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Abstract 
Neuroimaging has advanced our understanding of human psychology using reductionist          
stimuli that often do not resemble information the brain naturally encounters. It has improved              
our understanding of the network organization of the brain mostly through analyses of             
‘resting-state’ data for which the functions of networks cannot be verifiably labelled. We             
make a ‘Naturalistic Neuroimaging Database ’ (NNDb v1.0) publically available to allow for            
a more complete understanding of the brain under more ecological conditions during which             
networks can be labelled. Eighty-six participants underwent behavioural testing and watched           
one of 10 full-length movies while functional magnetic resonance imaging was acquired.            
Resulting timeseries data are shown to be of high quality, with good signal-to-noise ratio, few               
outliers and low movement. Data-driven functional analyses provide further evidence of data            
quality. They also demonstrate accurate timeseries/movie alignment and how movie          
annotations might be used to label networks. The NNDb can be used to answer questions               
previously unaddressed with standard neuroimaging approaches, progressing our knowledge         
of how the brain works in the real world.  

Background & Summary 
A primary goal of human neuroscience is to understand how the brain supports broad              
psychological and cognitive functions that are engaged during everyday life. Progress towards            
achieving this goal over the last two decades has been made with tens of thousands of task-                 
and resting-state based functional magnetic resonance imaging studies (henceforth, task-fMRI          
and resting-fMRI). While these studies have led to a number of important discoveries, there is               
mounting evidence that a better understanding of brain and behaviour might be achieved by              
also conducting studies with more ecologically valid stimuli and tasks (natural-fMRI).  

Task-fMRI 
For task-fMRI, general psychological processes are decomposed into discrete (though          
hypothetical) component processes that can theoretically be associated with specific activity           
patterns. To ensure experimental control and because of reliance on the subtractive method1,             
these components are studied with stimuli that often do not resemble things participants might              
naturally encounter and tasks they might actually perform in the real-world (a topic long              
debated)2–4. For example, language comprehension has been broken down into component           
processes like phonology and semantics. These individual subprocesses are largely localised           
in the brain using isolated auditory-only ‘speech’ sounds (like ‘ba’) in the case of phonology               
and single written words in the case of semantics 5. Participants usually make a meta-linguistic              
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judgement about these stimuli, with a corresponding button response (e.g., a ‘2AFC’            
indicating whether a sound is ‘ba’ or ‘pa’).  

The result of relying on unnatural stimuli and tasks is that our neurobiological understanding              
derived from task-fMRI may not be representative of how the brain processes information.             
This is perhaps why fMRI test-retest reliability is low6,7. Indeed, more ecologically valid             
stimuli like movies have higher reliability than resting- or task-fMRI. This is not only because               
these enhance activity, decrease head movement and improve participant compliance8,9.          
Rather, natural stimuli have higher test-retest reliability mostly because they are more            
representative of operations the brain normally performs and provide more constraints on            
processing10–15. 

Resting-fMRI 
There has arguably been a significant increase in our understanding of the network             
organization of the human brain because of the public availability of large resting-fMRI             
datasets, analysed with dynamic and other functional connectivity methods 16,17. These include           
the INDI ‘1000 Functional Connectomes Project’18, ‘Human Connectome Project’ (HCP)19          
and UK Biobank20. Collectively, these datasets have more than 6,500 participants sitting in a              
scanner ‘resting’. Resulting resting-state networks are said to represent the ‘intrinsic’ network            
architecture of the brain, i.e., networks that are present even in the absence of exogenous               
tasks. These networks are often claimed to be modular and to constrain the task-based              
architecture of the brain21.  

As with task-fMRI, one might ask how representative resting-state networks are given that             
participants are anything but at rest. They are switching between fixating on a cross-hair,              
trying to stay awake, visualising, trying not to think and thinking through inner speech21,22.              
Some of these are not particularly natural and, unlike task-fMRI, there is no verifiable way to                
label resulting networks. At best, reverse inference is used to give 5-10 gross labels, like the                
‘auditory’ network23–25. Despite claims that these ‘intrinsic’ networks constrain task-fMRI          
networks, it is increasingly suggested that this is not necessarily so21. The brain is less modular                
during task- compared to resting-fMRI26 and modularity decreases as tasks get more            
difficult27–29. Indeed, up to 76% of the connections between task- and resting-fMRI differ30.             
Furthermore, more ecological stimuli result in new sets of networks that are less modular and               
only partly constrained by resting networks 31,32.  

Natural-fMRI 
Based on considerations like these, there is a growing consensus that taking a more ecological               
approach to neuroscience might increase our understanding of the relationship between the            
brain and behaviour5,33–42. Though there are 16 publicly available natural-fMRI datasets that            
might be used for this purpose43, there is no dataset with a large number of participants, long                 
and natural stimuli and stimulus variability. Specifically, most datasets have a small number             
of participants (median = 23). However, 80 or more participants are preferred for detecting              
medium effect sizes and producing replicable task-fMRI results 44–46. Natural-fMRI datasets          
with larger numbers tend to use short (~10 minute) audio or audiovisual clips. However,              
stimulation times of 90 minutes or more are preferred for reliability and individual             
analyses 47–50.  
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Longer natural-fMRI datasets have a small number of participants and one stimulus (though             
see51). These include 11 people watching ‘Raiders of the Lost Ark’52 and 20 listening to an                
audio description of ‘Forrest Gump’ during fMRI. A subset of the latter returned to be               
scanned watching the movie dubbed in German (http://studyforrest.org)53,54. However, with          
only one movie, generalisability is limited. More movies would not only increase            
generalisability, they would increase the number of stimulus features and events in a variety of               
(jittered) contexts that might be annotated. These could then be used to label finer grained               
patterns of activity, e.g., making machine learning/decoding approaches more feasible55–57.  

Indeed, there is no a priori reason participants need to watch the same movie during               
natural-fMRI. Existing long datasets might use one stimulus because intersubject correlation           
(ISC) is a common method for analysing natural-fMRI data58. Though this is a powerful              
model-free approach (for an overview, see59), it requires participants to watch the same movie.              
However, most questions are stimulus-feature or event specific and independent of the movie             
being watched. Thus, model-free independent component, convolution/deconvolution and        
other analyses can be done at the individual participant level with different movies, increasing              
generalisability and the possibility of more detailed analyses through more varied stimulus            
annotations.  

NNDb 
To fill these gaps in publicly available data, we collected a ' Naturalistic Neuroimaging             
Database' (NNDb) from 86 people who each did a battery of behavioral tests and watched a                
full-length movie during natural-fMRI. We sought to reach a balance that promotes            
generalizability, allows a large variety of stimulus features and events to be annotated and              
most any analysis method to be used. To achieve this, our participants watched 10 different               
movies from 10 different genres. They had not previously seen the movies they watched              
because multiple viewings might change the functional network architecture of the brain            
(though activity patterns may appear similar)60. We validate that the data is of a high quality                
and good temporal alignment, whilst providing an example of using annotations to label             
networks. Figure 1 provides an overview of the study and analyses used to make this               
assessment.  

--------------------------- 
Figure 1 

--------------------------- 
Data discovery is nearly unlimited with the NNDb as there are a vast number of annotations                
that can be made from the movies and approaches to analysis. This flexibility makes it usable                
across disciplines to address questions pertaining to how the brain processes information            
naturally. This includes more than replicating prior findings with more ecologically valid            
stimuli. That is, there are a number of broad open questions that the NNDb can be used to                  
address for the first time, like the systematic study of how context is used by the brain5. Given                  
the lack of robust neuroimaging biomarkers for mental illness 61,62, the NNDb might also help              
increase the pace of clinically relevant discovery, e.g., by uncovering labelled network            
patterns that predict individual differences 42.  
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Methods 

Participants 
Based on sample size considerations reviewed above, we attempted to create a database with              
84 participants watching 10 full-length movies from 10 genres (Table 1). To reach this              
number, we recruited 120 individuals using participant pool management software          
(http://www.sona-systems.com/). Those meeting MRI safety (e.g., no metal implants) and          
inclusion criteria were invited to participate. In particular, participants were required to be             
right-handed, native English speakers, with no history of claustrophobia, psychiatric or           
neurological illness, not taking medication (at the time of scan), without hearing impairment             
and with unimpaired or corrected vision. We also pseudo-randomly selected participants such            
that the final sample was relatively gender balanced. Of those who enrolled and completed the               
study, two were excluded as they were determined to be left handed, two because they asked                
to get out of the scanner multiple times and one who was a data quality outlier. 

--------------------------- 
Table 1 

--------------------------- 
The final sample consisted of 86 participants (42 females, range of age 18–58 years, M =                
26.81, SD = 10.09 years). These were pseudo-randomly assigned to a movie they had not               
previously seen, (usually) from a genre they reported to be less familiar with. Table 2 provides                
a summary of participant demographics by movie. At the conclusion of the study, participants              
were given £7.5 per hour for behavioural testing and £10 per hour for scanning to compensate                
for their time (receiving ~£40 in total). The study was approved by the ethics committee of                
University College London and participants provided written informed consent to take part in             
the study and share their anonymised data.  

