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Abstract11

Affinity maturation is a complex dynamical process allowing the immune system to generate antibodies12

capable of recognizing antigens. We introduce a model for the evolution of the distribution of affinities13

across the antibody population in germinal centers. The model is amenable to detailed mathematical14

analysis, and gives insight on the mechanisms through which antigen availability controls the rate of15

maturation and the expansion of the antibody population. It is also capable, upon maximum-likelihood16

inference of the parameters, to reproduce accurately the distributions of affinities of IgG-secreting cells17

we measure in mice immunized against Tetanus Toxoid under largely varying conditions (antigen dosage,18

delay between injections). Both model and experiments show that the average population affinity depends19

non-monotonically on the antigen dosage. We show that combining quantitative modelling and statistical20

inference is a concrete way to investigate biological processes underlying affinity maturation (such as21

selection permissiveness), hardly accessible through measurements.22

1 Introduction23

Vaccines are undoubtedly one of the most effective preventive procedure ever developed and have even been24

used to eradicate diseases [1, 2]. In many cases, vaccine-mediated protection can be directly linked to the25

generation of an antigen-specific antibody repertoire [3, 4], such as for tetanus toxoid (TT) vaccination [5, 6].26

The repertoire, a term detailing the present antibody variants within an organism, is adapted upon vaccination27

to include vaccine-specific clones [7, 8]. The processes that shape and expand this repertoire upon vaccination28

are highly complex and dynamic, and are strongly linked to affinity maturation (AM) [9, 10, 11]. AM entails29
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a series of mechanisms through which the immune system is able to produce potent high-affinity and antigen-30

specific antibodies (Abs) [12, 13, 14, 15, 16, 17]. Briefly speaking, AM is achieved through the combination31

of random mutations and selection for Antigen (Ag) binding. AM takes place in microanatomical structures,32

known as Germinal Centers (GCs). GCs are initially seeded by B-lymphocytes from the naive repertoire with33

sufficient affinity to bind the Ag. This initial affinity is achieved thanks to the great diversity of the immune34

repertoire, generated by processes such as VDJ recombination [18]. B-cells in GCs iteratively migrate through35

two areas, called the GC Light and Dark Zones (LZ/DZ). In DZ cells duplicate and are subject to a high36

mutation rate through a process known as Somatic Hypermutation (SHM). Cells then migrate out of DZ to37

LZ, where they are selected for Ag binding through a process involving interaction with follicular T-helper38

cells. Selected cells migrate then back to DZ for further duplications. This combination of random mutations39

and selection for Ag binding constitute a Darwinian evolutionary process, which progressively enhances the40

affinity of the B-cell population for the Ag.41

In practice, AM is induced through administration of some dose of attenuated Ag, often mixed with42

adjuvants and other additives that have both immune-stimulatory effect and facilitate retention of Ag for43

longer periods of time [19, 20, 21, 22]. Whilst the adjuvant and additives define the nature of the immune44

response [22], Ag dose is a major variable in AM [16, 23, 24]. High-affinity cells are discriminated and selected45

based on their capacity to bind Ag, and the amount of available Ag therefore tunes the strength of the applied46

Darwinian selection, i.e. defining the selection pressure [24, 25, 26]. For example in reference [24], based47

on measurements of Abs affinity in rabbit sera following hapten immunization [27], the authors observed48

that average affinity decreased and heterogeneity increased with Ag dosage, suggesting that the latter was49

controlling the strength of selection: low and high dosages corresponded to, respectively, strong and weak50

selections [28, 29, 26]. However, experimental evidence exists suggesting that Ag dosage has also a non-trivial51

effect on the efficacy of affinity maturation. This selection will be applied in the highly complex and dynamic52

environment of the immune response and the dose-response curve for some vaccines is not a saturating53

function of the Ag dose [30]. Experiments showed that there was an intermediate range of concentrations for54

optimal stimulation of the immune system, leading the authors to advocate the development of data-informed55

models to guide the vaccine dose decision-making process, e.g. in the cases of tuberculosis, malaria, HIV56

[30]. Models for AM were proposed to investigate this aspect and to help developing protocols in the field57

of vaccine design. Examples include the study of optimal immunization strategies against highly-mutable58

pathogens such as HIV [31, 32, 33] and the influence of Ag administration kinetic on the humoral response59

[26]; a review of Germinal Center Reaction models and their ingredients can be found in [34].60

A second open issue concerning AM is to characterize in a quantitative way the selection acting in the GC,61

in particular how permissive it is [14, 15, 35, 36]. Through mechanisms such as bystander activation [37, 38, 39]62

GC selection can indeed allow intermediate and low affinity clones to survive [10]. These phenomena generate63

a wider diversity than previously appreciated, especially when considering complex Ags displaying different64

epitopes [40]. In [41] for example the authors try to characterize the GC response to complex Ags such as65

influenza vaccine, as opposed to simple ones such as haptens. While in the latter case a strong homogenizing66

selection and affinity maturation is observed, for complex Ags response is more polyclonal and a consistent67

part of the GC population (20-30%) is composed of low-affinity clones. This suggests a more permissive nature68

of the GC selection, in which even low-affinity clones have a non-zero probability of passing the selection.69

Permissiveness could for example be useful against mutable pathogens, where maintaining a pool of general70

cross-reactive cells might be a better strategy than only selecting for the best strain-specific binders.71
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In this paper we tackle the question of how the Ag dosage and the time delay between subsequent vaccine72

injections can influence the quality of immunization, measured as the Ag affinity of the B-cell population that73

respond to a further antigenic challenge. Thanks to the technique developed in [39] we were able to access74

full experimental affinity distribution of splenic Ab-secreting cells (Ab-SCs) extracted from mice following75

Tetanus-Toxoid (TT) immunization. These distributions constitute a much more detailed information than76

other affinity measurement, such as average serum affinity, which only summarize them in a single number that77

is often related to their average. We introduce a computational model, inspired by previous work [33], that is78

capable of reproducing these distribution under different immunization schemes, in which both the Ag dosage79

and the delay between injections can be varied. We aim at studying the mechanisms underlying the observed80

optimality of Ab affinity at intermediate dosages through detailed mathematical analysis of the model. In81

addition to this, our aim is to probe how restrictive GC selection is in our particular immunization protocol,82

and therefore we include in the model some parameters that encode for permissiveness and stochasticity. We83

use inference techniques to find the most likely value of the parameters given the observed data. This allow84

us to have information on quantities that are not directly measurable in experiments.85

2 Results86

2.1 Stochastic model for affinity maturation87

We model the stochastic evolution of the distribution of binding energies of a population of B-cells during88

the Affinity Maturation (AM) process. A virtual population of B-cells in the Germinal Center (GC) is89

subject to iterative rounds of duplication, mutation and selection, see fig. 1 [33]. Each B-cell in our model90

is characterized by the binding energy ε between its receptor and the Ag; ε is measured in units of kBT ,91

where kB is Boltzmann constant and T the organism temperature1. This energy is related to the dissociation92

constant Kd between the B-cell receptor and the Ag through ε = logKd; Kd is here expressed in Molar93

units, other choices of units would shift energies by a constant amount. Hence, lower energies correspond to94

higher affinities2. The main objective of our model is to track the evolution of the distribution of binding95

energies across the B-cell population, ρ(ε), during the GC maturation process. Tracking the full distribution96

is important for later comparison with experimental data, which themselves consist of affinity distributions.97

We now describe the main ingredients of the model.98

Ag dynamics. In the course of AM, the concentration C of Ag varies over time, due both to gradual99

release from the adjuvant matrix and to decay and consumption (fig. 2A). At time of injection Ag molecules100

are trapped in the adjuvant matrix, which constitutes an Ag reservoir. Ag is then quickly released at101

a fast rate k+. Due to recycling of Ag from surface of Follicular Dendritic Cells (FDCs) to endosomal102

compartments [42, 15] available Ag decays at a slow rate k−∅, and are consumed by B-cells at a faster rate,103

k−B NB , proportional to the number NB of B-cells. As the amount of Ag is depleted, selection of B-cell is104

more and more stringent, and the GC eventually dies out.105

GC affinity maturation. The GC is initialized with Nfound founder clones from the population of naive106

1This choice of unit is standard in biophysics, and allows one to simply express Boltzmann factors as e−ε; in practice,

1 kBT ' 10−24 kcal.
2For example, the dissociation constant Kd = 1 µM corresponds to the energy ε = −13.8, and a tenfold decrease in affinity

(with Kd varying from 1 µM to 10 µM) corresponds to an increase in binding energy of 2.3.
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responders [10]. Their binding energies ε are independently drawn from a Gaussian distribution, with mean107

µnaive and standard deviation σnaive (Histogram 1 in fig. 1). During the initial phase of colonization and108

expansion these founder clones duplicate uniformly (without mutation) to produce a population of Ni B-109

cells. We do not model this initial phase, and start our simulation TGC days after Ag injection, when the GC110

is mature [12, 13].111

During each evolution round (of duration Tturn hours), all cells are assumed to divide twice, independently112

of their affinity. If the number of cells in the population, NB , exceeds some threshold value Nmax during the113

division process, each cell is removed with probability 1−Nmax/NB , so that on average only Nmax cells are114

left. Imposing a finite carrying capacity to the GC takes into account limitations on its growth, due to the115

availability of metabolic resources or the finite amount of T-cell help.116

At division B-cells have probability pmut of developing mutations through a process known as Somatic117

Hyper-Mutation. Mutations can be lethal, neutral, or affinity-affecting with probabilities equal to, respec-118

tively, pl, ps, or pa [43]. In the latter case the binding energy of the cell is added a random contribution,119

ε → ε + ∆ε, drawn from a log-normal distribution Kaa(∆ε) [44], see appendix fig. app-1A. Most affinity-120

affecting mutations are deleterious, i.e. correspond to ∆ε > 0 (Histogram 2 in fig. 1).121

After duplication B-cells are first selected according to their capability to bind Ags exposed on FDCs122

(fig. 1 top right). The probability for a cell to survive this selection step is a decreasing function of its123

binding energy ε and increases with the concentration C of Ag on FDCs; it is given by124

PAg(ε) =
Ce−ε

Ce−ε + e−εAg
, (1)

where εAg is a threshold binding energy (appendix fig. app-1C). As a consequence, cells with high binding125

energy (larger than εAg + logC) are likely to be removed from the population, compare Histograms 2 & 3 in126

fig. 1.127

Following internalization, B-cells load the Ag on MHC molecules on their surface [45, 46, 47]. By probing128

these molecules T follicular helper cells provide survival signals to the B-cells with high Ag affinity (fig. 1,129

‘Competition for T-cell help’) [48, 49, 12, 50]. The probability that a B-cell with binding energy ε survives130

this second step of selection is131

PT(ε, ε̄) = a+ (1− a− b) Ce−ε

Ce−ε + e−ε̄
, with e−ε̄ = 〈e−ε〉GC . (2)

The threshold energy ε̄ depends on the current state of the B-cell population in the GC, as a result of the132

competition amongst these cells for getting the survival signal from T-helper cells, see Histogram 4 in fig. 1.133

Parameter a represents the probability for any B-cells to be selected due to stochastic effects (e.g. bystander134

activation [51]) even with very low affinity; it is introduced to reproduce the observation that selection in GCs135

is permissive in the presence of complex Ags such as the ones found in vaccines [41]. Parameter b instead136

represents the probability for a B-cell to fail selection at high affinity. The introduction of b comes from137

the experimental observation that part of the population of apoptotic cells in GCs has high affinity for the138

antigen [52]; the removal of these cells could result from stochastic effects [53].139

We will consider three variants of the above selection process: (A) two-step selection described in eqs. (1)140

and (2); (B) same two-step selection, but without permissiveness, i.e. with a = b = 0; (C) simpler selection141

process based on competition for T-cell help only, i.e. eq. (2), but allowing for permissiveness.142

Differentiation into Plasma and Memory Cells. Clones that successfully survive selection differentiate143

with probability pdiff in either Ab-producing Plasma Cells (PCs) or long-lived Memory Cells (MCs), or start a144
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new evolution cycle with probability 1−pdiff. The probabilities of differentiation into MC and PC, respectively,145

µMC(t) and µPC(t) = 1− µMC(t), depend on the time following Ag injection t (early vs. late response) [54].146

The MC cell fate is more likely at the beginning of evolution and the PC is more likely towards the end,147

effectively resulting in a temporal switch occurring around day 11 after injection [54] (appendix fig. app-1B).148

The MC and PC populations (Histograms 5 in fig. 1) grow at each evolution step, as more and more clones149

differentiate.150

Administering a recall Ag injection some time after vaccination generates responders Ab-Secreting Cells (Ab-151

SCs). These cells comprise both MCs, that can be stimulated to differentiate and produce Abs upon new152

Ag encounter [55, 56, 15, 36], and residual PCs formed during previous maturations; PCs belonging to the153

long-lived pool are capable of surviving up to a human lifetime in the absence of division [57, 58]. The affinity154

distribution of Ab-SCs is assumed to be a weighted mixture of the MC and PC populations, with fractions155

equal respectively to g and 1− g, where the value of g is expected to depend on the conditions under which156

the system is probed.157

Cells harvested from the spleen originate from multiple GCs. To account for this phenomenon we carry out158

several parallel stochastic simulations of GCs (NGCs = 20); the GCs are initialized with different populations159

of founders, and produce different Ab-SC populations. The distribution of affinities, averaged over the GCs, is160

our outcome and can be compared to experimental results. We choose not to introduce interactions between161

the evolving GCs, due to the lack of experimental quantification of possible GC-crosstalk.162

GC reinitialization. When a second Ag injection is performed after the end of the first GC reaction a163

new GC is initiated. The population of Nfound founder clones for the new GC is composed of both new164

GC B-cells with naive precursors having sufficient affinity to bind the Ag, and reactivated MCs accumulated165

during the past evolution [55, 56, 36]. The probability for a founder cell to be extracted from the MC pool166

is pmem = Nmem/(Nmem +Ni), where Nmem is the number of MCs accumulated up to the time of the second167

injection. This hypothesis reflects the fact that we expect more reactivated MCs to colonize the newly-formed168

GC if more MCs were produced in the previous maturation. However one could also consider this ratio to169

be constant (see appendix sect. 6).170

If the Ag injection occurs before the end of the first GC reaction, only the MC produced so far are considered171

to seed the second GC reaction. This initial exchange of MCs is the only interaction between the two GCs,172

which evolve independently at later times.173

Values of model parameters. The values of all but nine model parameters listed above were extracted174

from existing literature, see description in appendix sect. 1 and table of parameter values in table 1. The175

remaining nine parameters, which were either not precisely known or strongly dependent on our experimental176

protocol, were fitted from the experimental data through a Maximum-Likelihood inference procedure for each177

selection variant (A), (B) or (C); the inference procedure is described in Methods and in appendix sect. 4.178

These fitted parameters describe: the initial distribution of affinities (µnaive, σnaive), the Ag-binding selection179

threshold (εAg, not included in variant (C)), the Ag-comsumption rate per B-cell (k−B), the permissiveness180

characterizing parameters (a, b, not included in variant (B)), the contribution g of MC to Ab-SC population181

(for the 1- and 4-day protocols in our experiments), and the conversion factor α between vaccine Ag dosage182

D in units of mass and dimensionless injected concentration C inj: D = α C inj (we express α as a mass, which183

makes concentrations dimensionless).184
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Values of model parameters

symbol value meaning source

Tturn 12 h duration of an evolution turn [33]

TGC 6 d time for GC formation after injection [13, 59, 60]

Nmax 2500 GC max population size [16, 10]

Ni 2500 initial GC population size [16, 10]

Nfound 100 number of GC founder clones [10, 15]

pdiff 10% probability of differentiation [33, 61, 62]

τdiff 11 d switch time in MC/PC differentiation [54]

∆τdiff 2 d switching timescale in MC/PC differentiation [54]

pmut 14% prob. of mutation per division [33, 63, 64]

ps, pl, paa 50%, 30%, 20% probability of a mutation to be

silent/lethal/affinity-affecting

[43, 33, 32]

Kaa(∆ε) cf.appendix eq. (19) distribution of affinity-affecting mutations [44]

k+ 0.98 d−1 Ag release rate [65]

k−∅ 1.22× 10−2 d−1 Ag decay rate [66]

a 0.12 baseline selection success probability max-likelihood fit

b 0.66 baseline selection failure probability max-likelihood fit

µnaive -14.60 mean binding energy of seeder clones gener-

ated by naive precursors

max-likelihood fit

σnaive 1.66 standard deviation of the seeder clones bind-

ing energy distribution

max-likelihood fit

k−B 2.07× 10−5 d−1 Ag consumption rate per B-cell max-likelihood fit

α 2.3× 10−2 µg concentration to dosage conversion factor max-likelihood fit

grecall 0.56 MC fraction in Ab-SC population for measure-

ment 1 day after boost

max-likelihood fit

gimm 0 MC fraction in Ab-SC population for measure-

ment 4 days after second injection

max-likelihood fit

εAg -13.59 threshold Ag binding energy (A) max-likelihood fit

Table 1: List of parameters in the model and of their values. Binding energies are expressed in units of kBT ,

and times in days (d) or hours (h). The last nine parameters were inferred within selection variant (C),

except εAg, whose reported value refers to variant (A), which includes Ag-binding selection.

