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Figure 3: Comparison of the SSA-FBA simulation methods Trajectories from three sets of 20 representative simulations,
each consisting of 3000 reaction execution events: A) direct SSA-FBA simulation of toy model (equivalent to � event = 0); B)
approximate SSA-FBA simulation of toy model with � event = 50; C) approximate SSA-FBA simulation of toy model with
� event = 500. D) Comparison of run times for direct and optimal basis simulation methods. Error bars are standard deviations
for run times across four replicate simulations involving 50000, 100000, or 200000 FBA bound updating events (described in
Supplementary Appendix S2).

Case study: reduced single-cell model of M. pneumoniae
In this section, we present results from a case study using SSA-FBA to simulate the dynamics of metabolism in a reduced
model of a single M. pneumoniae cell in order to understand how variability in single-cell metabolism is driven by the intrinsic
stochasticity of gene expression. Mycoplasma have the smallest genomes among known freely living cells and, by the law
of large numbers, their small sizes therefore mean they should exhibit the largest effects of stochasticity in the absence of
regulation: the relative absence of genetically-encoded regulation compared with higher organisms means that stochastic effects
are likely to play a larger role in their metabolic behaviour. Furthermore, M. pneumoniae is one of the best-characterised
members of this family (46), which makes it an excellent case study for understanding the behavioural effects of stochasticity
in single-cell metabolism. Its close relative M. genitalium was previously used to build a whole-cell model (28), to which
SSA-FBA could also be applied in principle along with genome-scale metabolic reaction networks from other organisms. The
purpose of this section is not to study an entire whole-cell model however, as the complexity involved in doing so would extend
far beyond the main scope of this paper, whose goal is to introduce SSA-FBA as a modelling framework and demonstrate its
feasibility by simulating a model of reasonable size and biological accuracy.

We constructed a model of M. pneumoniae consisting of 505 biochemical reactions that account for the physiology of
metabolism and the intrinstic drivers of stochasticity in gene transcription, translation and macromolecular degradation. Most
parameter values were derived from metabolomics, transcriptomics, and proteomics data about M. pneumoniae (47–50), with
the exception of rate constants for metabolic reactions (for which many fewer experimental observations are available) that are
drawn from a variety of other bacteria (52). The model contains a metabolic reaction network with 86 metabolic reactions
(Figure 4A), including a biosynthetic pseudo-reaction that constitutes the objective function of the embedded FBA problem.
The biosynthetic pseudo-reaction was constructed to be internally consistent with the SSA only reactions that model gene
expression as described below and does not account for additional maintenance energy costs not included the model– a complete
description of the biosynthetic pseudo-reaction is provided in the relevant subsection of Supplementary Appendix S3. There are
81 protein species that either function individually or in complex (27 complexes in total) as enzymes or transporters regulating
flux through the FBA reactions, or serve a direct role in gene expression (ribosomal proteins, RNA polymerase or RNAse
subunits). Furthermore, each protein species is associated with an mRNA molecule (in addition to the three ribosomal RNAs)
and four reactions corresponding to RNA transcription, RNA degradation, protein synthesis and protein degradation, which
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together with complexation reactions makes 420 SSA only reactions.
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Figure 4: Single-cell simulation of M. pneumoniae metabolism using SSA-FBA. A) Metabolic reaction network used in the
model annotated with species listed in Supplementary File S1.B)Comparison of distributions of number of SSA execution events
per simulation for different values of the GMK reaction rate constant. For reference, the bimodal distribution corresponding to
kcat = 53.0 s−1 is outlined in black.C) Box plots showing significant differences between GTP concentrations (p < 2.2×10−16),
and the relative proportions of reaction execution events that correspond to metabolic reactions (p < 2.2× 10−16) and translation
reactions (p < 2.2 × 10−16), respectively, between the low and high GTP groups. D) Distributions of time-averaged ATP
concentrations from simulations with GTP high group and pFBA compared with the experimental distribution from (54). E)
Distribution of time-averaged ADK and PGK concentrations from simulations with GTP high group.