--------------------------- 
Table 2 

--------------------------- 

Procedures 
Participants meeting inclusion criteria were scheduled for two sessions on seperate days.            
During session one, participants gave informed consent and then completed the majority of             
the National Institute of Health (NIH) Toolbox. This provides validated measures of sensory,             
motor, cognitive and emotional processing that might be used as individual difference            
measures 63. We only excluded tests in the ‘Sensation’ and ‘Motor’ domains that required             
physical implementation (e.g., scratch and sniff cards, a pegboard, endurance walking, etc.).            
Participants were provided with headphones and tests were administered in a sound shielded             
testing room on an iPad. At the end of session one, participants filled out a questionnaire on                 
movie habits, including information on preferred movie genres. The entire session typically            
took about one hour.  

Functional and anatomical MRI and a final questionnaire were done during a second session              
that was separated from the first by about 2-4 weeks (M = 20.36 days; SD = 23.20). Once in                   
the scanning suite, participants reporting corrected vision were fitted with MRI-safe glasses.            
All participants were fit with earbuds for the noise-attenuating headphones. They were put in              
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the head-coil with pillows around the head and under the knees for comfort and to reduce                
movement over the scanning session. Once in place, participants chose an optimal stimulus             
volume by determining a level that was loud but comfortable. Video presentation was adjusted              
for optimal viewing quality. Participants were given a bulb in their right hand and told to                
squeeze if something was wrong or they needed a break during the movie. They were               
instructed to not move as best as they could throughout scanning as movement would make               
the scans unusable.  

Except in one case, functional MRI movie scans were done first and with as few breaks as                 
possible. During breaks, participants were told that they could relax but not move. During              
scanning, participants were monitored by a camera over their left eye. If they appeared drowsy               
or seemed to move too much during the movie, the operator of the scanner gave them a                 
warning over the intercom by producing a beep or speaking to them. In some cases we                
stopped the scan to discuss with the participant. After the movie, participants had an              
anatomical scan and were told they could close their eyes if they wished. Following scanning,               
participants filled out other questionnaires, e.g., about their specific experience with content in             
the movie they watched. Finally, participants were paid and sent home.  

Movie Stimuli 
Table 1 provides an overview of the 10 movies participants watched during fMRI. These were               
chosen to be from 10 different genres and to have an average score of > 70% on publicly                  
available metrics of success. These were the Internet Movie Database (IMDb;           
https://www.imdb.com/), Rotten Tomatoes (RT; https://www.rottentomatoes.com/) and      
Metacritic (https://www.metacritic.com/). All movies were purchased and stored as ‘.iso’          
files. Relevant sections of the DVD (i.e., excluding menus and extra feature) were directly              
concatenated to a mpg container using: 

ffmpeg -i concat:VTS_01_1.VOB\| ... VTS_01_8.VOB -c copy -f dvd 
movie_name.mpg  

 
Where ‘-c’ copies the codec and ‘-f’ specifies the DVD format. This maintains the original               
DVD video size and quality.  

The resulting files were presented to participants in full-screen mode through a mirror             
reversing LCD projector to a rear-projection screen measuring 22.5 cm x 42 cm with a field of                 
view angle of 19.0°. This screen was positioned behind the head coil within the MRI bore and                 
was viewed through a mirror above participants’ eyes. High quality audio was presented in              
stereo via a Yamaha amplifier through Sensimetrics S14 scanner noise-attenuating insert           
earphones (https://www.sens.com/products/model-s14/).  

Movie Pausing 
Movies were played with as few breaks as possible. This allows for the most natural,               
uninterrupted viewing experience. It also results in good timing accuracy, needed for relating             
movie features and events to brain responses. It maintains timing by avoiding unknown and              
accumulated human and hardware processing delays associated with starting and stopping and            
minimises discontinuities in the hemodynamic response. To accomplish continuous play with           
the possibility of arbitrary stopping points, we created a script and hardware device to allow               
the operator to stop the scanner and pause the movie at any time and resume where the movie                  
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left off when the scanner was restarted. Unless participants signalled that they wanted a break,               
the movies were played in about one hour segments (because of a software limitation on the                
EPI sequence we used). These breaks were timed to occur during scenes without dialogue or               
relevant plot action.  

Specifically, a Linux BASH script opened and paused movies using ‘MPlayer ’           
(http://www.mplayerhq.hu/). The script then went into a state of waiting for a TTL             
(transistor-transistor logic) pulse from the scanner, indicating that scanning had begun. Pulses            
were received through a USB port connected to an Arduino Nano built to read and pass TTL                 
pulses from the scanner to the script. When the scan was started and the first TTL pulse was                  
received, eight seconds were allowed to elapse before the movie began to play. These              
timepoints allowed for the scanner to reach a state of equilibrium and were later discarded. If                
the scanner was subsequently paused, e.g., because the participant requested a break, the             
movie pausing BASH script stopped the movie within 100 ms. This known delay occurred              
because the script monitors for TTL pulses every 50 ms. If a pulse was not registered, the                 
script required that the next pulse also did not arrive before pausing to assure pulses had                
stopped. When the scan was restarted, eight seconds were again allowed to pass before the               
movie was unpaused.  

Whenever a movie was paused after it had been playing, the whole brain volume being               
collected was dropped, causing up to one second of the movie to be lost from the fMRI                 
timeseries. There were two versions of the script. In the first, the movie picked up where it left                  
off when it had been paused (v1; N = 29 or 33.72% of participants). The second version                 
rewound the movie to account for the time lost from the dropped volume. However, because               
of an initial coding error in version two (v2.1), the script fast forwarded instead of rewound in                 
N = 13 or 15.12% of participants. Because fast forwarding could not be greater than one                
second and the error affected only 47.44% of the runs for those 13 participants (with the other                 
52.56% being correctly rewound), data timing quality was not compromised more than the             
first version of the script on average. The error was subsequently fixed for the remainder of                
the study (v2.2; N = 44 or 51.16% of participants). In all versions, output files from the script                  
recorded system and movie timing to calculate start, stop and rewind times. For this reason, all                
(including system) delays were tracked and are, therefore, known quantities that can be             
accounted for in preprocessing to assure that fMRI timeseries and movies are temporally well              
aligned (see ‘Timing correction’ below). The Supplementary Materials provides additional          
information on how the script kept track of timing information and rewind times were              
calculated.  

Movie Annotations 
Words and faces were annotated in the movies using fully automated approaches. These were              
then used to demonstrate data and timing quality while also illustrating a method for network               
labelling. For words, we extracted the audio track as a ‘.wav’ and the subtitle track as a ‘.txt’                  
file from each movie ‘.iso’ file. The .wav file was input into the ‘Amazon Transcribe ’, a                
machine learning based speech-to-text transcription tool from Amazon Web Services (AWS;           
https://aws.amazon.com/transcribe/). The resulting transcripts contained on and offset timings         
for individual words, although not all words are transcribed or accurately transcribed. In             
contrast, movie subtitles do not have accurate on and offset times for individual words though               
most words are accurately transcribed. Therefore, to estimate the on and offset times of the               
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words not transcribed, a script was written that first uses dynamic time warping (DTW64) to               
align word onsets from the speech-to-text transcript to corresponding subtitle words in each             
individual subtitle page. Subtitle words that matched or that were similar to the transcriptions              
during the DTW procedure inherited the timing of the transcriptions.  

Remaining subtitle words not temporally labeled were then estimated, with different degrees            
of accuracy. Continuous and partial word estimations inherited their on and offset times from              
matching/similar transcription words in the subtitle page. ‘Continuous’ words use the on and             
offset times from adjacent words directly, making them the most accurate. ‘Partial’ estimation             
occured where there was more than one word between matched/similar words. In those cases              
the length of each word was approximated, making it less accurate. ‘Full’ estimation was the               
least accurate, occurring when there were no matching/similar words transcribed, and the            
onsets and lengths of the words were estimated from the onset and offset of the subtitle page.                 
For partial and full estimations, word length was determined by counting the number of letters               
in each word and dividing up the bounding time proportionally. For example, if there were               
two words with 10 and five letters, they got 66.67% and 33.33% of the time, respectively.                
This procedure might occasionally result in unreasonably long word length estimations (e.g.,            
because of a long dramatic pause between words). In such cases, we used a word truncation                
algorithm based on mean word lengths in conversational speech65. A more detailed account of              
how this script works is available in the Supplementary Materials.  

We used the AWS ‘Amazon Rekognition ’ application programming interface (API) to obtain            
machine learning based faces annotations (https://aws.amazon.com/rekognition/). To do this,         
the original ‘.mpg’ video files were first converted to ‘.mp4’ to have a H264 codec compatible                
with Amazon’s Rekognition guidelines. A script called the face recognition API without any             
special configuration or modification and the output was a ‘.json’ file. This contained             
timestamps every 200 ms, if a face was present, other details about the face (e.g. predicted age                 
range, gender, position on screen and whether the mouth was open) and confidence levels.  

Acquisition 
Functional and anatomical images were acquired on a 1.5T Siemens MAGNETOM Avanto            
with a 32 channel head coil (Siemens Healthcare, Erlangen, Germany). We used multiband             
EPI66,67 (TR = 1 s, TE = 54.8 ms, flip angle of 75°, 40 interleaved slices, resolution = 3.2 mm                    
isotropic), with 4x multiband factor and no in-plane acceleration; to reduce cross-slice            
aliasing68, the ‘leak block’ option was enabled69. Slices were manually obliqued to include the              
entire brain. A slice or at most a few slices of the most inferior aspect of the cerebellum was                   
occasionally missed in individuals with large heads. This EPI sequence had a software             
limitation of one hour of consecutive scanning, meaning each movie had at least one break.               
From 5,470 to 8,882 volumes were collected per participant depending on which movie was              
watched (see Table 1). A 10 min high-resolution T1-weighted MPRAGE anatomical MRI            
scan followed the functional scans (TR = 2.73 s, TE = 3.57 ms, 176 sagittal slices, resolution                 
= 1.0 mm)3.  