2.2 Phenomenology of the stochastic affinity maturation model185

Schematic evolution of the affinity distribution in the course of maturation186

In fig. 2 B, C and D we report the result of two stochastic simulations of our model on a protocol consisting of187

a single Ag injection. The simulations differ by the administered Ag dosages D = 1 (blue) or 10 (orange) µg.188

The founder clones population is the same in the two simulations in order to eliminate differences coming from189

variations in the affinities of the initial population. For both concentrations, the main phases in the evolution190

of the GC can be summarized as follows. After injection and before the start of the GC reaction at day 6191
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the amount of available Ag increases due to gradual release from the adjuvant matrix, while consumption192

exponentially increases. At the beginning of the simulation (day 6) the GC is at maximum capacity and the193

driving contribution to Ag depletion is consumption by B-cells, which occurs at a rate k−BNmax (fig. 2C). This194

consumption continues until Ag concentration reaches a critical value, at which selection pressure becomes195

strong enough to reduce the population size (despite the duplication step) and eventually drives GCs to196

extinction (fig. 2C).197

Maturation induces progressive loss of clonality198

We investigated how the changes in affinity reflect changes in the clonal population in the GC. Recent199

experiments [10, 67, 40] have shown that maturation is accompanied by various degrees of homogenizing200

selection, that is, a reduction of clonality, leading in some cases to strong clonal dominance. We assess the201

impact of homogenizing selection in our model by keeping trace of the offspring of each founder clone in202

the stochastic evolution of a single GC for a 4 weeks time-span. The evolution of clonality is reported for203

two representative simulations in fig. 3 A,B. The plot report the cumulative composition of the population204

as a function of time; the offspring of each founder clone is represented by a different color, associated to205

the binding energy of the founder clone, see color scale on the right. In the simulation reported in fig. 3A206

a single clonal family ensued from a high-affinity clone progressively expands, and constitutes around 70207

% of the total GC population at 4 weeks. In the simulation reported in fig. 3B, no clone dominates the208

population, and the GC maintains its polyclonality throughout maturation, with many good affinity clones209

sharing substantial fractions of the GC.210

To quantify the evolution of homogenization over time we estimated the fraction of the population constituted211

by the most expanded clone at each given time, where 100% would correspond to the GC being completely212

populated by the offspring of a single founder clone. In fig. 3C we plot the distribution of this most-expanded-213

clone fraction 1000 stochastic simulations at four different time-points (1,2,3,4 weeks after injection). All214

GCs in our simulations are highly polyclonal at the beginning, with each clone constituting 1% of the initial215

population. As time goes on, however, more and more GCs feature a dominant clone, sometimes with a very216

high population fraction. The median of the frequency distribution at week 4 is around 30%, meaning that in217

half of the simulated GCs a single clonal family makes up for more than 30% of the total B-cell population.218

Finally, in fig. 3 D we plot, for each simulation, the final (week 4) fraction of the population corresponding219

to the most-abundant clonal family against its initial binding energy. As expected homogenization correlates220

with the presence of a high-affinity founder precursor.221

Efficacy of affinity maturation varies non monotonically with Ag dosage222

Inspection of eqs. (1) and (2) shows that the role of Ag concentration in our model is to shift the selection223

thresholds by logC. This shift has two different consequences. First, its affects the speed of affinity matura-224

tion, that is, the decrease in the population average binding energy per round of evolution. The histograms in225

fig. 2B (area reflects the size of the population) and the curve for the average binding energy of the population226

in fig. 2C show that smaller Ag dosages correspond to faster affinity maturation. Secondly, strong or weak227

selection resulting from, respectively, small or large concentrations also affects the changes over time in the228

size of the B-cell population, which in turns impacts the Ag-consumption rates and, therefore, the lifetime of229

the GC. This can be again visualized by comparing population evolutions on the histograms of fig. 2B and230
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on the curve of the population size in fig. 2C.231

These two competing effects concur to shape the final MCs and PCs binding energy distribution (fig. 2D).232

Protection against future pathogen encounters will be granted by these cells, and as such their affinity233

distribution can be used as an indicator to estimate the success and quality of the immunization procedure.234

Because of the double role that Ag concentration plays in controlling the maturation rate and the duration235

of the GC reaction, in our model the optimal average binding energy of the MC and PC population is achieved236

at intermediate Ag dosages. Intuitively, this can be explained by observing that, while small Ag dosages237

cause faster affinity gains, they also result in fast population decrease and short maturation. Therefore in238

this scenario only a few high-affinity cells will be produced. Conversely, if the dosage is too high then a lot239

of mediocre or intermediate affinity clones will accumulate, and the high-affinity clones obtained at the end240

of the evolution process will be in minority. Only intermediate dosages realize a good combination of good241

maturation speed and population survival. In order to better understand this phenomenon we can introduce242

a deterministic version of the model, which is both able to reproduce the average of stochastic simulations243

and is also amenable to detailed mathematical analysis.244

2.3 Resolution of the model offers insight on effect of Ag dosage245

Deterministic evolution reproduces stochastic simulations246

In order to gain insight on the non-monotonic effects of concentration onto affinity maturation we introduce247

a deterministic version of the model, which formally becomes exact in the limit of very large sizes N . In248

practice, when the size of the population is big enough, the distribution of binding energies can be considered249

as continuous. The evolution of this continuous distribution ρ(ε, t) over time (number of rounds) t becomes250

deterministic (Methods); in other words, the stochastic nature of the underlying process disappears in this251

limit. This introduces a twofold advantage. Firstly, studying deterministic rather than stochastic evolution is252

a significant simplification, which allows mathematical analysis, see section 2.3. Secondly, numerically evalu-253

ating the average outcome of an immunization scheme is computationally much cheaper if done through the254

deterministic model rather than by averaging many stochastic simulations. This is of paramount importance255

when using our stochastic fitting procedure, which requires simulating the system for many different values256

of the parameters.257

As a first check we compare the predictions of the deterministic solution of the model with the corre-258

sponding averages for the stochastic simulations to verify that they are in good agreement. For example in259

fig. app-2 A to D we show the size of the GC B-cell population, and the average binding energies for the260

GC B-cell, MC and PC populations, averaged over 1000 simulations, which are in very good agreement with261

their theoretical counterparts. Notice that the model looses accuracy when the population size is too small262

(cf.accuracy of predictions for GC B-cells average binding energies in fig. app-2C), as expected. However263

these finite-size effects are generally irrelevant, since low-population size states contribute only marginally to264

the final MCs/PCs distributions we are interested in (cf.accuracy of predictions for MCs and PCs average265

binding energies in fig. app-2B and D). The deterministic theory is therefore able to accurately predict the266

full Ab-SC distributions (see fig. app-7, blue distributions correspond to the deterministic solution, and green267

histograms to the average distribution over 1000 stochastic simulations).268
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Theoretical analysis at fixed concentration269

We can gain deep insight on the role of Ag concentration in regulating maturation by studying the theoretical270

solution of the model in the special case of constant Ag concentration C. To be able to observe asymptotic271

population expansion, we momentarily relax the maximum population size constraint, and set Nmax = ∞.272

Furthermore, for variants (A) and (B), we consider that the cells in the population have high enough affinity273

to successfully overcome the first selection step, i.e. ε � εAg; this assumption is not necessary for variant274

(C), which does not include Ag-binding selection. The effects of these simplifications will be discussed below.275

In fig. 4A we report the evolution of the distribution of binding energies with constant Ag concentration276

C = 30 (top right). Notice that the distribution is not normalized to one, but to the number of cells in the277

population. Color encodes time from the beginning of the GC evolution. We observe that, as the number t278

of evolution rounds increases, the size of the population increases exponentially with a growth rate φ (top279

left) and the average binding energy shifts linearly, with a speed u (bottom left). The distribution of binding280

energies therefore evolves as a travelling wave of profile ρ∗, with exponentially increasing size:281

ρ(ε, t) ' exp{φ t} × ρ∗(ε− u t) . (3)

This behavior can be mathematically established, and the growth rate φ and maturation speed u computed282

by solving an appropriate eigenvalue equation. To do so, we introduce the evolution operator E that describes283

how the distribution of binding energies evolves after each round of maturation. Briefly speaking, E(ε, ε′) is284

the average number of B-cells with energy ε produced, through the duplication, selection and mutation steps285

by an ancestor cell of energy ε′ (Methods); it depends on the Ag concentration C through the selection step,286

see eq. (2). The travelling wave behavior for the distribution of binding energies expressed in eq. (3) implies287

that288

eφ ρ∗(ε) =

∫
dε′ E(ε+ u, ε′) ρ∗(ε′) . (4)

This eigenvalue equation can be solved to determine the growth rate φ, the wave (maturation) speed u, and289

the wave profile ρ∗ as functions of the concentration C. More details on eigenvalue equation eq. (4) and on290

how it can be numerically solved can be found in Methods 4.4 and appendix sect. 3.291

Results are shown in fig. 4 B. Two special values of the concentration are C∗, the concentration at which292

the growth rate φ vanishes, and C∗∗, the concentration at which the maturation speed u vanishes. Distinct293

regimes of maturation are found, depending on the dosage C:294

• At low Ag concentration C < C∗, both φ and u are negative: the strong selection pressure produces295

high affinity clones and maturation is fast, but the number of cells decreases exponentially, leading to296

a quick extinction of the population.297

• At high concentration C > C∗∗, the selection pressure is too weak to compensate the deleterious drift298

due to mutations, and binding energies increase on average at each round (u > 0). The growth rate φ299

is positive, hence an exponentially increasing number of poor-quality B-cells are produced.300

• In the intermediate range of concentration, C∗ < C < C∗∗, we have both population expansion (positive301

growth rate φ) and affinity maturation (negative maturation speed u). The most efficient maturations302

are obtained for values of C slightly exceeding C∗, as u is very close to 0 for values of C tending to C∗∗303

(fig. 4B).304
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The above analysis provides a detailed picture of the effect of Ag concentration on population growth and305

maturation, even when realistic constraints are reintroduced. First, if we forbid the population to expand306

indefinitely and enforce the maximum carrying capacity (Nmax) again, the value of u(C) is not modified,307

since this constraint has no effect on affinity. It also does not influences the regime C < C∗ in which the308

population contracts (φ(C) < 0). However it prevents the population from expanding, thus setting effectively309

the maximum asymptotic growth rate to φ(C) = 0 if C ≥ C∗. Second, if we reintroduce Ag-binding selection310

we observe no difference in asymptotic behavior when the population is maturating (C < C∗∗ and u < 0).311

However for high concentration C > C∗∗ a positive asymptotic velocity is not possible, since in this case312

the distribution will eventually reach the threshold Ag-binding energy and this selection will prevent further313

affinity decrease. This limits the maximum asymptotic velocity to 0 and maximum growth rate to φ(C∗∗).314

Finally, when the Ag concentration is not kept constant but varies during immunization through consumption315

and decay (fig. 2A), the maturation behaviors observed during GC evolution (fig. 2B and C) can be understood316

depending on whether the value C of the concentration crosses the boundaries C∗∗ or C∗ over time.317

2.4 Model distributions of affinities match experimental measurements in im-318

munized mice319

Probing immunization outcome through single-cell affinity measurements320

We compare our model predictions for the effects of Ag dosage and release schedule to experimental data321

from mice immunization against Tetanus Toxoid (TT) (Material and Methods). These data consist of single-322

cell affinity measurements performed on IgG Secreting Cells (IgG-SCs) extracted from mice spleen following323

immunization. In practice we immunize mice according to different immunization schemes, described below.324

Following immunization cells from the spleen are harvested, purified and the affinity of single IgG-SCs is325

measured according to the protocol developed in [39]. By pooling all the measurements from mice immunized326

according to the same scheme we are able to obtain a full affinity distribution, such as the ones reported in327

fig. 5 (orange histograms, for each histogram the number of mice and pooled measurements is indicated).328

Measurements are limited by experimental sensitivity. In particular, only affinities above the minimum affinity329

limit of Kd = 500 nM, i.e. energies below εmax = −23.03 are measurable. In addition, our measurement330

technique cannot resolve affinities higher than Kd = 0.1 nM. The range of energies accessible to measurements331

is represented with the gray shaded area in the histograms of fig. 5.332

These distributions give us an affinity snapshot of the Ab-producing cell population; they contain much more333

information than average quantities, such as the average serum affinity. Our approach allows to probe both334

tails of the affinity spectrum, and to fully test the effectiveness of the immunization procedure.335

In our experiments we test three different immunization protocols, schematized in fig. 5 (top row). Scheme336

1 consists of two injections of a dose D of Ag, separated by a 4 weeks interval. Cells are harvested 4 days337

after the second injections. In the first injection the Ag is mixed with Complete Freund’s Adjuvant (CFA),338

whilst in the second Incomplete Freund’s Adjuvant (IFA) is used. In this protocol we tested 5 different Ag339

dosages: D = 0.01, 0.1, 0.5, 1 and 10 µg TT. Only 4 of them are reported in fig. 5 but the rest can be found340

in fig. app-7. Scheme 2 (see fig. 5 middle column) is identical to scheme 1 up to the second injection. At341

this point, after an additional 4 weeks delay, a boost injection of 1 µg pure TT is administered and cells are342

harvested one day later. Tested dosages are D = 0, 0.01, 0.1, 0.5, 1, 3 and 10 µg TT. Finally scheme 3 (see343

fig. 5 right column) is the same as scheme 2 with a differences. Instead of varying the injected Ag dosage,344
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which is kept constant at D = 10 µg TT, in this scheme the time delay between the first two injections ∆T345

is varied. We test four different values for this delay: ∆T = 1, 2, 4 and 8 weeks.These protocols have also346

been used in [38], and thanks to the multiple injections they allow us to study the effect of memory recall in347

subsequent immunizations.348

Inference of model parameters and match with full experimental affinity distributions349

