A2G2 (top-left), β(1-2)-
xylosylated FA2G2 (bottom-left), β(1-2)-xylosylated α(1-3)-core fucosylated A2G2 (top-right) and β(1-2)-xylosylated FA2 
(bottom-right). The predominant conformations are indicated in the top- and bottom-left heat maps for simplicity. The 
simulation time relative to each system is indicated in the top right corner of each heat map. The N-glycans structures are 
shown with the (1-3) and (1-6) arms on the left and on the right, respectively. The monosaccharides colouring follows the 
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SFNG nomenclature. The structure rendering was done with VMD and the graphical statistical analysis with RStudio 
(www.rstudio.com).   

 

β(1-2)-xylosylated mammalian N-glycans. Unlike the case of plants N-glycans, the 

presence of β(1-2)-Xyl hinders but does not completely prevent the (1-6) arm from folding 

over when the terminal galactose is β(1-4)-linked, as folding over the chitobiose can be 

stabilized by stacking, see Figure 5 and Table S.8. The folded conformation with a median 

psi value of 103.5° (± 11.3) is 20° from the average value of 82.9° calculated for the non-

xylosylated (mammalian) counterpart[24], so slightly distorted, and its population reduced 

from 74% to 57%. Nevertheless, the closed conformation is still the predominant form, even 

with β(1-2)-Xyl. The presence of α(1-6)-linked core fucose to create a β(1-2)-xylosylated 

FA2G2, which is actually a type of N-glycosylation found in schistosoma[30], brings in yet 

another change. As shown in Figure 5 and Table S.9, α(1-6)-Fuc and β(1-2)-Xyl are in an 

optimal conformation to support the closed (folded) (1-6) arm, by stacking of the terminal 

galactose by fucose and hydrogen bonding by xylose. Within this context the closed (1-6) 

arm is the highest populated conformer at 70.0% over 4.5 μs of cumulative sampling of this 

system. To note that the conformation of the α(1-6)-linked core fucose is the same as the one 

seen in mammalian N-glycans[24], which on its own we have seen is not enough to affect the 

(1-6) arm equilibrium, see Table S.9. The interaction of the α(1-6)-Fuc with the terminal 

β(1-4)-Gal is essential to promote the closed conformation of the (1-6) arm as demonstrated 

by the results obtained for the xylosylated FA2 systems, which recovers a conformational 

propensity similar to the non-fucosylated, xylosylated A2G2, see Figure 5 and Tables S.8 

and S.10. 

 

α(1-3)-fucosylated mammalian N-glycans. Because of its orientation tucked “behind” the 

chitobiose core defined in the context of plants N-glycans earlier, the effect of core α(1-3)-

Fuc on the (1-6) arm equilibrium within an A2G2-xylosylated scaffold is not as significant as 

α(1-6)-Fuc. As shown in Figure 5 and Table S.11, this lack of direct effect is demonstrated 

by the recovery of the same equilibrium as the non-fucosylated A2G2-xylosylated system. 

The dynamics of the chitobiose core is very similar to the one determined for the 

corresponding plant N-glycan. To analyse the effect of core α(1-3) fucosylation without β(1-

2)-Xyl, we have looked at two A2G2 hybrid systems, one with only α(1-3)-linked fucose and 

one with both core α(1-3)- and α(1-6)-linked fucose, a characteristic “double-fucose” 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2020. ; https://doi.org/10.1101/2020.05.22.110528doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.22.110528
http://creativecommons.org/licenses/by-nd/4.0/


glycosylation found in worm and fly cells[30]. As shown in Table S.12 unlike in plants N-

glycans, the α(1-3)-Fuc alone does not affect the A2G2 (1-6) arm equilibrium[24], as the 

folding of the (1-6) arm with terminal β(1-4)-Gal is not obstructed by the rotation of the 

chitobiose core imposed by the α(1-3)-Fuc position. When both α(1-3)- and α(1-6)-linked 

fucoses are present the (1-6) arm with terminal β(1-4)-Gal is predominantly folded (closed) at 

85%, see Figure 6 and Table S.13, which is higher than in the absence of α(1-3)-Fuc[24]. 

Indeed, the latter can actively contribute in stabilizing the interaction with the terminal β(1-

4)-Gal of the folded (1-6) arm. We also observed interesting events, one representing 10% of 

2 μs as indicated by the values of the GlcNAc-β(1-4)-GlcNAc torsion, where the GlcNAc is 

stacked in between the two fucose residues and another one, contributing to 18% of the 

simulation time, 14% when the system is also xylosylated, in which the GlcNAc ring 

transitions from 4C1 to 1C4 allowing the two fucose to stack, see Tables S.13 and S.14 and 

Figure S.2.  

 

 

Figure 6. Conformational equilibrium of the (1-6) arm in terms of phi/psi torsion angle values for the α(1-3)-fucosylated 
FA2G2 N-glycoform. The structure with the folded (1-6) arm where the terminal β(1-4)-Gal interacts with both fucose 
residues is shown on the left-hand side. The N-glycans structures are shown with the (1-3) and (1-6) arms on the left and on 
the right, respectively. The monosaccharides colouring follows the SFNG nomenclature. The structure rendering was done 
with VMD and the graphical statistical analysis with RStudio (www.rstudio.com).   