Preprocessing 
MRI data files were converted from IMA to NIfTI format and preprocessed to demonstrate              
data quality using mostly the AFNI software suite70. Individual AFNI programs are indicated             
parenthetically in subsequent descriptions.  
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Anatomical 
The anatomical/structural MRI scan was corrected for image intensity non-uniformity          
(‘3dUniformize’) and deskulled using ROBEX 71 in all cases except for one participant where             
‘3dSkullStrip ’ performed better. The resulting anatomical image was nonlinearly aligned          
(using ‘auto_warp.py’) to the MNI N27 template brain, an average of 27 anatomical scans              
from a single participant (‘Colin’)72. The anatomical scan was inflated and registered with             
Freesurfer software using ‘recon-all ’ and default parameters (version 6.0,         
http://www.freesurfer.net)73,74. This served to create white matter and ventricle (i.e., cerebral           
spinal fluid containing) regions of interest that could be used as noise regressors. These              
regions were resampled into functional dimensions and eroded to assure they did not impinge              
on grey matter voxels. Finally, anatomical images were ‘defaced’ for anonymity           
(https://github.com/poldracklab/pydeface). 

Functional 
The fMRI timeseries were corrected for slice-timing differences (‘3dTshift ’) and despiked           
(‘3dDespike ’). Next, volume registration was done by aligning each timepoint to the mean             
functional image of the centre timeseries (‘3dvolreg ’). For 23 (or 26.74%) of participants,             
localiser scans were redone because, e.g., the participant moved during a break and the top               
slice of the brain was lost. For these participants, we resampled all functional grids to have the                 
same x/y/z extent (‘3dresample ’) and manually nudged runs to be closer together (to aid in               
volume registration). For all participants, we then aligned the functional data to the anatomical              
images (‘align_epi_anat.py ’). Occasionally, the volume registration and/or this step failed as           
determined by manual inspection of all data. In those instances we either performed the same               
procedure as for the re-localised participants (N = 5 or 5.81%) or reran the              
‘align_epi_anat.py ’ script, allowing for greater maximal movement (N = 6 or 6.98%). Finally,             
the volume-registered and anatomically-aligned functional data were (nonlinearly) aligned to          
the MNI template brain (‘3dNwarpApply ’).  

Next, we cleaned the timeseries, resulting in what we henceforth refer to as the ‘detrended               
timeseries’ for each run. Specifically, we first spatially smoothed all timeseries to achieve a              
level of 6mm full-width half maximum, regardless of the smoothness it had on input              
(‘3dBlurToFWHM’75). These were then normalised to have a sum of squares of one and              
detrended (‘3dTproject ’) with a set of commonly used regressors 76: These were 1) Legendre             
polynomials whose degree varied with run lengths (following a formula of [number of             
timepoints * TR]/150); 2) Six demeaned motion regressors from the volume registration; 3) A              
demeaned white matter activity regressor from the averaged timeseries in white matter            
regions; and 4) A demeaned cerebrospinal fluid regressor from the averaged timeseries            
activity in ventricular regions.  

Timing Correction 
To use stimulus annotations, timing correction was done to account for delays caused by the               
movie pausing script to assure that fMRI timeseries and movies are well aligned. Specifically,              
this script introduced a known 100 ms delay that was cumulative for each break in the movie.                 
Furthermore, depending on the versions of the script, there was also a possible additional              
(cumulative) delay from not rewinding (v1) or mistakenly fastforwarding (v2.1). These delays            
were calculated from script output files created for this purpose. Furthermore, these files             
allowed us to quantify potentially variable soft and hardware delays and account for these as               
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well. In particular, every voxel of the detrended timeseries was shifted back in time using               
interpolation to account for all delays, in the same manner as in slice timing correction but                
over all voxels uniformly (‘3dTshift ’). Detailed information on how delays were calculated            
and applied are provided in the Supplementary Materials.  

ICA Artifact Removal 
Spatial independent component analysis (ICA) is a powerful tool for detecting and removing             
artifacts that substantially improves signal-to-noise ratio in natural-fMRI data77. First, we           
concatenated all detrended timeseries after timing correction. As in the HCP, we did spatial              
ICA on this timeseries with 250 dimensions using ‘melodic ’ (version 3.14) from FSL78. Next,              
we labelled and removed artifacts from timeseries, following an existing guide for manual             
classification79. One of three trained authors went through all 250 components and associated             
timecourses, labelling the components as ‘good’, ‘maybe’, or ‘artifact’. As described in            
Griffanti et al.79, there are a typical set of ‘artifact’ components with identifiable topologies              
that can be categorised as ‘motion’, ‘veins’, ‘arteries’, ‘cerebrospinal fluid pulsation’,           
‘fluctuations in subependymal and transmedullary veins’ (i.e., ‘white matter’), ‘susceptibility          
artefacts’, ‘multi-band acceleration’ and ‘MRI-related’ artefacts. Our strategy was to preserve           
signal by not removing components classified as ‘maybe’. On a subset of 50 datasets (58.14%               
of the data), a second author classified all components to check for consistency. The authors               
discussed discrepancies and modified labels as warranted. It was expected that, similar to prior              
studies, about 70-90% of the 250 components would be classified as artifacts 79. Once done, we               
regressed the ICA artifact component timecources out of the detrended and concatenated            
timeseries (‘3dTproject ’).  

Analyses 
We used the preprocessed, detrended and concatenated timeseries with ICA-based artifacts           
removed (henceforth ‘fully detrended timeseries’) for several analyses meant to validate data            
quality. These included calculating the temporal signal-to-noise (tSNR) ratio as one of a set of               
metrics and a composite measure to assess data quality at the timeseries level (Overall Data               
Quality). We also did two whole-brain functional analyses using two previously established            
data-driven methods. One was intersubject correlation (ISC) analysis and the other involved            
labelling functional networks with annotations (Network labelling). These serve to show data            
quality similar to past work and provide evidence for timing accuracy between fMRI             
timeseries for participants and movies. The latter is crucial as movie breaks varied across              
participants, resulting in a small amount of temporal interpolation and psychological           
discontinuity across runs.  

Temporal Signal-to-Noise Ratio 
We calculated tSNR both before and after extensive preprocessing to demonstrate data quality             
and how it might improve after timeseries cleaning and artifact removal. Temporal SNR can              
be defined as the mean signal divided by the standard deviation of the signal over voxel                
timeseries 80. Though multiband acceleration greater than one improves sensitivity over          
multiband one68, average multiband four tSNR tends to be between 40-60, lower than             
unaccelerated sequences 68,78. A natural-fMRI dataset showed that manual ICA-based artifact          
rejection increased tSNR around 50 units, though this was not multiband data77. HCP             
multiband four tSNR increased by 30 after ICA cleanup of resting-state data78. Thus, we              
would expect to see a similar baseline level and improvement after ICA artifact removal. It is                
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worth noting that unlike most other datasets, we have over 1.5 hours of data per participant,                
likely sufficient at those tSNR values for detecting effects sizes of 1% or less 81. 

We first calculated tSNR (‘3dTstat ’) on three timeseries: 1) A minimally preprocessed            
timeseries that was corrected for slice timing, despiked, volume-registered and aligned to the             
anatomical image, timing-corrected and concatenated; 2) The same timeseries but blurred with            
a 6 mm FWHM (‘3dBlurToFWHM’); and 3) A fully preprocessed timeseries, detrended using             
white matter, ventricular, motion and ICA artifact timecourse regressors (‘3dTproject ’). We           
then calculated mean tSNR for all three timeseries using a mask that included grey matter,               
with most white matter and ventricle voxels removed. We calculated effect sizes at a voxel               
level using:  

ohen s d  C ′ = M −M1 2 

√ 2
(SD  − SD ) 2

1
2
2

 
 

 

Overall Data Quality 
Timeseries data quality were globally assessed using 10 measures and a composite of these: 1)               
To quantify timeseries timepoints outliers, we labelled voxels that were far from the median              
absolute deviation (‘3dToutcount ’). Whole timepoints were defined as outliers if more than            
10% of voxels were outliers by this definition; 2-8) We used seven parameters to quantify               
motion. These included the maximum average motion for each run from the demeaned motion              
regressors and the largest change in displacement between two successive timepoints (Delta);            
9) The mean tSNR from the minimally preprocessed timeseries; and 10) The total number of               
‘artifact’ ICA components. We then used the ‘multicon ’ package in R           
(https://www.r-project.org/) to z-transform these 10 items and create a composite data quality            
score for each participant. We defined outlying participants as anyone whose composite score             
was more than three standard deviations from the mean.  