We now use the full variety of the data (distributions of affinities obtained with different immunization pro-350

tocols) to compute and maximize the likelihood of the model as a function of the parameter values. Our351

objective is two-fold. First, we expect the inferred parameters to provide insights on hardly-measurable fea-352

tures of AM, in particular, on the complex steps of selection in our model. Secondly, we show that a single set353

of parameters is able to accurately reproduce all the experimental measurements corresponding to different354

situations.355

We have implemented a version of the Parallel Tempering algorithm [68, 69] to perform a stochastic search356

in parameter space and progressively maximize the likelihood L for the selection variant (A), (B), and (C).357

For each point in the parameter space the deterministic model is simulated according to the immunization358

scheme considered, see fig. 5. In particular, for scheme 1 the prediction consists in the simulation of a single359

GC with variable injected dosage D lasting at most for 4 weeks. Since cells are harvested 4 days after the360

second injection we consider the Ab-SCs population to be comprised of a mixture of MC and PC according361

to the MC fraction gimm, whose value is inferred to be zero (i.e. in this case the Ab-SC population comprises362

only PCs). For scheme 2 and 3 instead we consider two GC simulations, one per injection. We vary either363

the injected dosage D or the time between the two injections ∆T according to the protocol in exam. The364

second GC simulation, initiated 6 days after the second injection, can be seeded by MCs collected during the365

first GC evolution up to the injection time. Moreover, since cells are harvested 1 day after boost we consider366

the MC fraction in the Ab-SC population to be grecall. The affinity distribution of Ab-SCs obtained with the367

deterministic model is then used to compute the likelihood of the experimentally measured affinities of the368

IgG-SCs, under all tested immunization schemes. Cells sampled from the spleen can originate from different369

GCs, but, as long as these GCs have equal defining parameters, their average evolution is the same, and their370

multiplicity does not affect the inference procedure. See Methods and appendix sect. 4 for a more detailed371

description of the procedure. Notice that the inference of many parameters is made possible by the richness372

of information contained in the experimental affinity distributions.373

As an outcome, we obtain the log-likelihoods of the three variants listed above: lnL(A) = −7400.37 for full374

two-step selection, lnL(B) = −7459.39 for non-permissive two-step selection, and lnL(C) = −7400.67 for T-375

cell-based selection (see appendix fig. app-9 for the inferred parameters value in all cases). A fair comparison376

between these three hypothesis must however acknowledge that (B) and (C) have, respectively, 2 and 1 less377

parameter to fit the data than (A). We therefore resort to the so-called Bayesian Information Criterion (BIC),378

which takes into account the number of parameters by estimating the volume in the parameter space around379

the peak in likelihood. BIC is defined as k lnn−2 lnL, where k is the number of parameters in the model and380

n is the number of data points available for the inference. We obtain BIC(A) = 14877.3, BIC(B) = 14978.3,381

BIC(C) = 14869.4. We conclude that the model to be chosen (with lowest BIC) is (C)3. Including Ag-binding382

selection improves slightly the likelihood, but less than expected from the introduction of an extra parameter383

3Notice that variant (C) is also preferred based on an alternative to BIC, the Akaike Information Criterion, defined through

AIC= 2k − 2 lnL (AIC(A) = 14818.7, AIC(B) = 14932.8, AIC(C) = 14817.3).
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(εAg). On the contrary, the large increase in BIC when forbiding permissiveness shows that non-zero values384

for a, b are definitely needed to fit the data.385

Within variant (C) the values of the 8 model parameters that maximize the likelihood are (see Table 1):386

k−B = 2.07× 10−5 d−1, µnaive = −14.59, σnaive = 1.66, a = .12, b = .66, as well as grecall = 56%, gimm = 0%387

for the values of g corresponding to the measurements of affinities, respectively, 1 day after boost injection (im-388

munization scheme 2 and 3) or 4 days after the second injection (scheme 1), and the dosage-to-concentration389

conversion factor α = 23 ng which allows us to convert Ag dosages in units of mass into dimensionless concen-390

trations. In fig. 5 we report for every experimentally measured affinity distribution (orange histograms) the391

maximum-likelihood corresponding prediction according to the deterministic model evolution (blue curves;392

for good comparison normalization considers only the area of the curve below the experimental sensitivity393

threshold). Under all tested immunization schemes we observe a very good agreement between theory and394

experiments. See fig. app-7 for the full plot including all experimental conditions.395

Effect of varying Ag dosage and time between injections396

In fig. 6 we report average measures performed on the affinity distributions for the three different schemes397

(scheme 1 to 3, left to right) considered. The measurements are the average binding affinity (top) and398

the high energy fraction (bottom). The latter is defined as the fraction of cells in the population having399

binding affinity higher than Kh-aff
d = 50 nM, or equivalently ε < εh-aff = −16.8. In the figure we compare400

experimental values (orange) with the theoretical prediction of the deterministic model (blue line) and the401

stochastic simulations (light green shaded area corresponds to the standard deviation over 1000 stochastic402

simulations). To convey a measure of experimental individual variability, for each immunization scheme we403

report single-mouse measurements as orange crosses, connected by vertical lines; Orange empty dots represent404

instead averages over the pooled data. As cells measured from a mouse spleen can originate from different405

GCs, e.g. 20 to 50 GCs per spleen section were reported in [70], we also display in a darker shade of green406

the standard deviation of the mean of 20 simulations of the stochastic model. This allows us to estimate the407

expected variations of the binding energy or other quantities due to the existence of multiple GCs.408

For all the schemes considered, we observe a very good agreement between the stochastic model and theoretical409

predictions, showing that the infinite size limit is a good approximation to the average stochastic evolution.410

This agreement also extends to full distributions (compare green histograms and blue curves in fig. app-7).411

Most importantly, for all schemes, model and data are in very good agreement. In scheme 1 and 2 in412

particular both show the existence of an optimal intermediate dosage corresponding to maximal affinity of413

the Ab-secreting cells recalled population. This experimental observation can now be interpreted with the414

theoretical analysis introduced in section 2.3.415

In scheme 3 we observe that experimental data show a slight increase in affinity for longer injection delays,416

and so does our model. This is presumably due to a combination of two effects. Firstly the fact that higher417

affinity cells are produced late in the response, and waiting more before harvesting cells allows for higher418

affinity cells to be created. Secondly, giving the first GC time to produce high-affinity MCs is beneficial since419

then these cells can then colonize the second GC and continue their maturation even further there.420
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3 Discussion421

Summary and significance422

In this paper we have investigated the relationship between Ag dosage and quality of immunization outcome.423

Several studies [12, 24, 27, 28, 29] report the fact that better affinity maturation is not always favored by424

higher doses of Ag, but can instead be enhanced by lower doses. Similarly, the strength of a response to a425

vaccine, usually measured through the count of responding cells, may show a bell-like curve at intermediate426

dosages, and understanding the mechanisms underlying this behavior and locating the optimal Ag dose427

are of crucial importance [30]. Our works provide quantitative theoretical and experimental support to428

these findings. In particular, the stochastic model for Affinity Maturation we consider here is capable of429

explaining and accounting for the existence of an intermediate optimal Ag dosage, that results in the highest430

average affinity of the recalled population. While our model is inspired by previous studies of the evolution431

of a population of B-cells in a Germinal Center during Affinity Maturation, such as [33], it differs in two432

substantial ways.433

First, our model is amenable to detailed mathematical analysis. We show that the stochastic evolution434

of the distribution of binding energies can be accurately approximated by a deterministic dynamics (see fig.435

6), which we resolve exactly. Under constant Ag concentration, the distribution of binding energies behaves436

as a traveling wave, whose speed and growth rate can be recovered by solving an appropriate eigenvalue437

equation (4). The dependence of these two quantities on Ag concentration reveals the role Ag availability438

plays in controlling the strength of selection, both in the generated data and models. In particular, high439

Ag dosage results in low selection pressure and no maturation, and conversely too low Ag dosage in high440

selection pressure and population extinction. Only intermediate Ag concentration and intermediate selection441

pressure ensures both population survival and successful AM.442

Secondly, we show that a single set of parameters of our model is able to reproduce quantitatively the many443

distributions of single-cell affinities measured on IgG-SC extracted from mice immunized against Tetanus444

Toxoid corresponding to multiple protocols largely varying in Ag dosages and delays between injections. To445

determine the best parameters, we introduce a maximum-likelihood-based inference method. Our inference446

method fully exploits the results of the experimental technique, developed in [39], giving access not to the447

average affinity, as titer measurement would, but to the complete affinity distribution of the recalled Ab-SC448

population. This population information is crucial for accurate inference of the model parameters and for449

a meaningful validation of the model. Furthermore the inferred parameters provide insights on the internal450

processes of affinity maturation, such as on the role of permissiveness, as discussed later. Inference techniques451

are powerful instruments in this respect, since they help us investigate experimentally unaccessible features452

of the system through their indirect but measurable effects. Our inference procedure is very flexible and can453

readily be applied to new datasets, providing ad-hoc estimates of parameters for different antigens or even454

different organisms.455

Maturation as combination of beneficial mutations and selection of high-affinity precursors456

Our stochastic model for affinity maturation is subject to homogenizing selection (cf.fig. 3), to degrees457

depending on the presence of a high-affinity precursor (fig. 3D), in agreement with experimental evidence458

[10, 67]. In addition, the initial choice of founder clones accounts for a large part of the stochasticity459
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in the maturation outcome (fig. app-3 E to H), Hence, in our model, selective expansion of high-affinity460

precursors plays an important role in affinity enhancement. Affinity enhancement is also obtained through461

the accumulation of beneficial mutations. When observing the distribution of beneficial and deleterious462

mutations in the MC and PC populations (cf.fig. app-10), one finds that, even though on average cells463

accumulate very few mutations during the AM process, selection tends to favor the fixation of beneficial464

mutations and the disappearance of deleterious ones.465

Stochastic effects in fitness waves466

Both the mathematical analysis and the inference procedure are made possible by the fact that our stochastic467

maturation model is well-approximated by its deterministic counterpart. This is usually not the case when468

describing the evolution of fitness waves [71]. In many systems, stochastic fluctuations may play a major469

role, e.g. when the evolving population passes through a bottleneck, and transiently has very low size, before470

increasing again. Fluctuations may also be acquire crucial importance when the evolution lasts so long that471

the leading edge of the fitness wave has time to exponentially amplify and govern the bulk of the population.472

Here, experimentally measured quantities, such as the distribution of affinities, are the outcome of an av-473

erage over multiple GC reactions in the spleen. While single simulated GCs show signs of individuality,474

see homogenizing selection and the evolution of clonality in fig. 3, the average product of multiple GCs is475

well-approximated by our deterministic theory. Moreover, stochastic effects are also partially mitigated by476

the fact that we consider quantities related to the integral over time of the fitness wave evolution, namely,477

the MC and PC distributions. Hence temporal fluctuations are smoothed out. Another factor contributing478

to this mitigation is the limited selection we infer. The permissiveness of selection results in a less drastic479

decrease of the population size, and a reduced sensitivity to fluctuations from the leading edge of the fitness480

wave.481

Permissiveness in GC selection482

The role of permissiveness in germinal center selection is still an open question [14, 15, 35]. Through phenom-483

ena such as bystander activation [51] and stochastic noise GC selection may also allow intermediate and low484

affinity clones to survive, rather than maturing exclusively via selection of the few best clones [53, 10]. These485

phenomena generate a wider diversity than previously appreciated, especially when considering complex Ags486

displaying different epitopes [40]. In [41] for example the authors try to characterize the GC response to487

complex Ags such as influenza vaccine, as opposed to simple ones such as haptens. While in the latter case488

a strong homogenizing selection and affinity maturation is observed, for complex Ags response is more poly-489

clonal and a consistent part of the GC population (20-30%) is composed of low-affinity clones. This suggests490

a more permissive nature of the GC selection, in which even low-affinity clones have a non-zero probability491

of receiving T-cell help.492

To model these effects we have introduced two parameters, a and b, in the competitive selection process493

involving survival signals from T -helper cells, see eq. 2 and fig. app-1D. a corresponds to the baseline proba-494

bility for cells to survive a selection step, while b is equal to the probability for cells to fail selection even if495

they have high affinity; this could be due for example to the limited availability of T-cell help, which could496

increase the stochasticity of the selection process [72]. The role of the parameters a and b in controlling the497

population evolution is studied in appendix sect. 5. Our maximum likelihood fit of the data yields a = 0.12498
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and b = 0.66. These values imply that the probability that a high-affinity cell to survive the second step of499

selection is 1− b = 34%, about two and a half times the probability for a low-affinity cell, given by a = 12%.500

This observation is in support for the permissive and stochastic nature of selection, at least in our experimen-501

tal conditions. The non-permissive variant of our model with base-line levels a = b = 0 in eq. (2), referred502

to as variant (B), offers a much worse fit of the data, even when taking into account the smaller number of503

parameters of this variant (appendix sect. 6).504

GCs entry selection does not seem to be restrictive505

Our inference procedure supports the statistical prevalence of variant (C), with T-cell-based selection only,506

with respect to (A), which included Ag-binding selection. The fact that Ag-binding selection does not seem507

to be a limiting step for GC colonization, at least in the range of our experimentally measurable affinities,508

is compatible with experiments performed in [73], in which it is shown that in absence of high affinity509

competitors even clones with low affinity (as low as Kd ∼ 8 µM or equivalently ε ∼ −11.7) can colonize GCs.510

This is also in accordance with the fact that selection in GCs should be relatively permissive [14, 12] in order511

not to limit the diversity of the repertoire. Let us emphasize, however, that the difference in the BIC of512

the two selection models is rather weak and that our conclusion is contingent on the data set collected and513

analyzed here.514

Fractions of PCs and MCs amongst Ab-SCs515

Our experimental setup does not allow us to identify whether the IgG-SCs we observe originate from reac-516

tivated MCs or residual PCs generated during previous immunizations. We therefore compared the experi-517

mental measurements with a weighted mixture of the MC and PC populations predicted by our model. This518

mixture, which we call the Ab-SC population, represents the population of cells that respond to antigenic519

challenge under particular conditions. We introduced the parameters grecall and gimm, corresponding to the520

fraction of reactivated MCs in the Ab-SC populations when measurement is performed one day after boost521

or four days after the second injection, and fit their value on the experimental measurements. The result522

of our inference procedure indicates that, when the system is probed 1 day after pure TT boost, most of523

the response consists in reactivated memory cells (grecall = 56%). This is in agreement with experimental524

observations performed in [38], in which the frequency of IgG-SCs increased from 0.6 ± 0.1% to 1.6 ± 0.2%525

one day after the boost, indicating that around 64% of IgG-SCs were not present before the boost. When526

the measurement is performed 4 days after the second injection then we predict that the vast majority of527

responders consist of residual PCs (gimm = 0%, with a confidence interval extending to 6%, cfr fig. app-6).528

This is consistent with experimental data (unpublished), which indicate that the majority of IgG-SCs are529

still active 28 days after CFA immunization, and will be secreting at +4 days.530

Concerning the biological difference between the MC and PC populations, it has been observed that MCs531

show on average less maturation than PCs [36, 74, 75], a feature that is reproduced in our model (Fig. 2D)532

as a consequence of the temporal switch we introduced (fig. app-1B) and might be important in maintaining533

diversity in the response, especially against highly mutable pathogens, and mitigating original antigenic sin534

[76, 77]. The results of our inference are in agreement with the fact that experimentally we observe a higher535

affinity of the responders if measurement is performed 4 days after the last injection (scheme 1) rather than536

1 day after boost (scheme 2,3). This difference in affinity could also originate from some form of selection537
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acting on the responder population during the first days of the response, which could selectively expand538

high-affinity clones in the time between Ag challenge and measurement. Including this selection in the model539

would result in a different estimate of the fractions grecall and gimm. However, for simplicity and lack of540

explicit experimental evidence we did not include this selection in the model.541