As described previously, it is natural that metabolite species (NTPs and AAs) appearing as reactants in the rate laws for
the SSA only reactions governing macromolecular synthesis and degradation are viewed as external species of the metabolic
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reaction network along with extracellular substrates, while all other metabolites are considered internal. Therefore, reactions of
the embedded FBA model involved in the production or consumption of NTPs and AAs or extracellular transport are naturally
assigned to the SSA-FBA reaction subset. The remaining reactions of the embedded FBA model (those whose substrates or
products do not involve NTPs, AAs or extracellular substrates) are consequently assigned to the FBA only subset. Supplementary
File S1 contains all of the compartments, species, reactions, rate laws, and parameters; Supplementary Appendix S3 provides
an extended description of the model.

The reduced single-cell model is based partly on metabolic rate constants measured for bacteria distantly related to M.
pneumoniae and so should not be considered a precise description of Mycoplasma physiology. Indeed, even the most detailed
constraint-based, genome-scale models attempting to provide descriptions of entire cell physiology (51) must contend with the
problem of missing parameter values, and the dependance of their completeness on future experimental research is something
that genome-scale SSA-FBA simulations are subject to also. The average fold variation for wild-type bacterial enzymatic
reaction rate constants (kcat values) in BRENDA (52) is 3951.6, as measured by (kmax

cat − kmin
cat )/k

min
cat (where kmax

cat and kmin
cat

are the largest and smallest, respectively, kcat values reported for that enzyme) and averaged across all enzymes included in the
model, suggesting one or more of these model parameters require calibration in order to at the very least generate predictions
consistent with the observed growth physiology of M. pneumoniae.

Here one advantage coming from computational efficiency of the optimal basis SSA-FBA simulation algorithm is making it
possible to parsimoniously search metabolic parameter space and establish parameter sensitivities by individually varying
enzymatic reaction rate constants through repeated simulation. As an illustrative example, we focus on the sensitivity of growth
rate to variations in the kcat value of guanylate kinase (GMK, gene MPN246) as a key enzyme (a phosphotransferase) forming
part of the phosphotransfer network responsible for the homeostasis of NTPs and cellular energetics (53). To generate each set
of simulation results for a given GMK kcat value we ran a thousand instances of the single-cell M. pneumoniae model using the
optimal basis SSA-FBA method initialised with counts of species randomly sampled from a Poisson distribution parametrised
by their mean values across the cell cycle. In each case we analysed simulations over a 25 min interval of biological time, across
which cell volume is assumed to be approximately constant given the relatively long (6-8 hrs) doubling time of M. pneumoniae
(46), excluding the first 25 mins of each 50 min simulation to prevent initial transients from contaminating the analysis.

The kcat value of GMK was varied from its lowest measured value (equal to the kcat of adenylate kinase (ADK) in Bacillus
subtilis, a much faster growing gram-positive bacteria), by increasing in 10-fold increments towards its highest estimated value
(ADK in Vibrio natriegens). Notably, we found that the distribution of SSA execution events per simulation becomes bimodal
as the GMK reaction rate constant increases (Figure 4B). This bimodal distribution at larger GMK kcat values computationally
separates simulations into two distinct groups with a low (less than 10,000 SSA execution events) or high (more than 10,000
SSA execution events) number of SSA execution events per simulation, which are biologically associated with significantly
low or high time-averaged GTP concentrations: 0.04 ± 0.06 mM vs 0.47 ± 0.29 mM (mean ± SD) in low vs high group,
respectively (Figure 4C). Figure 4C also shows that, for the largest value of the GMK reaction rate constant tested, simulations
in the low GTP group (146 out of 1000 simulations) were associated with a significantly lower average proportion of SSA
execution events corresponding to metabolic reactions compared to simulations in the high GTP group: 79.36 % vs 99.16 %
in low GTP group vs high GTP group, respectively, implying that higher time-averaged GTP concentrations are associated
with increased metabolic activity. Conversely, a significantly relatively higher average proportion of SSA execution events
correspond to translation reactions in the low GTP group compared to the high GTP group: 13.46 % compared with 0.50 % in
low GTP group vs high GTP group, respectively, consistent with the fact that translation is a major consumer of intracellular
GTP. Given the critical importance of ATP as source of energy for intracellular reactions supporting growth, we then studied
the distribution of time-averaged ATP concentrations across the population of simulated cells. We found that the time-averaged
concentrations ATP across the group of metabolically more active cells is positively skewed in qualitative agreement with
experimental measurements of ATP concentrations inside individual bacteria (54) (Figure 4D): 1.28 ± 0.75 mM vs 1.54 ± 1.22
mM (mean ± SD) and skew values of 1.16 vs 2.20 for simulation vs experiment, respectively. Conversely, the distribution of
ATP concentrations in metabolically less active cells was slightly negatively skewed: 0.81 ± 0.22 mM (mean ± SD) and skew
value of -0.35.