Intersubject Correlation 
In addition to illustrating data quality similar to prior results, ISC demonstrates synchrony of              
fMRI timeseries between our participants and movies. We compared the ISCs of participants             
watching the same movie to those watching different movies because a fundamental            
assumption of ISC is that synchrony is stimulus driven. Thus, we expected correlation values              
to be significantly greater for the same movie compared to different movies, with values              
similar to past ISC results from a large number of participants. For example, in a task-fMRI                
study with 130 participants, the maximum ISC is 0.2782. 

Because movies had different lengths, we first truncated the fully detrended timeseries to be              
the length of the movie with the shortest duration (i.e., ‘500 Days of Summer ’; 5470 s/TRs or                 
about 1 hour and 31 minutes). We then computed pairwise Pearson’s correlations between the              
timeseries in each voxel for all pairs of participants for all movies (‘3dTcorrelate ’). This              
resulted in (½ * 86 * (86-1)) = 3655 pairwise correlation maps. These are composed of (½ *                  
20 * (20-1))+(½ * 18 * (18-1))+((½ * 6 * (6-1)) * 8) = 463 maps from participants watching                   
the same movie. The remaining (3655 - 463) = 3192 maps are from participants watching               
different movies. 

For the group analysis, we first converted Pearson’s r values to be normally distributed as               
z-scores using the Fisher z-transformation. Then, to compare ISC maps from people watching             
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the same or different movies, we used voxel-wise linear mixed effects models with crossed              
random effects (‘3dISC ’). This approach accounts for the interrelatedness of the pairwise ISC             
maps and can handle unequal sample sizes 83. The resulting map was Bonferroni-corrected for             
multiple comparisons using t = 6.04 corresponding to a voxel-wise p-value of .01 divided by               
the number of tests done in each voxel, i.e., p < .01/(4 * 64,542) = .00000004. We combined                  
this with an arbitrary cluster size threshold of 20 voxels. To demonstrate reliability, we also               
repeated this analysis after splitting the data into groups of participants watching two different              
sets of five movies. We compared the resulting spatial patterns of activity using correlation in               
the unthresholded data and the Dice coefficient for thresholded data (‘3ddot’ ).  

Network Labelling 
Besides demonstrating data and timing quality, here we also illustrate a fairly straightforward             
method for using annotations to label networks with a method similar to one used in existing                
natural-fMRI studies. This combines model-free ICA to find networks and a model-based            
approach to label those networks 84,85. In particular, we derive networks in each participant with              
ICA using ‘melodic ’ run on the fully detrended timeseries (and, again, limited to 250              
dimensions). We then convolve annotated word, no word, face and no face onsets and              
durations with a canonical hemodynamic response function (‘3dDeconvolve ’). The resulting          
ideal waveforms are regressed against the 250 independent component timescourses using           
general linear model (GLMs) followed by pairwise contrasts between words and no words and              
faces and no faces (using FSL’s ‘fsl_glm ’). A Bonferroni-corrected threshold was set at p =               
.01 at the single voxel level divided by 250 components and eight statistical tests (not all of                 
which are discussed here), i.e., .01/(250 * 8) = p < .000005. We combined this with an                 
arbitrary cluster size threshold of 20 voxels at the component level. If there was more than one                 
resulting component at this threshold and cluster size, we summed those components.  

For group analysis, we did one sample t-tests for GLM results of words vs no words, no words                  
vs words, face vs no faces and no faces vs faces (‘3dttest++ ’). To correct for multiple                
comparisons, we again used a Bonforoni correction of .01 at the single voxel level divided by                
approximately 85,000 voxels and four tests, i.e., .01/(85,000 * 4), rounding to p < .00000001.               
We again combined this with an arbitrary cluster size threshold of 20 voxels. To illustrate the                
precise anatomical correspondence of our results with prior data, we overlay fMRI term-based             
meta-analysis from Neurosynth86 (Retrieved May 2020) for ‘language’        
(https://neurosynth.org/analyses/terms/language/; from 1101 studies) and the ‘fusiform face’        
area (https://neurosynth.org/analyses/terms/fusiform%20face/; from 143 studies; FFA). We       
further illustrate anatomical correspondence by showing the mean peaks of the putative (left             
and right) FFA, derived by averaging peaks from a meta-analysis of 49 studies (converted to               
MNI x/y/x coordinates = 39/-53/-22 and -40/-54/-23; see Table 1 in87).  

Data Records 
Information and anatomical data that could be used to identify participants has been removed              
from all records. Resulting files are available from the OpenNeuro platform for sharing fMRI              
(and other neuroimaging) data at https://openneuro.org/datasets/ds002837 (dataset accession        
number: ds002837). A README file there provides a detailed description of the available             
content. Additional material and information are available on the NNDb website at            
http://www.naturalistic-neuroimaging-database.org.  
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Participant Responses 
Location  demographics.csv  

File format  comma-separated value 

Participants’ responses to demographic questions, the NIH Toolbox and all other           
questionnaires are available in a comma-separated value (CSV) file. Data is structured as one              
line per participant with all questions and test items as columns.  

Anatomical MRI 
Location  sub-<ID>/anat/sub-<ID>_T1w.nii.gz 

File format  NIfTI, gzip-compressed 

Sequence protocol  sub-<ID>/anat/sub-<ID>_T1w.json 

The defaced raw high-resolution anatomical images are available as a 3D image file, stored as               
sub-<ID>_T1w.nii.gz.  

The N27 MNI template aligned anatomical image and the anatomical mask with white matter 
and ventricles eroded are also available as 
derivatives/sub<ID>/anat/sub-<ID>_T1w_MNIalignment.nii.gz and 
derivatives/sub<ID>/anat/sub-<ID>_T1w_mask.nii.gz respectively 

Functional MRI 
Location  sub-<ID>/func/sub-<ID>_task-[movie]_run-0[1–6]_bold.nii.gz 

Task-Name [movie] 500daysofsummer, citizenfour, theusualsuspects, pulpfiction,      
theshawshankredemption, theprestige, backtothefuture, split, littlemisssunshine, 12yearsaslave 

File format  NIfTI, gzip-compressed 

Sequence protocol  sub-<ID>/func/sub-<ID>_task-[movie]_run-0[1–6]_bold.json 

Functional MRI data are available as individual timeseries files, stored as           
sub-<ID>_task-[movie]_run-0[1–6]_bold.nii.gz. The fully detrended timeseries is also       
available as derivatives/sub-<ID>_task-[movie]_bold_preprocessedICA.nii.gz. 

Motion and Outlier Estimates 
Location  motion/sub<ID>/sub-<ID>_task-[movie]_run0[1-6]_bold_[estimates].1D  

Motion [estimates]  motion, maxdisp_delt, wm, ventricle, outliers 

File format  plain text  

Motion estimates are from the registration procedure in the AFNI program ‘3dvolreg ’ and             
outliers were estimated using ‘3dToutcount ’, These are provided in space-delimited text files            
where the estimates represent 1) motion : degree of roll, pitch and yaw and displacement in the                
superior (dS), left (dL) and posterior (dP) directions in mm; 2) maxdisp_delt : maximum             
displacement (delta) between any two consecutive timepoints; 3) wm: mean activity in the             
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white matter; 4) ventricle : mean activity in the ventricles and 5) outliers : individual timepoint              
outliers at 10% levels.  

ICA Artifact Labels 
Location  derivatives/sub<ID>/func/sub-<ID>_task-[movie]_bold_ICAartifacts.1D  

File format  plain text  

ICA components labeled as artifacts used to correct ICA time series as proved are provided as                
space delimited text where the columns are artifactual timecources.  

Annotations 
Location  stimulus/task-[movie]_[annot]-annotation.1D  

Annotation [annot] word, face 

File format  plain text  

Word, no word and face and no face onsets and durations are provided in four space-delimited                
text files. In the word annotation file, columns represent: 1) Words; 2) Word onset in seconds                
and milliseconds; 3) Word offset in seconds and milliseconds. In the face annotation file,              
columns represent: 1) Face onset in seconds and milliseconds and 2) Duration of face              
presence in seconds and milliseconds.  

Technical Validation 

Stimuli 
Timing 
The movies were played in the original DVD audio and video quality. This relative lack of                
compression results in low latencies when starting and stopping the movies. System delays             
were calculated from the timing output of the movie-pausing script. Averaged over all runs              
and participants, this delay was 19.73 ms (SD = 7.57). This is perhaps not more than the                 
expected latency on a standard Linux kernel88. However, because this delay was measured, it              
can be accounted for in the timeseries through temporal interpolation as described.  

Annotations 
Words and faces were annotated in the movies so that they could be used to show data quality                  
and timing accuracy while also illustrating a fairly straightforward method to label brain             
networks. To be used for this purpose, the overall quality of the annotations themselves needs               
to be demonstrated. For words, Table 3 provides a breakdown that reflects relative word on               
and offset accuracy for individual movies. Machine learning-based speech-to-text word          
transcriptions are assumed to have the highest temporal accuracy. An average of 75.75% of              
subtitle words had matching or similarity-matched word transcriptions. This was after hand            
transcribing over 2000 missing word times for ‘Little Miss Sunshine ’ to bring accuracy up to               
72.48% in order to correct for poor transcription accuracy (~45%, possibly due to overlapping              
dialogue in the movie). Speech-to-text transcription left an average of 24.25% of the subtitle              
words to get estimated word lengths. Of these, an average of 20.30% were made up of the                 
‘continuous’ and ‘partial’ estimations, considered relatively accurate because they rely on           
accurately transcribed matched/similar words to make estimations. Only 3.95% of the subtitle            
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words on average were fully estimated. These have the least accurate word timings because              
their length had to be estimated entirely from the subtitles page start and end times. Finally, to                 
increase accuracy we truncated the 2.52% of words that were unreasonably long. In summary,              
it might be argued that about (75.75% Matched/Similar + 20.30% Continuous/Partial) = ~95%             
of words have relatively accurate millisecond level onset times. Given that there are >10,000              
words on average per movie, a ~5% rate for less accurate word timing is likely acceptable.  