Model limitations and discussion542

In building the model, we chose to only keep the minimal features that could allow us to understand the543

existence of an optimal dosage and be able to reproduce experimental observations, while still being mathe-544

matically tractable. Among the simplifications, the number of duplications per cell is considered independent545

of the cell affinity. It has been however shown that an affinity correlates with GC dark zone dwelling time546

and number of divisions [78]. This phenomenon introduces an effective fitness difference, which is in practice547

qualitatively accounted for by the selection terms in our model. Moreover we consider the distribution of548

affinity-affecting mutations Kaa(∆ε) to be independent of the clone’s affinity, similarly to [33, 32, 43]. In549

reality, independence holds only away from affinity peaks in the Ab sequence space; close to these peaks,550

affinity-increasing mutations become rare, and it is expected that Ag affinity of clones eventually saturate,551

while the binding energy can take arbitrarily low values in our model. However, in the regime defined by the552

values of the parameters inferred on our experimental data, MCs and PCs generated by our stochastic model553

accumulate on average very few mutations in the course of evolution (cf.appendix sect. 7 and fig. app-10),554

with the maximum number of beneficial mutations accumulated being compatible with experimental evidence555

[79] (cf.appendix sect. 7). In this regime mutations account for only a part of the maturation, the rest being556

achieved through selection of high-affinity founder clones (cf.appendix sect. 7). This is in line with the limited557

maturation observed in our experiments. In cases where the saturation effect may become relevant, other558

approaches to model the effect of affinity-affecting mutations might be more appropriate, for example the559

introduction of a “shape space” representation [31, 80]. The model and results reported here do not include560

Ab-feedback [33], the phenomenon by which GC B-cells not only have to compete amongst themselves for561

Ag acquisition but also with Abs produced earlier in maturation [14, 15, 81], which could prevent B-cells562

from internalizing Ag by binding to it. We did not include Ab-feedback in our model, however preliminary563

investigations (not shown) suggest that it would not affect the existence of an optimal dosage range. GC life-564

times reported in literature vary considerably, from 1-2 weeks for soluble protein boosting to several months565

or longer for certain infections [35, 15]. In alum immunizations GC lifetimes of 3-4 weeks have been observed566

[82]. In our simulations a long lifetime for GCs is observed and for a high dose of Ag they can have an567

effective lifetime lasting up to 3 months (cf.fig. app-2E). The concentration of Ag is crucial in determining568

the strength of selection and the lifetime of the GC in our model. In reality, Ag dosage value also controls the569

initiation of the GC and AM. In particular one could expect that for very low dosages the GC reaction would570

not be initiated at all. For simplicity we avoid including this phenomenon in our model, and GC reaction571

takes place in our simulations even at very low Ag dosages, with the result that very few, highly affine MC572

are produced in this regime. To avoid a discontinuity with respect to the case of null Ag dosage, D = 0,573

in which we expect the measured B-cell population to originate directly from naive precursors, we perform574

differentiation at the beginning of the simulation round, before mutations and selection (cf.appendix sect. 1).575

This generates a core of low-affinity MCs keeping the average affinity of the population close to µnaive, even576

when few additional high-affinity MCs are added. However, this might be an unnecessary caution, since577
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when looking at the data we observe that even the lowest tested dosage (D = 0.01 µg TT, fig. 5) shows the578

hallmark of maturation when compared to the the case of zero dosage (D = 0 µg TT, fig. 5). This signals579

that in the dosage range considered in our experiments we expect maturation to occur. Furthermore, in our580

model Ag inputs, e.g. resulting from a new injection, cannot enter a GC while the maturation process is581

ongoing. Our choice is partly justified by the observation that injecting an Ag bolus when a GC maturation582

process is in place mostly results in disruption of the ongoing GC reaction [12, 83, 84, 85, 86]. We only model583

a single “average” GC, whose output is assumed to be representative of the outcome of AM. In reality, MC584

and PC populations are generated by many parallel GC reactions, which could in principle weakly interact585

via invasion of clones from one GC to another [15, 35]. Last of all, to test the robustness of some of our hy-586

pothesis we performed the inference procedure under slightly different conditions. In particuar we considered587

the effect of increasing the Ag decay rate, of setting pmem to be a constant and not depend on the number588

of MCs accumulated during evolution, and also of considering the MC/PC time-switch to be only partial,589

with a residual production of MCs all along the evolution. We verified that even in these case the model is590

in good agreement with the data. The results are reported in appendix sect. 6.591

Outlooks592

As shown above our model for AM is simple enough to be amenable to detailed mathematical analysis and, yet,593

is able to accurately reproduce the full affinity distributions of Ab-SCs generated during the immunization594

process. This finding suggests several extensions to the current work. First our model could be used to595

predict the outcome of more complex immunization protocols than the ones investigated experimentally in596

this work. In particular, it would be interesting to consider the case of continuous delivery methods (osmotic597

pumps, repeated injections...) [26, 87], through which the Ag concentration can be precisely controlled over598

time, and make predictions for the optimal delivery process. Secondly, the quantitative fit of the model599

parameters was made here possible thanks to the maximum-likelihood algorithm we have introduced, which600

is flexible and robust. Our inference procedure, whose code is made available with the publication (see601

Methods 4.6), could be readily applied to to different measurements, as well as to variants of the present602

models, with extra parameters corresponding to features of the affinity maturation process that are hardly603

experimentally accessible, such as selection permissiveness. The combination of quantitative modelling with604

inference appears as a promising tool to understand the mechanisms governing the immune response and to605

guide the development of strategies to control and direct it.606

4 Materials and Methods607

4.1 Experimental Procedure608

Observation chamber assembly609

For the 2D observation chamber, we used glass microscopy slides as top and bottom covers (76x26x1mm,610

Marienfeld). Two access holes of 1 mm diameter were generated in the top glass slide using laser ablation611

(C180II, Axys Laser). Afterwards, both slides were thoroughly cleaned using soap, water and ethanol, and612

the two glass slides were exposed to air plasma (60 W) for 10 minutes (Femto, Diener Electronics). After613

plasma treatment, double sided thermos-responsive tape (series 1375, Orafol), beforehand cut into shape614
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using a cutting plotter (CE-6000-40, Graphtec), was stuck onto the glass slides and the chamber sealed. The615

chamber was heated to 150◦ C and pressed with 7 bar for 5 min to reduce the height to enable a monolayer of616

droplets only. Next, two nanoports (N333-01, Idex) were glued to the access holes. Subsequently, the surface617

of the 2D chamber was treated using fluoro-silane (Aquapel, Aquapel) to render the surface hydrophobic.618

Lastly, the chamber was dried under nitrogen, and subsequently filled with fluorinated oil (Novec HFE7500,619

3M) and sealed until used. The chamber was re-used multiple times, and when properly stored, was used for620

up to 2 months. Cleaning was performed after each experiment by flushing fluorinated oil to remove droplets,621

and the chamber was stored filled with HFE7500 until the next use.622

Droplet generator623

Microfluidic PDMS chip for droplet generation were fabricated as previously described [39].624

Aqueous phase I625

Preparation of cells for droplet creation. For droplet generation, cellular suspensions were centrifuged (300g, 5626

min). and washed once in droplet media comprising RPMI w/o phenol red with supplemented 5% KnockOut627

Serum Replacement (both ThermoFisher), 0.5% recombinant human serum albumin (A9986, Sigma), 25 mM628

HEPES pH 7.4, 1% Pen/Strep and 0.1% Pluronic F-137 (all ThermoFisher). The cells were re-suspended in629

droplet media to achieve a λ (mean number of cells per droplet) of 0.2-0.4.630

Aqueous phase II631

Beads and reagents. Paramagnetic nanoparticles were prepared as described before [38]. Before use, the632

nanoparticles were re-suspended thoroughly.633

Data acquisition634

Droplets were generated as previously described [39], and the emulsion was directly injected into the 2D635

observation chamber. After chamber filling was complete, the chamber was gently closed and mounted636

onto an inverted fluorescence microscope (Ti Eclipse, Nikon). Two neodymium magnets (BZX082, K&J637

Magnetics) were placed on each side of the chamber during observation to hold the bead lines in place.638

Excitation light was provided by a LED source (SOLA light engine, Lumencor Inc.). Fluorescence for the639

specific channels were recorded using appropriate band pass filters (GFP and TRITC filter sets, Nikon, and640

Cy5 filter set, Semrock) and camera settings (Orca Flash 4, Hamamatsu) at room temperature (25◦ C) and641

ambient oxygen concentration. Images were acquired using a 10x objective (NA 0.45). An array of 10x10642

images were acquired for each experiment, every 7.5 min in all channels over 37.5 min (5 measurements total).643

Data analysis644

Data was analysed using a custom-made Matlab script (Mathworks). The resulting raw data were exported645

to Excel (Microsoft), and sorted for droplets that showed an increase in anti-IgG relocation over time above646

a threshold [39]. The selected droplets were controlled visually for the presence of a cell, and the absence of647

any fluorescent particles, relocation on cells (i.e. dead cells) or droplet movement. The so-selected droplets648

were analysed to calculate dissociation constants as described previously [39]. The limit of detection of649
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the instrument allows for the resolution of dissociation constants Kd ≤ 500 nM (see ref. [39]), therefore650

measurements with lower affinity were discarded. Moreover cells with very high affinity Kd < 0.1 nM could651

be observed, but their affinity could not be determined more precisely (see also ref. [39]) and was set to652

Kd = 0.1 nM.653

Immunization of mice654

The mice used herein were part of the study as published elsewhere [38]. In short, BALB-C mice were655

purchased from Janvier Labs (age 6-8 weeks at start, female) and housed in the animal facilities of Institute656

Pasteur during experimentation. All immunizations were made intraperitoneal. Each condition was replicated657

three times in the same cohort (n = 3, N = 1); except when explicitly stated otherwise. From each mouse,658

between 20’-100’000 cells were assayed in an experimental run.659

Extraction of IgG-SCs660

Spleens were harvested at the indicated time points of the immunization schedule. Spleen cell suspensions661

were recovered following disassociating using a 40 µm cell strainer. Cellular suspensions were pelleted at662

300g for 5 min, and red blood cell lysis was performed for 1 min using BD Pharm Lyse (BD). Cells were663

washed twice with MACS buffer and re-suspended in 3 ml of MACS buffer. These cells were further processed664

according to the manufacturer’s protocol using the Pan B Cell Isolation Kit II (Miltenyi) on a MultiMACS665

Cell24 Separator Plus (Miltenyi, program depletion). Purity of B-cell lineage was usually above 90% (data666

not shown).667

4.2 Antigen Dynamics668

Ag concentration dynamically changes in parallel with the evolution of the GC. Initially an amount Cinj of

Ag is administered through injection (fig. 2A). The value of Cinj determines the initial amount of Ag trapped

in the adjuvant matrix, setting the initial value of the Ag reservoir concentration (eq. (5), right). For the sake

of comparison with experiments Cinj is proportional to the injected Ag dosage D up to a conversion factor

α, Cinj = D/α, inferred through maximum likelihood fit of the data. The available (Cav, appearing in the

selection probabilities in eqs. (1) and (2)) and reservoir (Cres) concentrations then evolve as described in the

main text (fig. 2A) under the action of release, decay and consumption according to the following equations:

d

dt
Cres(t) = −k+Cres(t), Cres(t = 0) = Cinj (5)

d

dt
Cav(t) = k+Cres(t)− (k−∅ + k−BN

B
t ) Cav(t) (6)

During GC formation (t < TGC formation = 6 d) the number of B-cells, NB
t , appearing in the rate of Ag669

consumption increases exponentially up to the maximal size NB
i = 2, 500. More details on the concentration670

evolution can be found in appendix sect. 1.671

4.3 Deterministic evolution672

In the deterministic/infinite size approximation the stochastic processes that model one round of GC matu-673

ration can be written as operators acting on the distribution ρ of binding energies ε.674

19

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 25, 2020. ; https://doi.org/10.1101/2020.05.22.110585doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.22.110585


• Cell duplication is represented by the amplification operator, consisting in a simple multiplication:675

A [ρ](ε) = 2 ρ(ε) (7)

• Mutations are encoded by convolution of the distribution of energies with a mutation kernel Keff that676

includes the effect of silent, affinity affecting and lethal mutations (see eq. (27) and appendix sect. 3):677

M [ρ](ε) =

∫
d∆ε Keff(∆ε) ρ(ε−∆ε) (8)

• Selection for Ag binding (eq. (9)) and T-cell help (eq. (10)) are encoded simply by a product with the

respective probabilities (cf.eqs. (1) and (2)), where for the latter the probability depends on ε̄ which in

turns depends on the distribution of binding energies, making the operator not linear:

SAg [ρ](ε) = PAg(ε)× ρ(ε) (9)

ST [ρ](ε) = PT(ε, ε̄)× ρ(ε) , with e−ε̄ =

∫
dε ρ(ε) e−ε∫
dε ρ(ε)

. (10)

• Finally, the carrying capacity (eq. (11)) and the differentiation (eq. (12)) processes correspond to

multiplications:

N [ρ](ε) = min
{

1, NB
max/N

B
}
× ρ(ε) , with NB =

∫
dε ρ(ε) , (11)

D [ρ](ε) = (1− pdiff)× ρ(ε) (12)

(13)

The distribution of binding energies at round t then evolves through ρt+1 = E [ρt], where the complete678

operator is E = D N ST SAg R, we indicate with R = M A M A the operator encoding for two rounds679

of mutations and amplification. The evolution operator features, in order of application, two rounds of680

amplification and mutation, Ag-binding selection, T-cell help selection, carrying capacity and differentiation.681

Notice that for variant (C), there is no Ag-binding selection, and SAg is replaced with the identity operator.682

4.4 Eigenvalue equation and phase diagram683

The growth rate φ and the maturation velocity u shown in fig. 4 are characteristic of the travelling wave684

nature of the distribution of energies ρ at large ‘times’. When Ag-binding selection is irrelevant (as is the685

case at large times if u < 0) and the carrying capacity constraint is omitted, the evolution operator simplifies686

into687

E = D N ST SAg R→ D ST R (14)

In one round of maturation, we expect the travelling distribution ρ∗(ε) to be shifted by u along the energy688

axis, and to be multiplied by eφ. Without loss of generality, we may choose ρ∗ such that ε̄ = 0 ; any other689

choice would merely consists in a translation of ρ∗ along the energy axis. Hence, E is now a linear operator,690

and ρ∗ satisfies the eigenvalue equation (4). In other words, the operator Σ(−u) · E, where Σ(−u) is the691

shift operator ε → ε + u, has for largest eigenvalue eφ and associated eigenvector ρ∗. As all the entries of692
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Σ(−u) ·E are positive, the Perron-Frobenius theorem ensures that eφ is the top eigenvalue associated to the693

unique eigenvector ρ∗ with all its components positive.694

In practice, given a guess value for u, one can iterate Σ(−u) ·E a sufficient number of times to determine695

its top eigenvector v(ε;u), and compute ε̄(u) through696

e−ε̄(u) =

∫
dε e−ε R v(ε;u)∫

dε v(ε;u)
. (15)

The value of u is then tuned until ε̄(u) = 0. For a graphical representation of the resolution procedure697

and details on the numerical scheme used, see fig. app-4 and appendix sect. 3.698

4.5 Maximum likelihood parameters determination699

Nine parameters of the model have been obtained through maximum likelihood fit of the data:700

• the conversion factor α, which allows for conversion between experimental administered Ag dosage D,701

measured in micrograms, and the dimensionless administered Ag concentration of our model, C = D/α.702