To understand whether multiple optimal solutions of the embedded FBA problem explain the bimodal simulation behaviour
observed at larger GMK kcat values, we performed flux variation analysis (FVA) (44) with the metabolic reaction network at
steady state. FVA revealed that the reactions catalysed by GMK, ADK and phosphoglycerate kinase (PGK; ATP and GTP
production) are able to carry arbitrarily large flux values within the optimal solution space defined by maximising flux through
the biosynthetic pseudo-reaction. Correspondingly, elementary flux mode enumeration (55) used to identify all minimal
pathways through the metabolic reaction network revealed a single internal cycle (and its reverse) that contains the support of
the GMK, ADK and PGK reactions without net metabolite production or consumption. Such internal cycles, not involving the
primary exchange reactions representing exchange of material between the model and the environment, are known to violate the
first law of thermodynamics in conventional constraint-based models (43), but in the reduced M. pneumoniae model GMK,
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ADK and PGK catalyse SSA-FBA reactions involved in internal exchange of NTPs. We confirmed that simulations within
the group of metabolically more active cells have significantly higher mean numbers of these four reactions executing across
the course of a simulation than any other SSA-FBA reaction (p < 2.2 × 10−16, based on one sample t-test between the mean
number of execution times of a given SSA-FBA reaction compared to that of all others), which is a result of the internal loop
being able to carry a larger flux value in the optimal solution space when the GMK reaction rate is bounded by a higher kcat
value. We also found a significant positive correlation between time-averaged ATP concentrations and ADK but not PGK
enzyme levels (R = 0.18, p < 10−7 and R = 0.04, p = 0.24, respectively, based on Pearson’s product moment correlation
coefficient), which were positively skewed (1.24 ± 0.26 µM and 12.35 ± 1.52 µM (mean ± SD) and skew values 1.00 and
1.67, respectively (Figure 4E), suggesting that asymmetric metabolite distributions are perhaps the result of fluctuating ADK
levels controlling the relative levels of flux through the internal loop. Conversely, in the group of metabolically less active cells,
reactions catalysed by GTP phosphofructokinase (PFK), PGK, and GTP pyruvate kinase (PYK) along with the glucose import
reaction are significantly overrepresented in simulations (p < 2.2 × 10−16), without significant correlation between between
time-averaged ATP concentrations and ADK enzyme levels.