--------------------------- 
Table 3 

--------------------------- 
For face labels, histograms for all movies were used to examine the distribution of confidence               
levels. Across all movies, the average percentage of face labels with a confidence value              
greater than .95 was 90.67%, motivating us to use all the labelled faces in further analysis                
(Table 3). We also qualitatively compared results with the movies and they appeared to              
confirm that confidence levels were accurate.  

Anatomical MRI 
Table 4 provides a list of anatomical and functional MRI irregularities. Anatomical image             
segmentation and cortical surface reconstruction with Freesurfer finished without error for all            
participants. Surfaces were individually inspected and no manual corrections were needed,           
suggesting anatomical images were of good quality.  

--------------------------- 
Table 4 

---------------------------  

Functional MRI 
Temporal Signal-to-Noise Ratio 
Mean tSNR for timeseries averaged over grey matter voxels was comparable to prior             
multiband four studies reviewed earlier. Furthermore, there were comparable increases in           
tSNR after preprocessing (Table 5). Cohen’s d at the individual voxel level shows regions of               
the brain for which tSNR increased after full preprocessing (Figure 2). This includes most              
medial and posterior aspects of the brain, with less tSNR increase in the frontal lobe.  

--------------------------- 
Table 5 and Figure 2 

--------------------------- 
Overall Data Quality 
We assessed overall fMRI timeseries data quality using 10 measures and a composite of these.               
Table 6 shows the means per run across participants for eight of these measures. With the                
exception of run three, the number of outlying timepoints was under 1% per run on average.                
Maximum motion, as measured by six motion regressors, was low, under a degree and              
millimeter on average. The greatest maximal displacement was pitch (0.96°) and movement in             
the inferior/superior direction (0.92 mm). This is perhaps what might be expected for supine              
participants whose heads are firmly held in the left/right directions. Maximum delta was             
similarly under one millimeter. These parameters did not increase more in later compared to              
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earlier runs. If anything, maximal movement decreased over the scanning session. The two             
other measures of overall data quality are given in Table 5, showing that tSNR (discussed in                
the prior section) and the number of ICA artifacts were reasonably high and low, respectively.               
On a subset of 50 datasets, there was a 96.22% agreement (SD = 2.20) between authors with                 
regard to ICA artifact classification. Percentages of ICA artifacts are similar to those found in               
prior studies reviewed earlier. Finally, we created a composite measure from these 10 metrics              
to detect outliers (reverse coding tSNR). These measures had a high internal consistency with              
Cronbach’s alpha = 0.94. Using this measure, only one participant was considered an outlier.              
This is the participant mentioned in the Methods/Participants that was excluded from the             
database. Taken together, these measures indicate that NNDb timeseries data are of high             
overall quality.  

--------------------------- 
Table 6 

--------------------------- 
Intersubject Correlation 
ISC was done to show functional fMRI data quality and timing accuracy by demonstrating              
synchronization between participants and movies. There was significantly higher ISC at a            
Bonferroni-corrected threshold in large portions of auditory and visual cortices (precisely           
following sulci and gyri) when participants watched the same movies compared to different             
movies (Figure 3, top). Similar to prior work, the maximum correlation was r = 0.28. To                
examine reliability, we split the movies into two groups of participants that watched different              
sets of five movies. The results were largely spatially indistinguishable from each other (r =               
0.96) or from results with all movies (with rs of 0.991 and 0.987). We also calculated spatial                 
overlap using the Dice coefficient (or the Sorensen-Dice index) on data thresholded at a              
t-value of 10 (Figure 3, bottom). This was an arbitrary value chosen because even extremely               
high p-values resulted in whole-brain ISC. The resulting Dice coefficient was 0.82. These             
results demonstrate high data quality through robust activity patterns, spatial precision and            
timing accuracy through participant synchrony with movies.  

--------------------------- 
Figure 3 

--------------------------- 
Network Labelling 
ICA and regression with a canonical response function were used to demonstrate data quality,              
timing accuracy and an approach to network labelling. There were M = 11.43 (SD = 4.31)                
word > no word, M = 13.52 (SD = 7.21) no word > word, M = 8.71 SD = 8.09, face > no face                        
and M = 8.44 (SD = 7.84) no face > face networks per participant, each significant at a                  
stringent Bonferroni-corrected threshold. For words (compared to no words), these networks           
variously consisted of activity in the superior temporal plane, posterior inferior frontal gyrus             
and motor regions as might be expected during language processing89. For faces (compared to              
no faces), activity was in the posterior superior temporal sulcus and fusiform gyrus among              
other regions that might be expected during face processing. An example from a single              
participant is shown in Figure 4 (top), using hierarchical clustering (with Ward’s method) to              
order all significant word > no word and face > no face networks in terms of the Euclidean                  
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distance between IC timecources to show network similarity. By this approach language and             
face networks mostly cluster separately.  

Group t-tests across participants showed significant patterns of activity consistent with the            
sum of networks from individual participants, again using a Bonferroni corrected threshold. In             
particular, word and face networks resembled meta-analyses of language (Figure 4, middle,            
black outline) and face processing (Figure 4, bottom, white outline). The face networks             
included the putative fusiform face area(s) (Figure 4, bottom, black asterisks), with            
immediately adjacent regions more involved in processing times in the movie when faces are              
not visible. Overall, both individual and group results demonstrate high data quality by being              
robust and showing anatomical precision. Furthermore, such strong relationships between          
stimulus annotations and idealised timeseries again indicate that timing accuracy is high.  

--------------------------- 
Figure 4 

--------------------------- 

Usage Notes 
We think that the NNDb has the potential to help revolutionise our understanding of the               
complex network organization of the human brain as it functions in the real-world. However,              
there are several usage bottlenecks, including annotations and analyses that we now discuss to              
help others use the NNDb to make new discoveries. We then conclude by briefly discussing               
how collective community based annotations and usage will contribute to the future of the              
NNDb. 

Annotation Bottleneck 
Annotations are necessary for hypothesis testing using the NNDb. This involves not only             
coding a stimulus feature of interest but also a suitable range of controls at a finer level of                  
detail than used to label ‘language’ and ‘face’ networks herein. For example, if one were               
interested in the neurobiological mechanisms of how observed face movements are used by             
the brain during speech perception90,91, one might want to annotate a large range of features.               
These might include speech with more or less environmental noise when the face is visible (as                
audiovisual speech improves speech in noise). There might need to be annotated auditory-only             
controls matched for auditory/semantic features and visible scene complexity. There may need            
to be face-only controls or audiovisual controls with faces in profile, etc. If done manually,               
movie annotations at this level of detail might be very time consuming. Though this might               
prove necessary for testing some specific hypotheses, we suggest automated approaches and a             
brain-driven approach that might be used to speed up the annotation process.  

Automated approaches to annotation can make use of a large number of existing text-based              
descriptions of movies to provide time-locked features. These include, 1) Detailed           
descriptions in scripts that can be aligned to movie times from subtitles 92; 2) Detailed verbal               
descriptions from descriptive video services that make movies accessible to millions of            
visually impaired and blind individuals 93; 3) Video clips from movies available on social             
websites like YouTube that can be matched to movie times by visual scene matching to               
include user comments as features 94. For example, one two-minute clip from Gravity on             
YouTube currently contains over 3,800 comments that can be text-mined for features; and 4)              
There are many emerging automated machine learning approaches for labelling features, e.g.,            
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the YouTube8M which has a vocabulary consisting of 4716 features (e.g., ‘cat’, ‘book’, ‘egg’,              
etc)95 or human action video datasets 96.  

Brain-driven annotations potentially decrease the need to annotate everything in movies. That            
is, the brain data itself can be used to identify movie timecodes for acquiring more detailed                
annotations. This allows users of the NNDb to focus on times when networks of interest are                
processing information, reducing the amount of movie that needs to be annotated. For             
example, ICA can be used to derive networks and associated independent component            
timecourses (as shown in Figure 4, top). Users of the NNDb can annotate only what happens                
when the response is rising (or at peaks) in these timecourses in components that represent               
networks of interest (thus, being able to determine what the 11 individual participant networks              
grossly labelled as ‘Language’ are doing in Figure 4). This can be done manually, with the                
aforementioned automated approaches or in a crowdsourced manner. For example, one could            
submit the videos from the at rise times in IC timecourses in Figure 4 (top) containing the                 
amygdala and have thousands of people quickly label observed emotional characteristics.  