• the Ag consumption rate per B-cell k−B , which controls the GC lifetime and also the extent of the affinity703

maturation.704

• the mean µnaive and variance σ2
naive of the Gaussian binding energy distribution for the GC seeder705

clones, elicited directly from the naive population.706

• the binding energy threshold εAg for a B-cell to be able to bind Ag with sufficient affinity to internalize707

it (cfr eq. (1)). This parameter does not appear in variant (C), where selection is mediated by T-helper708

cells only.709

• The T-cell selection characteristic coefficients, a and b, encoding respectively the baseline probabilities710

to survive or not survive selection, see eq. (2) and fig. app-1D.711

• The weight parameters grecall, gimm, representing the MC fraction in the measured population of IgG-712

SCs for the two protocols, respectively for schemes 2 and 3 with measurement one day after boost, and713

scheme 1 with measurement 4 days after second injection.714

We use a procedure that maximizes the average likelihood of experimental affinity measurements. To do so,715

we perform the following steps:716

1. For each of the 15 different experimental conditions S (5 different dosages in scheme 1, plus 7 different717

dosages in scheme 2, plus 4 different injection delays in scheme 3, minus the experiment at dosage 10718

µg TT and 4 weeks delay between injection which is repeated, being present in both schemes 2 and 3)719

we evaluate the log-likelihood of the experimental measurements through720

ln L(S) =
∑
s∈S

ln ρAb-SC(εs,S) (16)

where {εs}s∈S are the binding energy (logKD) single-cell measurements performed in condition S, and721

ρAb-SC(εs,S) is the normalized distribution of binding energies of Ab-SC predicted by the deterministic722

version of the model, and defined as a weighted sum of the normalized MC and PC distributions with723
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MC fraction g: ρAb-SC(εs,S) = g ρMC(εs,S) + (1− g) ρPC(εs,S). This fraction is either grecall or gimm,724

depending on the condition S considered (scheme 2,3 or scheme 1). For good comparison with the data725

the final normalization is done for the part of the distribution inside the experimental sensitivity range726

−23.03 = εmin < ε < εmax = −14.51. Notice that a measurement equal to εmin could in truth originate727

from any lower value of the energy, a situation not taken into account in the above expression for the728

log-likelihood. In our dataset, however, only 4 such measurements are present; they have a very weak729

influence on the results.730

2. Last of all we sum the log-likelihoods over all the conditions S considered for the three different schemes731

to get the total log-likelihood:732

ln Ltot =
∑
S

ln L(S) (17)

3. We maximize this global log-likelihood over the space of the nine parameters through the implementa-733

tion of the parallel tempering algorithm, whose details are specified in appendix sect. 4 and fig. app-5734

and app-6. We chose this algorithm because it ensures an effective search of the maximum even in a735

rugged parameter landscape.736

Notice that the total log-likelihood ln Ltot is sensitive to the number of measurements, which can vary737

considerably between different conditions. As such when performing the maximization the algorithm favors738

accuracy over the distributions with the higher number of measurements. Notice also that by evaluating the739

total likelihood in this manner we neglect the fact that multiple single cell measurements can come from the740

same stochastic realization of the process and can present some degree of correlation.741

To validate this inference procedure we generated 10 synthetic datasets using our stochastic model (see742

fig. app-11), with the same number of measurements per scheme as in the experimental dataset. We then743

inferred, for each synthetic dataset, the values of the parameters, and compared them to their groundtruth.744

On average all values of the parameters were correctly recovered, see appendix sect. 8 and table app-1.745

4.6 Code availability746

The code containing the implementation of our stochastic and deterministic model is made publicly available747

in the following repository: https://github.com/mmolari/affinity_maturation (will be made public after748

the article is accepted). The repository also includes the experimental dataset, the code to run the inference749

procedure and the code to reproduce the figures of the main paper (fig. 2 to 6).750
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[89] Miloš Knežević, Hongda Jiang, and Shenshen Wang. Active tuning of synaptic patterns enhances immune1001

discrimination. Physical Review Letters, 121(23):238101, 2018.1002

[90] Balthasar A Heesters, Riley C Myers, and Michael C Carroll. Follicular dendritic cells: dynamic antigen1003

libraries. Nature Reviews Immunology, 14(7):495, 2014.1004

[91] Rajagopal Murugan, Lisa Buchauer, Gianna Triller, Cornelia Kreschel, Giulia Costa, Gemma Pidelaserra1005

Mart́ı, Katharina Imkeller, Christian E Busse, Sumana Chakravarty, B Kim Lee Sim, et al. Clonal1006

selection drives protective memory B cell responses in controlled human malaria infection. Science1007

immunology, 3(20):eaap8029, 2018.1008

29

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 25, 2020. ; https://doi.org/10.1101/2020.05.22.110585doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.22.110585


[92] Gideon Schwarz et al. Estimating the dimension of a model. The annals of statistics, 6(2):461–464,1009

1978.1010

[93] Hirotugu Akaike. A new look at the statistical model identification. In Selected Papers of Hirotugu1011

Akaike, pages 215–222. Springer, 1974.1012

30

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 25, 2020. ; https://doi.org/10.1101/2020.05.22.110585doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.22.110585


MC PC

Dark Zone

cycle
T ~ 12 h

Light Zone

Germinal Center Reaction

Binding Ag on FDCs

Tfh Tfh no survival signalsurvival signal

Ag
bo

un
d

apoptosis

recycle in DZ

migration to LZ

D
iff

er
en

tia
tio

n
&

ex
it

Competition for T-cell help

Seeding GC

Plasma and
Memory CellsNaive B-cells

+

A
ffinity

cell division + SHM

no
Ag

bound

Selection for Ag binding

S
election

forT-cellhelp

Next evolution turn...

ce
ll

di
vi

si
on

+
S

H
M

MC/PC differentiate
and exit

Initial population

3

4

5

5

4

3

1

1

2

2

Figure 1: Sketch of the Germinal Center reaction (inner part) and effects of the main reaction steps on the

distribution of the binding energies (ε, equivalent to the logarithm of the dissociation constant logKd) of

the B-cell population (histograms on the outer part). A red-to-green color-scale is used to depict the affinity

of both B-cell receptors in the inner part of the scheme and in the outer binding-energy histograms. Upon

Ag administration GCs start to form, seeded by cells from the naive pool having enough affinity to bind the

Ag. If the Ag has already been encountered also reactivated Memory Cells (MC) created during previous

GC reactions can take part in the seeding. At the beginning of the evolution round cells duplicate twice in

the GC Dark Zone and, due to Somatic Hypermutation, have a high probability of developing a mutation

affecting their affinity. Most of the mutations have deleterious effects but, rarely, a mutation can improve

affinity. As a result the initial population (1) grows in size and decreases its average affinity (2). After

duplication cells migrate to the Light Zone, where they try to bind Ag displayed on the surface of Follicular

Dendritic Cells. Failure to bind Ag eventually triggers apoptosis. The probability for a cell to successfully

bind the Ag depends both on its affinity for the Ag and on the amount of Ag available. Cells with binding

energy higher than a threshold value εAg are stochastically removed (3). The Ag concentration shifts this

threshold by a quantity logC. B-cells able to bind the Ag will then internalize it and display it on MHC-II

complexes for T-cells to recognize, and then compete to receive T-cell help. We model this competition by

stochastic removal of cells with binding energy above a threshold ε̄ that depends on the affinity of the rest

of the population (4). As before Ag concentration shifts this threshold. Moreover to account for the finite

total amount of T-cell help available we also enforce a finite carrying capacity at this step. Surviving cells

may then differentiate into either MC that could seed future GCs or Ab-producing Plasma Cells (PC). MCs

and PCs are collected in the MC/PC populations (5), while the rest of non-differentiated cells will re-enter

the Dark Zone and undergo further cycles of evolution. Eventually Ag depletion will drive the population to

extinction.
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Figure 2: A: schematic representation of the Antigen (Ag) dynamics. Upon injection Ag is added to the

reservoir. From there it is gradually released at a rate k+ and becomes available for B-cells to bind. Avail-

able Ag is removed through decay at a constant slow rate k−∅ and consumption by the B-cells at rate k−BNB ,

proportional to the size of the B-cell population. B: histogram of the B-cell populations at different times

(1,2,4,8,12 weeks after Ag administration) for two simulations of the model at two different values of admin-

istered Ag dosage (1 µg - blue, 10 µg - orange). Ag Dosage D is converted to Ag concentration C through

the inferred proportionality constant α = D/C = 23 ng. Notice that low dosage entails a faster maturation,

albeit having a shorter total duration. C: Evolution of Ag concentration (top), number of B-cells in germinal

center (middle) and average binding energy of the population (bottom) for the same two simulations as a

function of time from Ag administration. Vertical grey lines corresponds to time points for which the full

affinity distribution is displayed in panel B. D: cumulative final populations of differentiated cells at the end

of evolution (memory cells - top, plasma cells - bottom) for the two simulations. Colors encode Ag dosage

as in panel B and C. Simulations were performed with variant (C) and parameters given in Table 1.
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A B

DC

Figure 3: A: example of homogenizing selection in GC evolution. Population size as a function of time for

each clonal family in stochastic simulations of a single GC. The GC were initiated with an injected antigen

dosage of D = 1 µg. The color of the clonal family reflects the initial binding energy of the founder clone

according to the color-scale on the right. On top we report the fraction of the final population composed by

the most expanded clonal family. In this example the progeny of a single high-affinity founder clone (dark

blue) progressively takes over the GC, and at week 4 constitutes around 70% of the GC B-cell population.

B: example of heterogeneous GC evolution. Contrary to the previous example, many clonal families coexist,

without one dominant clone taking over the GC. C: evolution of the distribution of the most-expanded clone

fraction. We perform 1000 stochastic simulations and evaluate the fraction of the population constituted

by the most-expanded clone at each time (cf. colors in the legend). Distributions show the percentage of

simulations falling in 10 bins splitting equally the [0,1] interval according to the values of their dominant

clone fractions. Notice the presence of heterogeneous and homogeneous GCs at week 4. D: scatter plot of

final (week 4) population fraction versus initial binding energy for the most-expanded clone; the straight line

shows the best linear fit (r2 ' 0.49). The presence of a clone with high initial affinity favors the advent of a

homogeneous GC.
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Extinction Maturation StagnationA B

Figure 4: A: Analysis of the asymptotic deterministic evolution for the large-size limit of the model, at

constant available concentration C = 30. Top left: size of the population vs. number of maturation rounds,

showing the exponential increase at rate φ. Bottom left: average binding energy of the B-cell population,

decreasing linearly with speed u. Top right: evolution of the binding energy distribution, normalized to the

number of cells in the GC, shows a travelling-wave behavior. Different times are represented with different

colors, according to the color-scale on the right. Bottom right: distributions of binding energies, shifted by

the time-dependent factor −ut and rescaled by the exponential factor exp{−φt}. Notice the convergence

to the invariant distribution ρ∗. B Values of the growth rate φ (top) and maturation speed u (bottom) as

functions of the Ag concentration C. The points at which the two quantities are zeros define the two critical

concentration C∗ and C∗∗ (red and purple vertical dashed lines). They split the asymptotic behavior of the

system at constant Ag concentration in three different regimes: extinction for C < C∗ (φ < 0), maturation

for C∗ < C < C∗∗ (φ > 0 and u < 0) and finally stagnation for C > C∗∗ (φ > 0 but u & 0). Results were

obtained using parameter values reported in table 1.
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Figure 5: Comparison between model-predicted and experimentally measured affinity distributions of

antibody-secreting cells (Ab-SCs) for different immunization protocols. A schematic representation of the

protocol used is reported on top of each column. Scheme 1 (left column) consists of two injections at the same

Ag dosage D, separated by a 4 weeks delay. Cells are harvested 4 days after the second injection. Scheme 2

(middle column) is the same as scheme 1 until the second injection. Then, after an additional 4 weeks delay, a

supplementary boost injection of 1µg pure TT is administered, and cells are harvested one day later. Scheme

3 (right column) is the same as Scheme 2 but the TT-dosage D = 10µg of the first two injections is kept

constant, and instead the delay δT between them is varied. Experimental data (orange histograms) consists

in measurements of affinities of IgG-secreting cells extracted from mice spleen. The experimental sensitivity

range (0.1 nM ≤ Kd ≤ 500 nM, or equivalently −23.03 ≥ ε ≥ −14.51) is delimited by the gray shaded area.

Blue curves represent the expected binding energy distribution of the Ab-SCs population according to our

theory under the same model conditions. For a good comparison all the distributions are normalized so that

the area under the curve is unitary for the part below the experimental sensitivity threshold. For every

histogram we indicate the number of single cell experimental measurements that make up the experimental

distribution (black), the number of different mice from which the measurements were pooled (black), and

the value of the varied immunization scheme parameter, corresponding to dosage D (pink) for the first two

schemes and time delay ∆T (blue) for the third.

35

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 25, 2020. ; https://doi.org/10.1101/2020.05.22.110585doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.22.110585


Variable Injection Delay - Scheme 3Variable Dosage - Scheme 1 Variable Dosage - Scheme 2

Figure 6: comparison between data and model prediction for the average binding energy (top) and high

affinity fraction (bottom) of the Ab-secreting cell population under the three different immunization schemes

(scheme 1 - left, scheme 2 - center, scheme 3 - right). The high affinity fraction corresponds to the fraction

of measured cells having binding affinity Kd < 50 nM, or equivalently binding energy ε < −16.8 kBT . On

the x axis we report the variable quantity in the scheme, which is administered dosage D for schemes 1 and

2 and delay between injection ∆T for scheme 3. Green shaded areas indicate the results of the stochastic

model simulations. The light area covers one standard deviation around the average result for a single

simulation, while the dark area corresponds to the standard deviation for the mean over 20 simulations.