 

Discussion 

Differences and similarities in N-glycans sequences are highly cell-specific as well as 

important indicators of health and disease states[1,39]. Exogenous N-glycans motifs can be 

quite subtle, yet trigger profound differences in terms of molecular recognition[19,27] and 

dangerous immunogenic responses[20-22]. In this work we have analysed the effects on the 

N-glycans structure and dynamics of two motifs in particular, namely β(1-2)-Xyl and core 
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α(1-3)-Fuc, common in plants[23] and invertebrates[30], but completely absent in 

mammalian N-glycans. Within the context of plant-type N-glycans, which have a terminal 

β(1-3)-Gal, rather than β(1-4)-Gal, both β(1-2)-Xyl and α(1-3)-Fuc contribute independently 

in promoting an outstretched (open) conformation of the (1-6) arm because of steric 

hindrance of the xylose and of the rotation forced upon the chitobiose core by the α(1-3)-Fuc. 

The latter is not an obstruction for the folding of a β(1-4)-Gal terminated (1-6) arm, as we 

have seen in the hybrid N-glycans constructs. Therefore, in β(1-2) xylosylated N-glycans 

terminating with β(1-3)-Gal, both arms should be more available for recognition, binding and 

further functionalization[30], unlike in mammalian N-glycans where the β(1-4)-Gal 

determines a prevalently closed and inaccessible (1-6) arm[24,27]. Also, the analysis of the 

structure and dynamics of the LeA terminating plant N-glycans showed that the specific 

branching and spatial orientation of the motif allowed for a stable interaction between the 

arms, which is not observed in complex N-glycans with a linear functionalization of the 

arms[24]. Notably, the same hydrogen bonding network between the arms cannot be 

established when the same N-glycan terminates with LeX, because of the non-

complementary position of the α(1-3)-Fuc deoxy-C6.  

 

The analysis of all these different complex N-glycoforms clearly shows that every 

modification, addition or removal of a specific motif, can greatly affect the 3D architecture of 

the N-glycan, thus its accessibility and complementarity to a receptor. However, these effects 

are rather complex to understand or to predict, if we think of the N-glycans 3D structure in 

terms of sequence of monosaccharides, a view that stems from the way we think about 

proteins. Our results show that the main effect of all functionalizations is actually local. For 

example, the core α(1-3)-Fuc forces a rotation of the chitobiose, a degree of freedom very 

lowly populated otherwise; meanwhile, β(1-2)-Xyl restricts the flexibility of the trimannose 

core and occupies its centre. Within this framework, the 3D structural and dynamics features 

of the N-glycoforms can be rationalized by discretizing their architecture in terms 3D units, 

or “glycoblocks”, that group monosaccharides and their linkages within their immediate 

spatial vicinity, e.g. the core α(1-3)-Fuc and the chitobiose which structure it has modified. A 

list of the glycoblocks that we have identified with the corresponding descriptors of their 3D 

features are listed in Figure 7. The whole N-glycan 3D architecture, in terms of the structures 

accessible and their conformational propensity, can be then described through the 

combination of these glycoblocks, together with the knowledge of their dynamic properties 
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and flexibility. Also, consideration of these glycoblocks as spatial units can be useful to 

understand recognition by lectins and antibodies, which is often affected primarily by the 

targeted monosaccharide’s immediate vicinity and by its accessibility within a specific 

glycoform. For example, if we consider the 3D structure of the β(1-2)-Xyl Man3 glycoblock 

vs. the Man3 without Xyl, we can understand how the β(1-2)-Xyl position within that unit 

negates binding to DC-SIGN lectins[19], see Figure S.3 panels a and b. Additionally, we 

can see that the slight rotation on the chitobiose imposed by the core α(1-3)-Fuc does not 

prevent recognition and binding, see Figure S.3 panel c.  
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Figure 7. List of 3D structural units of monosaccharides (glycoblocks) that regulate the 3D architecture and dynamics of 
complex biantennary N-glycans from plants and invertebrate sources and hybrid mammalian constructs. The SFNG 
representation of each glycoblock is indicated in the first column from the left, 3D structures from the highest populated 
conformers are shown in the second column, rendered with VMD. A brief summary of the conformational features of each 
glycoblock and the characteristic linkage or its effect on the (1-6) arm conformation are indicates in the last two columns, 
respectively. 
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Conclusions  

 

In this work we used extensive sampling through MD simulations to study the effects on the 

N-glycan architecture of subtle, yet highly consequential modifications, namely core α(1-3)-

Fuc and β(1-2)-Xyl[19]. These are part of standard N-glycoforms found in plants[23] and 

invertebrates[30], but immunogenic in humans[22,26,21]. Our results show that these 

modifications can greatly affect the 3D structure of the N-glycan and its structural dynamics, 

therefore its selective recognition by lectin receptors and antibodies. The atomistic-level of 

detail information that the MD simulations provide us with, highlights that the effects of 

different functionalizations, in terms of monosaccharide types and linkages, are primarily 

local, affecting the immediate spatial vicinity of the monosaccharide within the N-glycan 

structure. Within this framework, we propose an alternative approach that can help describe 

and predict the architecture of N-glycans based on the combination of structural 3D units, or 

glycoblocks. Unlike a description based on monosaccharide sequence and linkages as two 

separate features, the transition to well-defined and self-contained units, integrating 

information on both monosaccharides and linkages, can help us rationalize and deconvolute 

the glycans structural disorder and ultimately understand more clearly the relationships 

between sequence and structure in complex carbohydrates.  
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