Analysis Bottleneck 
Another potential bottleneck is analysis. There are arguably no standardised approaches for            
analysing complex and high dimensional fMRI data from long natural stimuli like movies             
(though a few approaches are becoming increasingly common58,97,98). The computer science           
community has learned that an extremely effective way to foster research on a topic is by                
running machine learning competitions on fixed datasets. These competitions allow          
unambiguous comparison of solutions to a problem and allow small improvements to be             
clearly noted and published. For example, the annual ‘ImageNet Large Scale Visual            
Recognition Challenge’ (ILSVRC) resulted in algorithms that outperform humans far more           
quickly than expected99. Machine learning approaches are becoming an increasingly common           
way to analyze fMRI data, with a growing number of examples applied to natural movie               
stimuli98,100. We suggest that, to generate innovation in analysis, that competitions similar to             
the ILSVRC could be run using the NNDb to crowdsource the development of new machine               
learning (and other) approaches for fMRI data from movies.  

Future of the NNDb 
We will make more fMRI data available as it is acquired at the same (1.5T) and higher field                  
strengths (3T) in typically developing and clinical groups. We hope that over time, we will be                
able to amass the collective effort of our own and other communities to collate annotated               
stimulus features to be able to ask more and more specific questions of the data. We will make                  
these annotations and improvements to older annotations available in regular updates. We will             
make code for analysis available, e.g., we are developing a graph theoretic dynamic             
core-periphery algorithm capable of fast voxel-based analysis. We will try and host machine             
learning-based analysis competitions to drive innovation and make all code available.  

Code Availability 

Scripts used in this manuscript are available at: https://github.com/lab-lab/nndb_project. 
Additional information can be found at http://naturalistic-neuroimaging-database.org/.  
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Figure Captions 
Figure 1 Schematic overview of NNDb study procedures, preprocessing and data validation.            
Procedures (green) occurred over two sessions separated by a few weeks. Session one             
consisted primarily of a battery of behavioural tests to quantify individual differences. In             
session two, functional magnetic resonance imaging (MRI) was done while participants           
watched one of 10 full length movies followed by anatomical MRI. After preprocessing the              
data (yellow), three primary data validation approaches were undertaken (orange). Functional           
MRI data is shown to be relatively free of outliers, with good temporal signal-to-noise ratio               
(tSNR) and low numbers of outlying timepoints, head movement and independent component            
analysis (ICA) artifacts (orange, column 1; see Tables 5-6 and Figure 2). Intersubject             
Correlation analyses provide evidence for functional data quality and the temporal           
synchronization between participants and movies using linear-mixed effects models with          
crossed random effects (MNE-CRE; orange, column 2; see Figure 3). Automated word and             
face annotations were used to find associated independent component (IC) timecourses from            
ICA using general linear models (GLMs; orange, column 3; see Figure 4). In addition to               
further illustrating data quality and timing accuracy, this analysis shows how annotations            
might be used to label brain networks.  

Figure 2. Voxel-wise temporal signal-to-noise ratio analysis demonstrating increases in data           
quality with preprocessing. Temporal SNR was calculated in each voxel using mostly            
unprocessed and fully preprocessed functional magnetic resonance imaging (fMRI) timeseries          
data from 86 participants. Full preprocessing included blurring and detrending using motion,            
white matter, cerebral spinal fluid and independent component analysis (ICA) based artifact            
regressors. Cohen’s d effect sizes were calculated in each voxel as the mean differences              
between fully preprocessed and minimally preprocessed fMRI timeseries tSNR, divided by           
the pooled standard deviation. See Table 5 for tSNR values averaged across grey matter              
voxels.  

Figure 3. Results of intersubject correlation (ISC) demonstrating data quality and timing            
synchrony between participants and movies. ISC is a data-driven approach that starts with             
calculating the pairwise correlations between all voxels in each pair of participants. We used a               
linear mixed effects with crossed random effects (LME-CRE) model to contrast participants            
watching the same versus different movies (top). Equally-spaced slices were chosen to be             
representative of results across the whole brain. To demonstrate reliability, we split the data in               
half, with each having five different movies. The same LME-CRE model was run on each half                
and the results are presented at an arbitrary threshold to more easily view similarities and               
differences (bottom row). Slices were chosen to make differences more salient. The colour bar              
represents correlation values (r) in all panels. All results are presented at a p-value corrected               
for multiple comparisons using a Bonforoni correction and an arbitrary minimum cluster size             
threshold of 20 voxels.  

Figure 4. Results of combined independent component analysis (ICA) and model-based           
analysis demonstrating data quality, timing accuracy and an approach to network labelling.            
First, networks were found at the individual participant level using ICA, a multivariate             
data-driven approach. Word and face annotations from movies were then convolved with a             
standard hemodynamic response function and used in general linear models to find associated             
IC timecourses. The dendrogram (top) shows 13 of 20 significant networks from an example              
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participant that were more associated with words > no words (‘Language’; red lines) and faces               
> no faces (‘Faces’; blue lines), clustered to show IC timecourse similarity. Slices are centred               
around the centre of mass of the largest cluster in each network. Two branches (dotted lines)                
were excluded for visibility. These had an additional five language and two face networks. For               
group analysis, spatial components corresponding to significant IC timecourses for each           
participant were summed and entered into t-tests. The middle panel shows that word > no               
word networks (‘Language’; reds) overlap a ‘language’ meta-analysis (black outline) more           
than no word > word networks (‘No Language’; blues). Slices are centred around the centres               
of mass of the two largest clusters, in the left and right superior temporal plane. The bottom                 
panel shows that face > no face networks (‘Faces’; reds) produced greater activity than no face                
> face networks (‘No Faces’; blues) in the same areas as a ‘fusiform face’ area (FFA)                
meta-analysis (white outline). Slices are centred near the average x/y/z coordinates of the             
putative left and right FFA (indicated with black asterisks). The colour bar represents z-scores              
in all panels. All individual and group level results were Bonforoni corrected for multiple              
comparisons and presented with an arbitrary minimum cluster size of 20 voxels.  

  

20 
 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 25, 2020. ; https://doi.org/10.1101/2020.05.22.110817doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.22.110817
http://creativecommons.org/licenses/by/4.0/


Figures 

Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 

 

24 
 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 25, 2020. ; https://doi.org/10.1101/2020.05.22.110817doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.22.110817
http://creativecommons.org/licenses/by/4.0/


Tables 

Table 1 
Description of the movies used in the naturalistic neuroimaging database . Ten full length             
movies were chosen from 10 genres. These were required to have been successful, defined as               
an average Internet Movie Database (IMDb), Rotten Tomatoes (RT) and Metacritic score            
greater than 70%. IMDb scores were converted to percentages for this calculation. Movie             
lengths are given in seconds (s), also equivalent to the number of whole brain volumes               
collected when participants watched these movies during functional magnetic resonance          
imaging.  
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Table 2 
Description of participants in the naturalistic neuroimaging database . All participants (N)           
were right-handed and native English speakers. Gender is expressed as percent female. Ethnic             
diversity is expressed as percent Black, Asian and Minority Ethnic (BAME). Educational            
attainment is expressed as percent with a Bachelor’s degree or higher. Data roughly match              
2011 London, UK consensus data (https://data.london.gov.uk/census/). We include the         
‘Cognition Fluid Composite v1.1’ and ‘Negative Affect Summary (18+)’ ‘T-scores’ as           
example tests from the National Institute of Health (NIH) Toolbox battery. The bottom two              
rows are the means and standard deviations of row means weighted by number of participants               
(wMeans/wSD).  
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Table 3 
Movie word and face annotation information. The on and offsets of words were obtained from               
machine learning-based speech-to-text transcriptions. Dynamic time warping was used to          
align these to subtitles. If words in a subtitle page ‘Matched’ or were ‘Similar’ to words in the                  
transcript, it received the transcript timing. Otherwise it was estimated. ‘Continuous’           
estimations are single subtitle words inheriting the start and end time from the end of the prior                 
and start of the next transcribed word. ‘Partial’ estimations are similar but involve two or               
more missing words between transcribed words. ‘Full’ estimations occured when no words            
were transcribed and words were estimated from the start and end time of the subtitle page.                
When word lengths were unreasonable, they were ‘Truncated’. This procedure resulted in an             
average number (‘N’) of >10,000 words per movie. The on and offsets of faces were also                
obtained from a machine learning-based approach. The final two columns are the average             
percentage of face labels with >95% confidence and the percent of time faces were on screen.  
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Table 4 
Data acquisition irregularities that might have impacted data quality. Most irregularities           
centred around participant drowsiness. We monitored participants through a camera and           
occasionally gave them warnings if they appeared drowsy to us. In a few cases we paused the                 
scan to let participants compose themselves and to make sure they would remain alert              
throughout the rest of the scan.  
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Table 5 
Descriptive statistics of temporal signal-to-noise ratio and independent component analysis          
based measures of data quality across movies. The temporal signal-to-noise ratio (tSNR) was             
calculated in mostly grey matter for minimally preprocessed (‘Min Pre’), blurred (‘Blur Pre’)             
and fully detrended and preprocessed (‘Full Pre’) functional magnetic resonance imaging           
timeseries data (see also Figure 2). The final column is the percent of manually-labelled              
independent component analysis (ICA) artifacts out of 250 dimensions.  
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Table 6 
Descriptive statistics for outlying timepoints, motion and timing measures of data quality            
averaged over movie runs. ‘N’ the percentage of 86 participants having up to six breaks               
during any given movie. ‘Time’ is the average percentage of the whole movie for the run                
preceding each break. ‘Outliers’ is the mean percentage of timepoints with greater than 10%              
outliers in each run. Motion includes the mean maximum deflection in the inferior/superior             
(‘I/S’), left/right (‘L/R’) and anterior/posterior (‘A/P’) directions and the mean maximum           
change between any two timepoints (‘Delta’) in millimeters (mm). ‘Interp’ is the amount             
timeseries were interpolated back in time in milliseconds (-ms) in each run on average to               
account for known delays. The bottom two rows are the weighted means (wMean) and              
standard deviations (wSD) of rows weighted by the Time column.  
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Supplementary Material 
We supplement the main text with further information on how we derived word annotations              
from the movies, how we paused movies and subsequently corrected for timing delays caused              
by pausing.  