This quantifies the expected variation for populations of cells extracted from a spleen, that could potentially

have been generated by many different GCs. Results are evaluated over 1000 different stochastic simulations

per condition tested. The deterministic solution of the model, in blue, reproduces well the average over

stochastic simulations in all the considered schemes. Data coming from experimental affinity measurement

of IgG-secreting cells extracted from spleen of immunized mice are reported in orange. Orange empty dots

represent averages over the data pooled from multiple mice immunized according to the same scheme, while

orange crosses represent averages for measurements from a single mice. Crosses are connected with a vertical

dashed line in order to convey a measure of individual variability. Notice that the number of mice per scheme

considered can vary, see fig. 5 and Appendix fig. app-7). In order to compare these data with our model, both

for the stochastic simulations and the theoretical solution we take into account the experimental sensitivity

range when evaluating averages.
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Appendix1013

1 Model definition and parameters choice1014

Mature GCs usually appear 5-7 days after Ag administration. During this time a population of up to1015

hundreds different founder clones colonizes the GC and expands to a total size of a few thousand B-cells.1016

The first mutations in the repertoire are observed around day 6 [59, 60]. Early GCs are highly polyclonal1017

and contain 50 to 200 clones according to [10]. In agreement with these experimental findings at the time of1018

Ag injection we pick a population of Nfound = 100 founder clones. The affinities of these clones are extracted1019

independently from an initial gaussian distribution whose mean and variance are chosen via the maximum-1020

likelihood procedure described in appendix sect. 4 and it matches the experimental distribution of germline1021

responders (i.e. splenic IgG-SCs that are observed 1 day after boost of pure Ag, cf.fig. app-7 in scheme 2 and1022

Ag dosage D = 0). During the time of GC formation the founder clones expand uniformly without mutating.1023

We chose to start our simulation at TGC = 6 days after Ag injection. At this point the GCs are almost fully1024

formed [13]. The simulation starts with the GC at its maximal size, set to Ni = Nmax = 2500 clones. The1025

maximal size is in agreement with [16] which reports around 3000 cells per GC, or [10] in which GCs are said1026

to contain up to a few thousands B-cells. However we stress that GCs are heterogeneous in size [70].1027

From here the model proceeds in evolution rounds. Similarly to [33] we set the duration of a round to1028

Tturn = 12 h. This number is consistent with timing of cell migration [86, 15]. We neglect the fact that high1029

affinity cells are found to dwell longer in the GC dark zone [88] undergoing additional divisions. In addition1030

to this the fact that the average cell-cycle time is 12 hours or longer [48] indicates that 12h is probably a1031

lower limit for the round duration.1032

As described in the main text each round consists in cell division with somatic hypermutation, selection1033

for Ag binding, selection for T-cell help and differentiation. In our simulations before starting the first round1034

we perform only once differentiation. This is done in order to recover the good average energy limit at low Ag1035

concentrations. In fact when Ag dosage is small the population quickly goes extinct, while at the same time1036

maturating very fast. Performing differentiation first provides a nucleus of low-affinity germline-like clones1037

whose binding energy controls the average binding energy of the MC population, even if few high affinity1038

clones are added later. Notice that this does not change the asymptotic behavior of the model, since it would1039

be equivalent to simply changing the order of operations in the round.1040

Proceeding with the standard turn order then the first operation performed is cell division and somatic

hypermutation. During a round we consider cells to divide twice [15]. In GC dark zone cells up-regulate

their expression of Activation-Induced Cytidine Deaminase. This enzyme increases the DNA mutation rate,

inducing mutations in the region coding for the BCR and possibly changing the affinity for the Ag. Mutation

rate has been estimated to an average of 10−3 mutations per base pair per division [63, 64]. Similarly to [33]

in which the total binding energy consisted in the sum of contributions from 46 different residues, we consider

Nres = 50 residues to contribute to the binding energy. The probability that upon division at least a mutation

occurs in any of the 150 bp coding for these residues can be estimated as pmut = 1 − (1 − 10−3)150 ∼ 0.14.

As done in [33, 43, 32] at every division and for each daughter cell independently we consider a psil = .5

probability of developing a silent mutation, in which case the binding energy of the daughter cell remains

unchanged, a probability plet = .3 of undergoing a lethal mutation, in which case the cell is removed, and

finally a probability paa = .2 of developing an affinity-affecting mutation. These change the binding energy
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of the daughter cell by adding a variation ε → ε + ∆ε. As done in [32] the variation follows a lognormal

distribution Kaa(∆ε) (fig. app-1A):

Lognorm[µ, σ](x) =


1

xσ
√

2π
exp

{
− (ln x−µ)2

2σ2

}
x > 0

0 x ≤ 0
(18)

Kaa(∆ε) = Lognorm[µ = 1.9, σ = 0.5](∆ε+ 3) (19)

The parameters of the distribution are chosen so that only 5% of the mutations confer an increase in affinity,1041

while the vast majority causes an affinity decrease. As a result of this process after the two mutations the1042

population size increases almost 4-fold in size (two duplications but some cells are eliminated due to lethal1043

mutations) and the average affinity decreases slightly due to the mainly negative effect of mutations (cf.fig. 11044

main text, histograms 1 to 2).1045

After duplication we implement selection. In order to avoid apoptosis cells must bind and internalize a1046

sufficient amount of Ag. The amount of Ag internalized depends both on the affinity of the BCR and on the1047

availability of Ag on the surface of the FDC [45, 89, 47]. We model this process by expressing the probability1048

of survival of a cell with BCR having binding energy ε as described in the main text:1049

PAg(ε) =
Ce−ε

Ce−ε + e−εAg
(20)

A sketch of this function is shown in fig. app-1C. The value of the threshold binding energy has been obtained1050

via maximum likelihood fit of the data, which yields for example εAg = −13.59 for variant A. This selection1051

is not in present variant C of the model.1052

At the second step of selection, the one leading maturation in our model, B-cells compete to receive a1053

survival signal from T-cells. T-cells in GCs are motile and continuously scan the surface of B-cells, sensing1054

for density of pMHC-II complexes [49]. Cells with the highest pMHC-II density receive survival signal1055

preferentially [50, 12]. We again express the probability of survival through1056

PT(ε|ε̄) = a+ (1− a− b) Ce−ε

Ce−ε + e−ε̄
, with e−ε̄ = 〈e−ε〉GC , (21)

The parameters a and b in eq. (21) represent, respectively, the probability of survival at very high energy and1057

the deficit in probability of survival at very low binding energy. Their effect is better discussed in appendix1058

sect. 5. The formula interpolates smoothly between these two values, as depicted in fig. app-1D. The threshold1059

binding energy ε̄ depends on the population’s binding energy distribution, introducing competition between1060

the cells; the symbol 〈·〉GC indicates the average of the quantity over the current GC population.1061

Cells that are able to survive selection can either re-enter the dark zone and start a new round of evolution

or differentiate into Ab-producing PCs or quiescent MCs that can be reactivated upon future Ag injection.

There is evidence that MC/PC output undergoes a temporal switch: MCs are preferentially produced early

in the response [54]. Moreover there seems to be an affinity bias in differentiation [75]. Even though

experiments show that affinity plays a role in deciding fate [74] simply by implementing a time-switch in the

MC/PC differentiation probability (respectively µMC, µPC, cf.fig. app-1B) we effectively recover both of these

observations. The parameters of these functions (τdiff = 11d, ∆τdiff = 2d) are chosen so as to be compatible
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with [54]:

µMC(t) = pdiff
1

1 + exp{ t−τdiff∆τdiff
}

(22)

µPC(t) = pdiff
1

1 + exp{− t−τdiff∆τdiff
}

(23)

Notice that the sum of the two is constant µMC(t) + µPC(t) = pdiff = 10%, compatible with seminal studies1062

[62] that estimated that around 90% of the cells recirculate in the dark zone. In the model we consider1063

for simplicity a complete switch, meaning that for t � τdiff the probability of generating MCs decreases1064

asymptotically to zero. In appendix sect. 5 we discuss the more realistic case of a partial switch, in which1065

there is a residual probability of MC production even for t� τdiff.1066

If new Ag is administered we consider a new GCR to start. The new GC is colonized partly by new B-cells1067

coming from the naive pool and partly by reactivated MCs [36]. We allow only MCs that have already been1068

generated at time of the second injection to colonize the new GC. This is done by picking a set of Ni = 25001069

cells from the naive pool, with binding energies extracted from the same initial Gaussian distribution, and1070

adding to them all the MCs generated up to the time of second injection. The founder clones of the new1071

GC will consist of Nfound = 100 cells randomly extracted from this cumulative population. Notice that the1072

probability of extracting a MC from the cumulative population is an increasing function of the number NMC1073

of MCs extracted at time of injection: p = NMC/(Ni + NMC). In appendix sect. 6 we discuss instead the1074

case in which the probability of extracting a seeder clone from the memory pool is set to a constant p = 0.3.1075

The concentration of Ag evolves as explained in the main text according to the differential eqs. (5)

and (6) (main text). These equations account for Ag release, decay and consumption. The release rate

was evaluated considering a half-life of 17h for Ag in CFA [65], which gives a value for the release rate of

k+ = ln 2/τ1/2 ∼ 0.98 d−1. Ag on FDCs can be maintained for a long time, up to a year [90], through a

mechanism of endocytosis and recycling of immune complexes [42]. To reproduce this long clearance time

we take Ag lifetime to be 8.1 weeks, as measured in popliteal lymph nodes of mice [66]. This results in a

Ag decay rate of k−∅ = ln 2/τ1/2 ∼ 0.012 d−1. The case of a faster Ag-decay is discussed in appendix sect. 6.

Finally the consumption rate per B-cell k−B = 2.07× 10−5 d−1 (variant C, see main text) is obtained via the

maximum likelihood fit procedure described in appendix sect. 4. This quantity controls both the GC lifetime

and the extent of AM at the end of evolution. For the range of Ag dosages considered simulated GCs have

an effective lifetime that vary between 1-2 weeks and 3 months (fig. app-2E), compatible with lifetimes of

real GCs [35]. Eqs. (5) and (6) (main text) are continuous in time. To include them in our discrete timestep

model we perform an update of the values of the reservoir and available concentrations Cav(t), Cres(t) at each

round t = 0, 1, . . . after selection for T-cell help and before differentiation. The Ag removal rate is given by

the cumulative effect of decay and consumption: k−t = k−∅ +NB
t k
−
B , and changes at each evolution round due

to its dependence on the number of B-cells NB
t at this stage of the round. The values of the concentrations

at the next round t+ 1 are obtained by evolving the corresponding quantities at round t for a time T = 12 h

equivalent to the duration of the round:

Cres(t+ 1) = Cres(t) e
−k+T (24)

Cav(t+ 1) = Cav(t) e−k
−
t T + Cres(t)

k+

k+ − k−t

(
e−k

−
t T − e−k

+T
)

(25)

At times smaller than the GC formation time TGC = 6 d we do not account for GC evolution but we account1076

for the evolution of concentration. This is done as in the previous equations but in this case the total1077
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consumption rate is evaluated considering an exponentially increasing number of cells, that starting from one1078

at injection exponentially grows to Nmax at the time of GC formation. In particular concentration update1079

at the end of round t = 0, 1, . . . , 11 is done considering the following number of B-cells consuming Ag:1080

NB
t = Nmax

t×Tturn/TGC for t < 12 = TGC/Tturn (26)

In our simulations GC evolution stops either naturally when Ag depletion leads to population extinction, or1081

when the total simulation time is elapsed and cells are harvested, in which case the simulation is stopped1082

irrespective of the population size and only cells produced up to that point are considered. The total1083

simulation time depends on the immunization scheme considered and is set to match the time elapsed between1084

injection and experimental measurement.1085

A B

C D
C = 1 C = 1

Figure app-1: (A) Plot of the affinity-affecting kernel Kaa. Only around 5% of the affinity-affecting mutations

increase affinity (green part of the curve for ∆ε < 0). (B) Probability of MC µMC and PC µPC differentiation

as a function of time from Ag injection (t in days). (C) Probability PAg(ε) that a B-cell survives Ag-binding

selection process as a function of its binding energy ε, see formula (20). On the x-axis we mark the threshold

energy εAg. (D) Probability PT(ε|ε̄) that a B-cell survives the T-cell selection process as a function of its

binding energy ε, see formula (21). On the x-axis we mark the threshold binding energy ε̄, which depends on

the binding energy distribution of the rest of the B-cell population, see formula (21).

2 Stochastic model analysis1086

In order to have some insight on the way our stochastic model evolves and to gauge the magnitude of1087

stochastic effects in fig. app-2 A to D we report the average evolution of 1000 independent GC Reaction1088

(GCR) simulations, performed at an injected Ag dosage of D = 1µg. The average trajectory is reported1089
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as a black dashed line and shaded area covers one standard deviation around the mean. Increase of noise1090

in the average binding energy of GC B-cells as a function of time is due to the fact that at each time the1091

average is performed only over the surviving GCs, thus as progressively GCRs end the average becomes more1092

noisy (and also becomes biased to represent only surviving trajectories). We compare the evolution of the1093

stochastic model with the theoretical prediction (orangle lines). As observed in the main text the theoretical1094

prediction performs well at high population size, and loses accuracy for small population sizes (fig. app-2A,C).1095

However since most of the MC and PC population is generated at time of high population expansion the1096

average energy of these two populations is always well estimated (fig. app-2B,D). The inaccuracy at small1097

population sizes comes mainly from an overestimation of the selection pressure in our theoretical solution. In1098

fact, the threshold binding energy for T-cell selection ε̄ (cf.appendix eq. (21)) is sensitive to the high-affinity1099

tail of the population affinity distribution. As the population size diminishes this tail gets progressively less1100

populated and the value of ε̄ deviates from its theoretical prediction, evaluated under the infinite-size limit.1101

This slight decrease of selection pressure at the end of the GC lifetime increases slightly the survival time and1102

generates a slight slow-down in maturation. Moreover in order to estimate the lifetime of GCs in our model1103

we evaluate average and standard deviation of lifetimes of 1000 independent GC simulations for different1104

values of injected Ag dosage. Since in the simulations GCs can also have a more or less long period of small1105

population size prior to extinction (fig. app-2A) we also evaluate an “effective” lifetime, considering the GC1106

effectively extinguished when its size reaches 1% of its original size. These lifetimes (fig. app-2E) depend on1107

the amount of Ag administered and can vary between few weeks to few months. The same overestimation1108

of the selection pressure at small population sizes leads the theory to slightly underestimate the lifetime of1109

stochastic simulations.1110

Recent experiments estimated the number of different clones in early GC to be between 50 and 200 [10].1111

In our stochastic model we consider the population of founder clones to be composed of 100 cells. The1112

limited number of founders controls the diversity of the initial population and increases the stochasticity in1113

evolution. However, it does not strongly influence the average outcome. To verify this we compare 10001114

stochastic simulations of the standard model (single Ag injection of D = 1 µg of Ag, model scenario C)1115

with a modified version in which the number of founder clones was set equal to the number of cells in the1116

initial population (2500 cells). Results are reported in fig. app-3 A to D. We observe that limiting the initial1117

population diversity increases stochasticity in evolution, but does not impact much the average evolution1118

trajectory and outcome. This is especially evident when observing MC/PC population evolution (panels B1119

and D). The final average binding energies of these populations are very similar, but the standard deviation1120

around the mean is halved in for the initial population with more founders.1121

This observation raises the question of how much the outcome of evolution is controlled by the particular1122

initial choice of the founder clones. In fig. app-3 E to H we quantify this by comparing 1000 stochastic GC1123

evolutions of the standard model (injected Ag dosage D = 1 µg, model scenario C), in which the founder1124

population was re-extracted every time, with a modified version in which the founder population was kept1125

the same amongst all stochastic trials. In the latter case we observe a considerable reduction in stochasticity,1126

indicating that the outcome depends strongly on the initial founder clones choice. This is also in line with the1127

observations made in section 2.2 and fig. 3D (main text), where we show that the presence of a high-affinity1128

founder clones correlates with a stronger homogenizing selection.1129
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A

C D

B

E

Figure app-2: A to D: comparison between average evolution of the system and prediction of our deterministic

model. The average is performed over 1000 independent GCR simulations at injected dosage of Ag D = 1µg.

The black dashed line corresponds to the average stochastic trajectory, the shaded blue area covers one

standard deviation from the trajectory mean, and the orange lines correspond to the prediction of the

deterministic model. Number of GC B-cells (A) and average energy of GC B-cells (C), MCs (B) and PCs

(D) as a function of time from Ag injection. E: average lifetime and effective lifetime of GCs as a function of

administered Ag dosage. The latter corresponds to the time at which the GC decays to 1% of its initial size.

We compare the average over 1000 stochastic simulations (blue and green plots, shaded area corresponds to

one standard deviation from the mean) to the theoretical prediction (orange and red lines). Due to finite-size

effects, the theory in general slightly underestimates the lifetime of the GC.