Since the internal cycle involving ADK responsible for positively skewed time-averaged ATP concentrations is deemed
thermodynamically infeasible by constraint-based modelling criteria (43), we next employed lexicographic optimisation with the
biosynthetic pseudo-reaction and a second parsimonious FBA objective (pFBA: minimising the sum of absolute flux values, see
(56) and Supplementary Appendix S3). Although imposing a strong assumption on the biology of M. pneumoniae metabolism,
pFBA is guaranteed to return a set of optimal SSA-FBA propensity values that are calculated without the involvement of internal
cycles. Subsequently, the distribution of SSA execution events per simulation with pFBA retained a single mode even at the
highest value of the GMK reaction rate constant and SSA-FBA execution events associated with ATP PFK, PGK, ATP PYK and
glucose import were significantly overrepresented (p < 2.2 × 10−16). Mean ATP concentrations with the pFBA objective were
closer to those of previously metabolically less active cells, although the distribution retained a slight positive skew: 0.83 ± 0.01
mM (mean ± SD) and skew value of 0.30 (Figure 4D). Taken together, the requirement to include thermodynamically infeasible
internal cycles to reproduce experimentally observed ATP distributions is a critical shortcoming of the reduced M. pneumoniae
single-cell model that emerges because SSA-FBA reactions involved in internal NTP exchange are coupled to macromolecular
synthesis and degradation. This issue would not arise in typical population-based DFBA models where the embedded FBA
problem is only coupled to the ODE via its primary exchange reactions. It implies that additional non-growth-associated
NTP maintenance reactions should be incorporated into single-cell models to account for alternative NTP requirements (57)
and more formally mediate internal NTP exchange, possibly with additional constraints that impose conservation on certain
metabolite pools (58).

DISCUSSION
In this paper we have presented SSA-FBA, the first framework with a realistic potential for simulating the complete dynamics
of metabolic networks in single cells at the resolution of individual species and reactions. SSA-FBA is a hybrid method for
embedding FBA in SSA that is well-suited to simulating metabolic networks for which detailed kinetic information is often
lacking. We also have developed an advanced optimal basis algorithm for efficiently executing SSA-FBA without approximation.
A case study using our algorithm to simulate a reduced model for the metabolism of an individual M. pneumoniae cell
demonstrates that SSA-FBA has the potential to reveal how stochasticity at the single-cell level contributes to metabolic
heterogeneity at the population level. Our results may help to identify the sources of variation observed in experimental
measurements of important metabolites in single cells, indicating that reaction network coupling could contribute to population
heterogeneity by amplifying or attenuating the sources noise in an integrative fashion. SSA-FBA can therefore be used to
probe metabolic heterogeneity in a manner complementary to alternative existing experimental and computational methods
(11, 22, 25, 27).

Limitations of the current study include various assumptions involved in the separation of timescales between reactions
from metabolic portions of models and reactions responsible for macromolecular synthesis and degradation. In particular,
although the faster timescales of metabolic reactions and higher abundance levels of metabolites have been widely used to
justify a reduction of the CME or deterministic descriptions of metabolism (25, 37–39), the validity of these assumptions should
be questioned for each individual representation of single-cell metabolism prior to implementation of SSA-FBA. We have also
highlighted two additional restrictions on SSA-FBA that reflect general limitations of any metabolic modelling framework
based on an LP formulation, but can be overcome using extensions of the work presented here: first, uniqueness of SSA-FBA
propensity values is not guaranteed, although this can be achieved by implementing lexicographic optimisation compatible with
the efficient SSA-FBA simulation algorithm; secondly, whilst not possible to simulate using the efficient algorithm, SSA-FBA
models can be generalised to include scenarios where a non-linear optimisation problem is used to represent metabolism.
Finally, the general lack of experimentally-determined parameter values that plagues current whole-cell modelling attempts
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(28, 29, 51) serves as a current limitation to building large-scale, single-cell models of metabolism, but, as further advancements
are made in data collection, SSA-FBA will retain an advantage over alternative frameworks that depend on precise knowledge
of kinetic parameters.

Future extensions of our work will involve applying SSA-FBA to larger, more realistic models of entire cells such as those
based on resource balance analysis (51), in addition to reconsidering how standard constraint-based formulations of metabolite
pools, energy maintenance and objective functions should be adapted to suit the biological nature of single-cell biology.
More complex models of single-cell metabolism could include mechanisms that impart regulatory control of stochasticity
(59), and pave the way for combining insights from simulation with experimental advances in microfluidics (60) or real-time
quantification of RNA translation events within individual cells (61). From an algorithmic perspective, SSA-FBA could be
extended to incorporate additional time-scales governed by continuous stochastic or deterministic processes (e.g., (62)), and its
computational efficiency perhaps further enhanced through parallelisation methods (63).
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