Word Annotations 
Here we provide further technical information on how word annotations were generated. First,             
to find subtitle and transcription ‘matches’ and similarity matches: 

● Dynamic time warping (DTW) was used to find the alignment between each subtitle             
page and transcribed words, starting 0.5 seconds before and ending 0.5 seconds after             
the page to account for possible subtitle inaccuracies.  

● All punctuation was removed from the subtitles.  
● To better match words with partially accurate transcriptions, the transcripts and           

subtitles were stemmed (e.g., ‘kittens’ becomes ‘kitten’). Once the word match           
checking was complete, the words were restored to their original unstemmed form.  

● If one subtitle word aligned with one or more transcription words and there was a               
match between those, we use the transcription timing of the word that matches the              
subtitle word.  

● If the words were not the same, we used the timing of the transcription word with                
maximum Jaro similarity if Jaro similarity was > .60 with that subtitle word.  

● If multiple subtitle words aligned with one transcription word (e.g., ‘is’,’'a’, ‘story’ in             
the subtitles and 'story' in the transcription), we gave the timing of the transcribed              
word to the matched subtitle or most similar word if the Jaro similarity was > .60.  

Next, for subtitle words that have no match and max similarity < .60, or in case of multiple                  
subtitle words match one transcript word (e.g., ‘this’, ‘this’, ‘is’ in the subtitle and ‘this’ in the                 
transcript), we estimate the timing of these words using the following methods: 

● A container was used to include words whose timings werte not obtained from a              
direct or similarity match. 

● Once matched/similar words are found, we estimate the start times of the words in the               
container based on a previous known timepoint, usually the end time of the previously              
matched/similar word, or the start time of the subtitle screen. The end time is based on                
the start time of the next matched/similar word.  

● At the end of a subtitle page, if the start time of the next line is one second longer than                    
the end time of the current line, we estimated timing with the end time being the end                 
time of the subtitle screen.  

● Depending on the number of words in the container when making estimations, they             
are labelled as ‘continuous’ or ‘partial’:  

○ If there is only one word, the word is labelled as ‘continuous’, with the              
assumption that the timing for the word should be reasonably accurate if it is              
between two words in continuous speech.  

○ If there are multiple words, the words are labelled as ‘partial’, and the start              
time and end time of each word is estimated based on the number of letters in                
each word (as described in the manuscript).  
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● If the subtitle is not accurate, the start time will be later than the end time for the                  
words not estimated (i.e., the start time of the subtitle screen is later than start time of                 
a matched word). Here, we estimated words based just on end times, assuming each              
word has a duration equal to the number of letters times 0.03 seconds.  

If no words are transcribed in that window, all the words in the subtitle page are estimated,                 
based on the start and end time of the subtitle page and the number of letters in each word (as                    
described in the manuscript). These words are labelled as ‘full’ estimations. Finally, at the end               
of these steps, the script does some post-processing: 

● We reordered words based on onset times, removing words with the same timings.  
● If words overlapped, we shifted the start time of the word to the end time of previous                 

words.  
● For numbers (e.g. 32) not correctly identified in the transcription, we changed to the              

spelled form (‘thirty two’) and re-ran the script.  
● We truncated unusually long words. For example, two four letter words in a 10              

second window would each be estimated as 5 seconds long. As this is unreasonable,              
we truncated estimated words < 10 letters and more than 2.5 standard deviations from              
the mean word length in conversational speech to the mean (based on65). Specifically: 

○ Words more than 1000 ms and < 10 letters in length were truncated to 600               
ms.  

○ As it is common for words more than 10 letters to be longer than 1 second                
when spoken, estimated word lengths for words with >10 letters and < 2             
seconds were kept 

○ Estimations > 2 seconds were truncated to 1000 ms.  

Movie Pausing  
Here we provide additional information about how the movie pausing script/hardware solution            
kept track of timing so it could subsequently be used to rewind movies and to account for                 
timeseries delays in preprocessing.  

Whenever the scanner was stopped and a movie was paused, the whole brain volume or TR                
being collected was dropped. In the first version of our script, the movie simply restarted               
where it had been stopped when scanning was resumed. In the second version, we edited the                
script to account for the dropped volume by rewinding the movie. To calculate the amount of                
movie time lost since the beginning of the dropped volume, the script uses three output files it                 
generates when running: A MPlayer output file, current time file and final output file (all in                
‘.txt’ format).  

The role of the MPlayer output file was to enable the script to read the current time position in                   
the movie. Every time the BASH script checked for a new TTL pulse (i.e. every 50ms), it                 
would also send a command to MPlayer to get the time position in the movie (using the                 
pausing_keep_force and get_time_pos commands for MPlayer in slave mode). As MPlayer           
received commands through a temporary /tmp/doo file, the script had to pipe the stdout output               
to the MPlayer output file for it to then be able to read the value itself. MPlayer only gives the                    
time position up to one decimal. A line inside MPlayer output  would look like: 

ANS_TIME_POSITION=1.6 
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The script would then read the last line of the MPlayer output file and write a new line in the                    
current time file. Every line consisted of the newly acquired time position in the movie and a                 
timestamp formed by the Linux epoch time (the number of seconds from 00:00:00 UTC on 1                
January 1970) and the milliseconds elapsed since the end of the previous second. A line inside                
the current time  file would look like:  

1572708345 209 ANS_TIME_POSITION=1.6 

If paused, the movie is then rewound by that amount by passing a command to Mplayer                
through ‘slave’ mode. When the scanner is restarted, the movie begins within 100 ms of the                
first TTL pulse (again, because it had to monitor at least two pulses). Because of a coding                 
error, version two of the script occasionally fast forwarded when it should rewind. After fixing               
this error, the movies rewound correctly whenever the scanner was stopped for the remaining              
participants. In all versions, when a TTL pulse is received, signalling that the scan has               
restarted, eight seconds of discarded acquisitions are acquired before the movie is unpaused.  

Whenever the movie was paused or started, the script would write to the final output , which                
would typically contain the following lines: 

1567528264 953 start 
1567531380 437 pause 1 
1567531465 886 rewind -.592 start 
1567534037 162 pause 2 
1567534091 303 rewind -.384 start 
1567535208 234 ended 

The above example is taken from the last version of the script, which included the rewind                
values. The first version did not include these values. To calculate the rewind times, the script                
would read the last start  and pause lines of the final output  file: 

1567528264 953 start 
1567531380 437 pause 1 

Because our TR=1s, we started counting the number of total TRs registered from the              
timestamp of the start value in final output. For example, above we would consider 3116 TRs                
elapsed from 1567528264 953 until 1567531380 953 (1567531380 - 1567528264). However,           
as the script stopped the movie at 1567531380 437 only 3115 TRs were registered, meaning               
that the registered data only went up to 1567531379 953. So, the number of milliseconds of                
the movie playing without any brain data being acquired would be the difference between              
1567531379 953 and 1567531380 437, which would be 437 + 1000 - 953 + 108 = 592. The                  
108 value was added to account for the fact that it would actually take 108 ms from the                  
moment the script registers the start of a new TR and when the play command is given to                  
MPlayer (the script would pause for 100ms, while the other 8ms delay was observed during               
piloting and assumed to be due to other running processes). 

The reason behind the coding error in the second version of the script was a minus sign                 
needed when the milliseconds in the pause time were greater than the milliseconds in the start                
time. The following example is from a correct working version of the script: 
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1561977334 281 start 
1561980159 470 pause 1 
1561980228 411 rewind -.297 start 

There would be 2825 TRs registered between 1561977334 281 and 1561980159 281, leaving             
470 - 281 = 189 milliseconds lost. The rewind time would be 189 + 108 = 297ms, with a                   
command being sent with a minus sign in front (a lack of a minus sign would fast forward by                   
that amount of ms). To distinguish between the two cases an if statement was used. However,                
in the second version of the script the minus sign was accidentally omitted in one of the                 
branches of the script, resulting in the error described. The current time and the final output                
files were later used as inputs into a Python script that calculated the number of milliseconds                
lost each time the movie was paused.  

Timing Correction 
Here we describe how we account for the delays generated by the timing scripts. Specifically,               
when the scanner is stopped, the TR being collected is dropped. Thus, some portion of the                
movie is played but there is no corresponding TR in the timeseries. In v1 of the mplayer                 
script, that time is lost (because the movie was not rewound). To account for this, the TR is                  
added back to the run. This is done so by retrieving the last timepoint of the run in which the                    
movie was stopped and the first timepoint of the run after the movie was stopped and                
averaging these. This makes the transition between TRs less abrupt.  