3 Theoretical solution and eigenvalue equation1130

As described in the main text the theoretical solution of the model is obtained by performing the limit of1131

infinite size NB → ∞, upon which the evolution of the system becomes deterministic. All the stochastic1132

processes can be implemented via an operator, whose explicit expression is provided in Materials and Methods,1133

and which acts on the distribution ρ(ε). This function is the product between the binding energy distribution1134

of the population and the population size. In this formalism the total evolution operator is a combination1135

of the duplication and mutation, selection, normalization and differentiation operators: E = D N ST SAg R,1136

where the operator R = M A M A encodes for two rounds of duplication with mutation.1137
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Figure app-3: A to D: effect of increasing the number of founder clones in the population. We compare 1000

stochastic simulations of the standard version of the model (blue) with a modified version in which every

cell in the initial population (2500 cells total) originates from a different founder clone, and has therefore a

different affinity (orange). Solid lines represent average trajectories and the shaded area covers one standard

deviation from the mean. The plots represent the number of GC B-cell (A), their average binding energy (C),

and the average binding energy of MC (B) and PC (D) population as a function of time from Ag injection. E

to H: stochastic contribution of the initial founder clones population. We compare 1000 stochastic simulations

of the standard version of the model (blue) with a modified version in which GCs are initialzied with the

same 100 founder clones (orange). We observe that the initial choice of founder clones plays an important

role in evolution and explains most of the variation observed in the outcome. Figures E to H display the

same quantities as A to D.

The mutation operator M in particular consists in a convolution of the distribution ρ with a mutation kernel1138
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Keff(∆ε) lethal, silent and affinity-affecting nature of the mutations. This kernel is defined as follows:1139

Keff(∆ε) = pmut paa Kaa(∆ε) + (1− pmut + pmut ps) δ(∆ε) (27)

The first term corresponds to affinity-affecting mutations, whose probability is the product between the prob-1140

ability of developing a mutation and the probability for this mutation to be affinity-affecting pmut paa. The1141

expression for the affinity-affecting mutation probability Kaa(∆ε) is the one in eq. (19). The second term1142

encodes silent mutations, occurring with probability pmut ps, and also absence of mutations, with probability1143

1− pmut. Lethal mutations occurs with probability pmut pl but since their effect is the removal of cells in the1144

population this contribution is multiplied by zero and is not present in the kernel expression. The contribution1145

of lethal mutation makes so that the normalization of this kernel is not unitary:
∫
d∆εKeff(∆ε) = 1−pmut pl.1146

In the main text we show how under constant Ag concentration the affinity distribution of the population1147

behaves as a traveling wave whose velocity and growth rate can be found via an eigenvalue equation. This1148

eigenvalue equation reads Σ(−u)Eρ = eφρ, where Σ(∆) is the translation operator that shifts the distribu-1149

tion of a value ε→ ε+ ∆ and we consider the restricted evolution operator E = D ST R.1150

1151

To verify the correctness of our eigenvalue equation theoretical prediction we solve the eigenvalue problem1152

at a given Ag concentration C = 10, graphically illustrating the procedure, and show that the theoretical1153

prediction matches the asymptotic behavior of the system. As a first step we set the value of ε̄ = 0 in the1154

T-cell help selection operator. This choice constitutes simply a gauge-fixing that removes the translational1155

invariance of our solution, and it also linearizes the evolution operator. Since we do not a priori know the1156

value of the shift ∆ we solve the eigenvalue equation Σ(−∆)Eρ = eφρ for different values of the shift. In1157

fig. app-4 we plot the maximum eigenvalue eigenvectors (distributions in A, color encodes the value of ∆)1158

and their corresponding log-eigenvalues (C, representing the growth rate) as a function of the shift ∆. In1159

order for our solution to be consistent it must satisfy the condition ε̄ = 0. Therefore we evaluate ε̄ after1160

performing mutations for all the solutions at varying values of the shift (fig. app-4 B) and we pick the one1161

(∆∗) for which this condition is satisfied as the eigenproblem solution. Upon repeated application of the1162

restricted evolution operator we expect the population to asymptotically grow and shift at the values of φ∗1163

and u = ∆∗ corresponding to this solution. In fig. app-4 D we verify this by plotting the evolution of the1164

normalized affinity distribution of the population, re-shifted on its mean, upon repeated application of the1165

evolution operator, and compare it with the eigenproblem solution (black dashed lines). Moreover in E and1166

F we compare the instantaneous growth rate and energy shift with the eigenproblem solution predictions.1167

Color in the three plots encodes to the evolution round. We observe that in all three cases the asymptotic1168

prediction is matched.1169

To numerically solve the eigenvalue equation and obtain the results displayed in fig. app-4 operators were1170

implemented as square matrices by discretizing the interval of energy [10,−20] kBT with a discretization step1171

of 0.002 kBT . The maximum eigenvalue and corresponding eigenvector were obtained by repeated application1172

of the restricted evolution and shift operators on an initially normal distribution with zero mean and unit1173

variance. The application was repeated until the L1 distance between the normalized distributions before and1174

after application of the operator was less than 10−5. This numerical procedure however is computationally1175

expensive, since solving the eigenproblem for a particular value of the Ag concentration C requires the creation1176

and repeated application of large matrices for many values of the shift ∆. A less demanding numerical method1177

to obtain the value of µ and φ consists in simply simulating the evolution of the population under constant1178
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Ag concentration C, and without carrying capacity constraint and Ag-binding selection, until convergence to1179

the asymptotic travelling-wave state is reached with sufficient precision. This second technique was used to1180

evaluate the values of u and φ displayed in fig. 4B. In this case the simulation domain was set to the interval1181

[−100, 50] kBT , with a discretization step of 0.01 kBT . Evolution of the distribution of binding energies1182

was repeated until the following three conditions were met at the same time. First, the L1 distance between1183

the normalized distributions before and after evolution, once they were re-centered around their mean, was1184

less than 5× 10−5. Second, the relative change of the growth rate and wave speed between two rounds of1185

evolution was less than 5× 10−5. Finally, as a safety check we also require that at the moment of convergence1186

the mean of the distribution is more than 5 standard deviations away from the boundaries of the simulation1187

domain.1188

4 Maximum likelihood fit procedure1189

Nine model parameters p = (µnaive, σnaive, εAg, k−B , α, a, b, grecall, gimm) were inferred via the maximum1190

likelihood procedure described in Materials and Methods. This procedure makes use of the full experimental1191

affinity distribution. Here we give a more detailed description of the procedure and add considerations on1192

the variation range of the parameters.1193

The stochastic maximization procedure is based on an implementation of the Parallel Tempering tech-1194

nique. This technique, used in the context of molecular dynamics simulations [69], consists in simulating1195

different copies of a system at different temperatures, and then allowing the copies to exchange their states1196

with adequate probabilities so that low-energy states are correctly sampled at low temperatures. This is1197

particularly advantageous when the energy landscape is rugged, and low-temperature simulations tend to1198

get stuck in local energy minima, while high-temperature simulation explore the whole space without being1199

able to locate the minima precisely. Allowing for state-exchange between different temperature simulations1200

makes so that high-temperature simulations can help low-temperature ones exit local minima in the energy1201

space and converge to the global optimum, cf.fig. app-5A.1202

Here, we consider the space of all possible values of the parameters as our configuration space, and use1203

the log-likelihood (see Material and Methods for definition) as a proxy for minus the energy. Our algorithm1204

can be summarized as follows. A number N = 10 of copies of the parameter set is initialized, and at each1205

copy is assigned a simulation temperature T logarithmically evenly spaced between 103 and 10−3. The1206

maximization procedure consists in 10000 rounds of iterative parameter changes and temperature exchanges.1207

For each proposed parameter change the likelihood difference ∆ logL between the new and the original set of1208

parameters is evaluated, and the change is accepted with probability min{exp{∆ logL/T}, 1}, where T is the1209

temperature associated to the parameter set. In the exchange phase the difference in log-likelihood ∆ logL1210

and in inverse temperature ∆β is evaluated for any two parameters sets with consecutive temperatures. An1211

exchange of the two parameters sets is then performed with probability min{exp{−∆β ∆ logL}, 1}. At1212

the end of the last round the value of the parameters pbest that maximized the likelihood is returned. In1213

fig. app-5B we report the trajectories in energy space of all the parameter sets for the inference performed1214

using variant C of selection (see main text), in which 8 parameters are inferred (all but the threshold binding1215

energy εAg, which is removed in this variant). The energy for each parameter set is evaluated from the1216

difference in log-likelihood with the best value, ∆E = logL(pbest)− logL(p). Notice how trajectories at high1217

temperature explore the space by being able to visit low-likelihood (high-energy) zones of the parameter space.1218
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Figure app-4: We check that upon repetition of the evolution operator the system converges at the eigenvalue

equation solution. For a given constant Ag concentration (C = 10 in our case) we solve the eigenvalue equation

eφρ = Σ(−∆)Eρ for various values of the shift ∆. In A we report the maximum eigenvalue eigenfunctions.

By virtue of the Perron-Frobenius theorem these consist of only positive values. Color represent the value

of the shift ∆ for the corresponding solution. In B and C we plot the value of ε̄ after mutation and of the

growth rate φ for every solution. The consistency condition requires us to pick the eigenfunction for whom

the value of ε̄ after mutation is zero. This corresponds to the value ∆∗ represented in vertical red dashed line

and the value of the growth rate φ∗ in horizontal green dashed line. In panel D, E, F we consider repeated

application of the evolution operator to the binding energy distribution at constant Ag concentration C = 10.

Color encodes the number of applications of this operator. In D and E we report respectively the growth

rate and shift of the mean per evolution turn, and in F the full distribution of binding energies, normalized to

the population size. All the quantities converge to their theoretical expectation given by the chosen solution

of the eigenvalue equation, reported as green and red dashed lines.

Conversely, low-temperature trajectories gradually converge to the value of the parameters that maximizes1219

the likelihood.1220
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The likelihood-maximization procedure is algorithmically described by the following pseudocode:1221

Algorithm: Stochastic likelihood maximization procedure

Given the initial parameters choice pinit;

Initialize 10 copies of the system with parameter value p0
i = pinit for i = 1 . . . 10;

Set the simulation temperature of each copy of the system at Ti = 10(11−2i)/3, so that T1 = 103 and

T10 = 10−3;

for t = 1 to 10000 do

for i = 1 to 10 do

Generate a new randomly mutated parameter set p′i = pt−1
i + ∆pi according to the rule

specified in the text;

Evaluate the log-likelihood difference induced by the new set of parameters

∆logL = logL(p′i)− logL(pt−1
i ) ;

With probability min{exp{∆logL/Ti}, 1} accept pti ← p′i or else keep pti ← pt−1
i ;

for i = 1 to 9 do

Evaluate the likelihood difference ∆logL = logL(pti+1)− logL(pti) between two adjacent copies

of the model;

Evaluate the inverse temperature difference ∆β = 1/Ti+1 − 1/Ti;

With probability min{exp{−∆β ∆logL}, 1} perform the state exchange pti ↔ pti+1;

Find (i∗, t∗) = arg max(i,t){logL(pti)};
return pbest = pt

∗

i∗

1222

Where the initial parameters choice was set to pinit = (µnaive = −14.6, σnaive = 1.6, εAg = −13.6,1223

k−B = 2× 10−5 d−1, α = 0.025 µg, a = b = 0.2, grecall = gimm = 0.5). Single parameter changes are generated1224

as a function of noise level η:1225

• For µnaive, εAg variation is performed by adding a random number extracted with uniform probability1226

in the interval [−10 η,+10 η].1227

• For positive parameters σnaive, α, k−B the variation is performed multiplicatively by introducing a1228

percentage change of the parameter uniformly extracted in the interval [−η, η].1229

• For the fractions grecall, gimm, a and b variations are performed by adding a random number uniformly1230

extracted in the interval [−η,+η]. After the addition some constraints are enforced: the resulting1231

number is constrained in the interval [0, 1], and since for the definition of the survival probability (eqs.1232

(20), (21)) it must be a+ b ≤ 1.1233

We set the noise level to depend on the temperature of the system considered, so that higher-temperature1234

simulations also have a higher level of noise, allowing them a faster exploration of the parameter space, while1235

low temperature simulation will perform only a fine-tuning of the parameters. This allows for a more precise1236

convergence. In particular we set η to be logarithmically evenly spaced between 10−2 and 10−1. Furthermore1237

we propose changes for all the parameters for the four higher-temperature simulations, while changes affect1238

only one randomly chosen parameter for the four lower-temperature simulations.1239

In fig. app-6 we display the evolution of the parameter set that reaches the highest log-likelihood during1240

the maximization procedure. In fig. app-6A we report the log-likelihood and the temperature as a function1241

47

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 25, 2020. ; https://doi.org/10.1101/2020.05.22.110585doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.22.110585


of the round of maximization. Notice how high-temperature states correlate with big fluctuations in the1242

log-likelyhood and in the values of parameters. The peak likelihood value is reached at round 9970, when the1243

trajectory was at the lowest temperature. In fig. app-6B we report the evolution of the nine parameters during1244

the maximization rounds. Orange shaded area cover one standard deviation of the posterior distribution1245

around the maximum-likelihood estimate (MLE) of the parameters. This was obtained by approximating1246

the posterior with a Gaussian distribution around the ML value, with a quadratic fit of the log-likelihood1247

variation ∆ logL generated by small variations (±5%) of single parameters around the MLE (fig. app-6C).1248

For completeness in fig. app-7 we report the comparison between the experimental measurements (orange1249

histograms) and the maximum-likelihood fit of the theoretical model (blue curves) for all the different im-1250

munization schemes and all different values of the injected dosage D and time delay between injections ∆T1251

used for the fit. All of these distributions were used for the likelihood evaluation. The normalization of the1252

distributions is done considering only the part inside the experimental sensitivity range. We find good agree-1253

ment under all different schemes. Moreover we also report the comparison between the theoretical solution1254

and the stochastic simulations of the model (green histograms, average over 1000 stochastic simulations).1255

This comparison shows that for all regimes considered the theoretical solution is a very good approximation1256

to the stochastic model.1257

This likelihood maximization procedure is very general and can be easily extended to the inference of any1258

set of parameters in our model, or to other experimental datasets.1259

5 Permissive and stochastic selection: effect of a, b parameters1260

Parameters a and b in eqs. (20) and (21) represent respectively the probability for a B-cell to pass or to1261

fail a selection step irrespective from their affinity. Parameter a can be related to the “permissiveness” of1262

selection, quantifying how likely is for a cell to be positively selected even if its affinity is small. Parameter1263

b conversely encodes the stochasticity in selection, by virtue of which even high affinity cells are not granted1264

survival (e.g. if they don’t manage to encounter enough T-cells). For simplicity we define these parameters1265

as constants, but one could immagine that their value may change over time, for example it may be related1266

to the availability of T-cell help. Here we investigate the effect of these parameters on the asymptotic wave-1267

like behavior of the system. This asymptotic behavior is characterized by two quantities: the asymptotic1268

growth rate φ(C) and the asymptotic maturation speed u(C), as defined in the main text eq. (3). These1269

quantities are functions of the Ag concentration C. In fig. app-8 we report how these functions change when1270

the parameters a and b are progressively increased. In these tests we consider only the effect of one parameter1271

at a time and we set the value of the other to its standard value a = 0.13, b = 0.66. By making the selection1272

more permissive and allowing for survival of even low-affinity cells, parameter a has a double effect on the1273

asymptotic behavior: on the one hand it decreases the asymptotic wave velocity and slows down maturation1274

(fig. app-8 E), and on the other hand it increases the growth rate of the population (fig. app-8 C). On the1275

contrary, increasing parameter b corresponds to increasing the chance that high-affinity cells are selected out1276

of the population. This both decreases the growth rate (fig. SI-app-8 D) and also the maturation speed (fig.1277

SI-app-8 F).1278

The selection process in affinity maturation has both a purifying and promoting effect. On the one hand it1279

must negatively select clones that accumulated negative mutations, purifying the population from low-fitness1280

individuals. On the other hand it must also grant the survival and amplification of the clones that developed1281
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Figure app-5: A: intuitive representation of the advantage of Parallel Tempering. When a Monte Carlo

simulation is run at low temperature (T1) the system reaches a low-energy state but can get stuck in local

energy minima. Conversely at high temperature (T2) the system is free to explore a larger portion of the

space, but is unable to localize the energy minimum. By allowing the states to exchange their temperature

when favorable, the high temperature simulation can help the low temperature simulation exit from a local

minimum trap and converge to the global energy minimum. B: Simulation trajectories in energy space as a

function of the simulation round for inference on variant C of the model. The energy difference is defined

as ∆E = −(logL − logLmax), where Lmax is the maximum likelihood recovered by the inference algorithm.

Colors encode different temperatures according to the colorbar on the right. Grey dots mark points in which

trajectories exchange temperatures. To display both large variations and values equal to zero the energy

scale is logarithmic for values of ∆E > 1 and linear for energies 0 ≤ ∆E ≤ 1.

affinity-improving mutations. These two properties of selection are weakened by parameters a and b in our1282

model, since they respectively grant survival of low-affinity clones and can cause the removal of high-affinity1283

ones. According to our inference procedure parameters a and b together seem to account for 79% of the1284

selection probability, making so that affinity can make the survival probability vary of only about 21%.1285

This slows down maturation considerably, since it removes any deterrent against accumulating deleterious1286

mutations. The fact that the inference procedure indicated a high value for these parameters suggests that1287
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selection in GCs may be permissive, at least for complex Ags, as suggested in [91].1288

6 Possible model variations1289

In order to test the relative importance of different model parameters we performed the inference procedure1290

using three different variants for selection (see main text). Variant A corresponds to the inference of all 91291

inferred model parameters (µnaive, σnaive, k−B , α, a, b, grecall, gimm, εAg). Variant B corresponds to the case in1292

which stochasticity and permissivity parameters a and b are set to zero and only the remaining 7 parameters1293

are inferred. In variant C instead Ag-binding selection is neglected, and all 8 parameters with the exclusion1294

of εAg are inferred. The resulting maximum likelihood estimate (MLE) of the parameters, along with the1295

corresponding value of the likelihood, is reported for the three cases in fig. app-9. The result of the inference1296

procedure show that the removal of Ag-binding selection (variant A vs C, 9 vs 8 parameters) causes only a1297

very modest decrease in log-likelihood, while the removal of stochasticity in T-cell help selection (variant A1298

vs B, 9 vs 7 parameters) generates a consistent log-likelihood decrease. As described in the main text, both1299

the Bayesian Information Criterion (BIC) [92] and Akaike Information Criterion (AIC) [93] are in support of1300

removing the former but not the latter, and accept variant C.1301

1302

Moreover, to show that the model is robust under minor modifications of the hypotheses we consider three

minor variations, keeping variant C of selection, and show that they generate similar MLE predictions for the

model parameters. First, we test the effect of introducing a residual asymptotic rate of MC/PC production.

This case is labelled soft MC/PC timeswitch. For simplicity in the model we introduced a complete time-

switch between MC and PC production in GCs, making so that asymptotically only PCs are produced for

t� τdiff (cf.appendix eq. (22) and (23) and fig. app-1B). In this modification instead we introduce a residual

rate of MC/PC production µres = 10% modifying appendix eq. (22) and (23) as:

µMC(t) = pdiff

[
µres + (1− µres)

1

1 + exp{+ t−τdiff
∆τdiff

}

]
(28)

µPC(t) = pdiff

[
µres + (1− µres)

1

1 + exp{− t−τdiff∆τdiff
}

]
(29)

This makes so that the fraction of MCs in the differentiated population interpolates between ∼ 90% at small1303

times and ∼ 10% at big times, granting some residual production of MCs at all times. Applying the inference1304

procedure on this more realistic version of the model results in a better final likelihood than the standard1305

(variant C) version. The inferred values of the parameters are on average similar to the ones obtained with1306

the standard version of the model, with the difference of grecall and gimm. While the inequality grecall > gimm1307

still holds, the MLE for these parameter is higher than in the standard case. This can be expected since1308

these parameters control the fraction of MCs in the elicited Ab-SC population, and in this version of the1309

model the MC population contains differentiated cells that would have belonged to the PC compartment in1310

the standard version.1311

A further modification involves the fraction of seeder clones extracted from the MC population when1312

colonizing a GC. At the second injection some of the seeder clones for the new GC are extracted from the1313

MC population generated following the first injection. The probability of extracting a seeder clone from the1314

MC pool and not from the initial germline distribution depends in the standard version of the model on the1315

number of accumulated memory cells Nmem as pmem = Nmem/(Nmem + Ni) (cf.main text sect. 2.1). This1316
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should account for the fact that intuitively if more MCs were produced in the previous maturation then also1317

more should be recalled. However one could more simply suppose this probability to be constant. We test1318

this case by setting pmem = 0.3. This change generates only a very small likelihood decrease with respect to1319

the standard version of the model, while the MLE for all parameters is almost unchanged.1320

Finally, we also test the effect of increasing the rate of Ag decay, multiplying it by a factor three (case1321

labelled faster Ag decay). This results in a slight increase in the maximum likelihood, and the values of1322

all the model parameters are again compatible with the one of the standard version of the model, with the1323

exception of the Ag consumption rate k−B which decreases to compensate the faster decay rate.1324

7 Quantifying beneficial and deleterious mutation events1325

To quantify the number and impact of mutation events in our simulations we execute 1000 stochastic simu-1326

lations of a single GC, at an injected Ag dosage of D = 1 µg. In each simulation and for each cell we keep1327

track of the number of beneficial and deleterious mutations that each cell accumulates during the course of1328

evolution on the residues we consider (Nres = 50, see appendix sect. 1). Results are reported in fig. app-10.1329

In the top row we display the average number of cells for any value of beneficial and deleterious mutations1330

number and at different times: 10, 30 and 50 days after Ag injection. To have an idea of the population1331

size and maturation state at these timepoints one can refer to fig. app-2, in which stochastic simulations1332

are performed under the same conditions. In our simulations after the first days of maturation deleterious1333

mutations start to appear (see fig. app-10, t = 10). These are the first mutations to appear since they are1334

much more likely than beneficial mutations (95% vs 5%, see fig. app-1 A). However during the course of1335

evolution these are gradually removed by selection, until eventually beneficial mutations, despite being much1336

rarer, start to dominate (see fig. app-10, t = 50).1337

In the bottom row of fig. app-10 we display in the same way the number of mutations in the MC and PC1338

population. The former is composed of cells that differentiate early (cf.fig. app-1B and eqs. (22) and (23))1339

and therefore bear less mutations than the PC population. However, in both cases the vast majority of cells1340

harbor very few mutations, with the average number of mutations per cell being 0.13 for MCs and 0.54 for1341

PCs. The accumulation of more than 4-5 beneficial mutations in a single cell is very rare. These numbers1342

are compatible with experiments performed in a recent work [79], in which mice were immunized against1343

Tetanus Toxoid following a protocol similar to the one used in our experiments. The analysis of high-affinity1344

binders showed an average of 6 non-synonymous mutations on the antibody heavy-chain variable region VH1345

and 3 mutations in the light-chain variable region VL.1346

Our model neglects saturation of beneficial mutations, i.e. the phenomenon by which beneficial mutations1347

cannot be accumulated indefinitely but become rarer as the cell approaches maximum possible affinity. This1348

is partly justified here by the observation that, at least for the inferred value of model parameters, few1349

beneficial mutations are found to accumulate in our simulations. Even when considering clones with the1350

highest number of beneficial mutations, the number of mutations accumulated in our model is compatible1351

with experiments [79].1352

As a final remark, notice that even though MCs are not as strongly skewed towards beneficial mutations as1353

PCs, their average affinity is higher than the one of the starting population (cf.fig. app-2B). This is because1354

amongst the founder clones selection will expand the ones having higher affinity (cf.fig. 3), which will then be1355

overly-represented in the MC population. This shows that in our model maturation is achieved only partially1356
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by accumulation of beneficial mutations, the rest being obtained through selective expansion of high-affinity1357

precursors, as also showed in section 2.2 of the main paper, and confirmed by the strong dependence of the1358

maturation outcome on the initial founder clones population (see fig. app-3 E to H).1359

8 Validation of inference procedure on artificially generated data1360

To test the reliability of our inference algorithm we generate 10 artificial datasets using our stochastic model1361

and we apply to them the inference procedure. We then compare the inferred values of the parameters with1362

the real value used to generate the data.1363

To verify that the experimental measurements at our disposal are sufficient to infer the model parameters,1364

when generating the data we took into account the size and composition of the experimental dataset. In1365

particular we generate each artificial dataset as follows. For every experimentally tested conditions (15 con-1366

ditions in total, consisting in 5 tested dosages for scheme 1, 7 dosages for scheme 2 and 4 delays for scheme1367

3, with condition D = 10 µg and ∆T = 4 weeks shared between scheme 2 and 3) we run as many stochastic1368

simulations as mice tested for that particular condition. Then from every simulation we extract from the1369

responders population a number of cells equal to the one obtained from each mouse. Extraction of cells is1370

done keeping into account the experimental detection range, therefore we exclude cells having affinity lower1371

that Kd = 500 nM, and set any affinity higher than the high-affinity threshold Kd = 0.1 nM equal to the1372

threshold. Stochastic simulations of each scheme are done in model scenario C, using the standard value of1373

the parameters with one exception: to account for the fact that each mouse contains multiple GCs we raised1374

the number of founder clones in each GC to 2500 instead of 100. This amounts to introducing a greater1375

diversity in the initial population, which in turns reduces the stochasticity in the evolution outcome (see also1376

fig. app-3 A to D and appendix appendix 2) and is similar in spirit to averaging between multiple GCs, as it1377

is the case for the experimental measurements of cells extracted from the spleen of mice.1378

This generation procedure was re-executed 10 times, resulting in 10 different datasets. As an example, in1379

fig. app-11B we show the binding energy distribution of the 10 generated datasets for condition D = 0.5 µg1380

of Ag in scheme 2 (histograms in gray). The histograms are close to the prediction of the deterministic1381

model (blue curves), but with some deviations due to stochastic sampling. The average binding energy of1382

the population for all considered condition is reported in fig. app-11A. Again, the average binding energy of1383

the generated populations (gray crosses) is close to the prediction of the deterministic model (blue dot), and1384

as expected the noise is higher for the conditions where a smaller amount of experimental measurement was1385

performed (compare with number of measurements displayed in fig. app-7).1386

We then run the inference procedure on each artificially generated dataset, using the same setup and initial1387

condition as the ones used to infer model parameters on the real data, under scenario C. The average results1388

of the inference are reported in table app-1. For every model parameter the average inferred value is close to1389

the real value used to generate the data, demonstrating that the amount of experimental measurements at1390

our disposal are sufficient for a good recovery of the model parameters.1391

1392
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parameter value used to generate data mean of inferred values std of inferred values

µi -14.59 -14.76 0.22

σi 1.66 1.59 0.11

k−B 2.07e-05 1.82e-05 0.71e-05

grecall 0.56 0.55 0.11

gimm 0 0.009 0.022

α 0.023 0.032 0.019

a 0.120 0.125 0.094

b 0.661 0.659 0.008

Table app-1: Average results of the inference procedure on the 10 artificially generated datasets. For each

model parameter we report the value used to generate the data (left), and the mean (middle) and standard

deviation (right) over the 10 inferred values.
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Figure app-6: Convergence of the stochastic likelihood maximization procedure for variant C of the model

(see main text). In this variant 8 of the model parameters are inferred (µnaive, σnaive, k−B , α, a, b, grecall,

gimm). A: values of the log-likelihood logL and the temperature T for the parameter set that reached peak

likelihood. B: evolution of the parameter values during the maximization procedure for the same set (blue

lines). Maximum likelihood (ML) estimates of the parameters are marked as orange dashed lines. Orange

shaded area cover one standard deviation of the posterior distribution around the ML value, evaluated through

a Gaussian approximation of the posterior distribution and the quadratic fit of the log-likelihood displayed

in panel C. C: likelihood variation ∆ logL of the posterior distribution for a small (±5%) variation of single

parameters around their ML values (vertical black dashed lines). The peaked shapes of ∆ logL confirm the

convergence of the maximization procedure for all parameters. Orange dashed curves represent quadratic fit

of ∆ logL, used to estimate the orange confidence interval in (B).
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Figure app-7: Comparison between experimental measurements (orange histograms), stochastic model (green

histograms), and theoretical solution (blue curve) for affinity distributions of antibody-secreting cells (Ab-

SCs) under all the different immunization protocols (see main text for the description of the schemes).

Experimental data (orange histograms) consists in measurements of affinities of IgG-secreting cells extracted

from mice spleen. The number of mice and single-cell measurements is indicated for each histogram (black).

The experimental sensitivity range (0.1 nM ≤ Kd ≤ 500 nM, or equivalently −23.03 ≥ ε ≥ −14.51) is

delimited by the gray shaded area. Blue curves represent the expected binding energy distribution of the

Ab-SCs population according to our theory under the same model conditions. For a good comparison all the

distributions are normalized so that the area under the curve is unitary for the part inside the experimental

sensitivity threshold. For every histogram we indicate the value of the varied immunization scheme parameter,

corresponding to dosage D (pink) for the first two schemes and time delay ∆T (blue) for the third.
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Figure app-8: Effect of the terms a, b on the model asymptotic behavior. On the top row we plot the

corresponding T-cell selection survival probability (setting for simplicity ε̄ = 0 and C = 1) respectively in

the case b = 0.66 and a varying from 0 to 0.3 (B) and a = 0.12, b varying from 0 to 0.6 (E). Values of the

parameters a and b are color-coded as showed in the legend. In C and E we show the effect of varying a on

the asymptotic growth rate φ and evolution speed u (we set as before b = 0.66). Notice how increasing a both

slows down evolution and increases the growth rate. In D and F we report the same quantities for variation

of the parameter b (while a = 0.12). Increasing b decreases both the growth rate and the maturation speed.
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Figure app-9: Result of the inference procedure on the five variations of the model described in appendix

sect. 6 and comparison with the standard version of the model. Top: final maximum value of the log-likelihood

obtained with the inference procedure (black). Bottom: maximum-likelihood estimate of all of the inferred

parameters (blue). Horizontal grey dashed lines mark parameters that are absent in the variant of the model

considered.
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Figure app-10: Distribution of beneficial and deleterious mutations over 1000 stochastic germinal center

simulations at injected Ag dosage D = 1 µg. Color represents the average number of cells that have developed

the specified number of beneficial and deleterious mutations for any examined population, according to the

color-scale on the right. Top: distribution of mutation numbers in the GC population taken at different times

(respectively, 10, 30 or 50 days after Ag injection from left to right). Notice that not all of the populations

have the same total size. Bottom: distribution of mutation numbers for the final MC and PC distributions.

The average number of total mutations accumulated is 0.13 for MCs and 0.54 for PCs. This number has to

be compared to the total number of residues considered (Nres = 50).

58

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 25, 2020. ; https://doi.org/10.1101/2020.05.22.110585doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.22.110585


Average responders binding energy
generated data vs deterministic modelA B

Figure app-11: A: average binding energy of responders populations in the 10 artificially generated datasets

(gray) for the 15 experimentally tested conditions, vs the same quantity as predicted by simulations of the

deterministic model. The condition to which the measurement are referred is reported on the y-axis, in

the form of the scheme used, the Ag dosage injected (D) and/or the time delay between injection (T ). B:

distribution of generated binding energies in the 10 generated dataset (gray), compared to the distribution of

binding energies predicted by the deterministic model (blue), for the condition corresponding to the injection

of D = 0.5 µg of Ag in scheme 2.
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