Next we shift the timeseries through interpolation (using ‘3dTshift ’). In version one of the              
MPlayer script, the amount of time dropped in run one will determine how far back to                
interpolate run two and so on. For example, if the movie stopped at 1000.850 and the last full                  
TR was lost, it means that 850 ms of the movie was watched but is missing from the                  
timeseries. To account for the missing information, we add a TR to the timeseries being               
collected before the scanner was stopped (done above) and interpolate the next run backwards              
in time the amount not covered by this TR. Thus, for the 850 ms of movie not watched, this                   
means there is 150 ms too much time added to the movie by adding a TR (because our TR = 1                     
second). So we shift the next run back this amount so that the timeseries is theoretically                
continuous again (though this is never really possible). If there is another run (i.e., three or                
more), the same logic applies except that the extra 150 ms needs to be accounted for. So, if the                   
next run stopped at 2000.900, we shift run three back (1000-900)+150 ms = 250 ms. These                
calculations are complicated by the fact that each scanner stop is always a 100 ms delay and a                  
known standard deviation because of the way the MPlayer script works (see above). For this               
reason, every run is time shifted backward this extra amount. So in the example, if this delay                 
was 100 ms, run three in the prior example would be shifted back 350 ms.  

Version two of the script is simpler. That is, we rewound the movie the exact amount that we                  
lost when the scanner stopped. Thus, an additional TR is not added and the only time shifting                 
corresponds to the time lost whenever the scanner was stopped from monitoring for the TTL               
pulse. Unfortunately, an error in the script initially caused some of the runs to occasionally be                
fast forwarded. In these cases, the timing correction was carried out as in the prior paragraph.                
In all other cases, the rewind feature assured that cumulative delay is the only time shifting.                
For example, if there are three runs and 100 ms was lost each run, the final run would be time                    
shifted back 300 ms.  
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The timing for one dataset was further corrected due to technical issues with the Arduino               
device wires on the day of the scan. The Arduino mistakenly stopped transmitting the TTL               
pulse, likely because of a loose wire, registered by the BASH script as pauses when the scan                 
was still ongoing. Thus, instead of the two actual pauses, eight were recorded, meaning six of                
the alleged pauses did not occur. The false pauses added eight seconds to the timing output                
file as the scan was still ongoing, increasing the apparent total length of the movie by 48                 
seconds, and therefore increasing scan time as a consequence. In order to correct for this error,                
eight TRs were removed from the timeseries whenever a false pause was detected, for a total                
of 48 TRs removed.   

35 
 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 25, 2020. ; https://doi.org/10.1101/2020.05.22.110817doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.22.110817
http://creativecommons.org/licenses/by/4.0/


References 

1. Friston, K. J. et al.  The trouble with cognitive subtraction. Neuroimage  4, 97–104 (1996). 

2. Brunswik, E. Organismic Achievement and Environmental Probability. Psychol. Rev.  50, 

255–272 (1943). 

3. Neisser, U. Cognition and Reality: Principles and Implications of Cognitive Psychology . 

(W. H. Freeman, 1976). 

4. Brunswik, E. Representative design and probabilistic theory in a functional psychology. 

Psychol. Rev.  62, 193–217 (1955). 

5. Skipper, J. I. The NOLB model: a model of the natural organization of language and the 

brain. in Cognitive Neuroscience of Natural Language Use  (eds. Willems, R. M. & 

Willems, R. M.) 101–134 (Cambridge University Press, 2015). 

6. Bennett, C. M. & Miller, M. B. How reliable are the results from functional magnetic 

resonance imaging? Ann. N. Y. Acad. Sci.  1191, 133–155 (2010). 

7. Gorgolewski, K. J., Storkey, A. J., Bastin, M. E., Whittle, I. & Pernet, C. Single subject 

fMRI test-retest reliability metrics and confounding factors. Neuroimage  69, 231–243 

(2013). 

8. Vanderwal, T., Kelly, C., Eilbott, J., Mayes, L. C. & Castellanos, F. X. Inscapes: A 

movie paradigm to improve compliance in functional magnetic resonance imaging. 

Neuroimage 122, 222–232 (2015). 

9. Greene, D. J. et al.  Behavioral interventions for reducing head motion during MRI scans 

in children. Neuroimage  171, 234–245 (2018). 

10. Wang, J. et al.  Test-retest reliability of functional connectivity networks during 

naturalistic fMRI paradigms. Hum. Brain Mapp.  38, 2226–2241 (2017). 

11. Chen, E. E. & Small, S. L. Test-retest reliability in fMRI of language: group and task 

effects. Brain Lang.  102, 176–185 (2007). 

12. Vanderwal, T. et al.  Individual differences in functional connectivity during naturalistic 

36 
 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 25, 2020. ; https://doi.org/10.1101/2020.05.22.110817doi: bioRxiv preprint 

http://paperpile.com/b/3kCSXA/kgsWg
http://paperpile.com/b/3kCSXA/kgsWg
http://paperpile.com/b/3kCSXA/kgsWg
http://paperpile.com/b/3kCSXA/kgsWg
http://paperpile.com/b/3kCSXA/kgsWg
http://paperpile.com/b/3kCSXA/kgsWg
http://paperpile.com/b/3kCSXA/kgsWg
http://paperpile.com/b/3kCSXA/ajLtq
http://paperpile.com/b/3kCSXA/ajLtq
http://paperpile.com/b/3kCSXA/ajLtq
http://paperpile.com/b/3kCSXA/ajLtq
http://paperpile.com/b/3kCSXA/ajLtq
http://paperpile.com/b/3kCSXA/ajLtq
http://paperpile.com/b/3kCSXA/uNSEN
http://paperpile.com/b/3kCSXA/uNSEN
http://paperpile.com/b/3kCSXA/uNSEN
http://paperpile.com/b/3kCSXA/uNSEN
http://paperpile.com/b/3kCSXA/vFLKp
http://paperpile.com/b/3kCSXA/vFLKp
http://paperpile.com/b/3kCSXA/vFLKp
http://paperpile.com/b/3kCSXA/vFLKp
http://paperpile.com/b/3kCSXA/vFLKp
http://paperpile.com/b/3kCSXA/tZdrJ
http://paperpile.com/b/3kCSXA/tZdrJ
http://paperpile.com/b/3kCSXA/tZdrJ
http://paperpile.com/b/3kCSXA/tZdrJ
http://paperpile.com/b/3kCSXA/tZdrJ
http://paperpile.com/b/3kCSXA/BitD2
http://paperpile.com/b/3kCSXA/BitD2
http://paperpile.com/b/3kCSXA/BitD2
http://paperpile.com/b/3kCSXA/BitD2
http://paperpile.com/b/3kCSXA/BitD2
http://paperpile.com/b/3kCSXA/BitD2
http://paperpile.com/b/3kCSXA/lzhgt
http://paperpile.com/b/3kCSXA/lzhgt
http://paperpile.com/b/3kCSXA/lzhgt
http://paperpile.com/b/3kCSXA/lzhgt
http://paperpile.com/b/3kCSXA/lzhgt
http://paperpile.com/b/3kCSXA/lzhgt
http://paperpile.com/b/3kCSXA/lzhgt
http://paperpile.com/b/3kCSXA/O62Ge
http://paperpile.com/b/3kCSXA/O62Ge
http://paperpile.com/b/3kCSXA/O62Ge
http://paperpile.com/b/3kCSXA/O62Ge
http://paperpile.com/b/3kCSXA/O62Ge
http://paperpile.com/b/3kCSXA/O62Ge
http://paperpile.com/b/3kCSXA/oG7K1
http://paperpile.com/b/3kCSXA/oG7K1
http://paperpile.com/b/3kCSXA/oG7K1
http://paperpile.com/b/3kCSXA/oG7K1
http://paperpile.com/b/3kCSXA/oG7K1
http://paperpile.com/b/3kCSXA/oG7K1
http://paperpile.com/b/3kCSXA/oG7K1
http://paperpile.com/b/3kCSXA/oG7K1
http://paperpile.com/b/3kCSXA/KpkCX
http://paperpile.com/b/3kCSXA/KpkCX
http://paperpile.com/b/3kCSXA/KpkCX
http://paperpile.com/b/3kCSXA/KpkCX
http://paperpile.com/b/3kCSXA/KpkCX
http://paperpile.com/b/3kCSXA/KpkCX
http://paperpile.com/b/3kCSXA/KpkCX
http://paperpile.com/b/3kCSXA/KpkCX
http://paperpile.com/b/3kCSXA/B3I8a
http://paperpile.com/b/3kCSXA/B3I8a
http://paperpile.com/b/3kCSXA/B3I8a
http://paperpile.com/b/3kCSXA/B3I8a
http://paperpile.com/b/3kCSXA/B3I8a
http://paperpile.com/b/3kCSXA/B3I8a
http://paperpile.com/b/3kCSXA/cKaZd
http://paperpile.com/b/3kCSXA/cKaZd
http://paperpile.com/b/3kCSXA/cKaZd
https://doi.org/10.1101/2020.05.22.110817
http://creativecommons.org/licenses/by/4.0/


viewing conditions. Neuroimage  157, 521–530 (2017). 

13. Miller, M. B. et al.  Unique and persistent individual patterns of brain activity across 

different memory retrieval tasks. Neuroimage  48, 625–635 (2009). 

14. Miller, M. B. et al.  Extensive individual differences in brain activations associated with 

episodic retrieval are reliable over time. J. Cogn. Neurosci.  14, 1200–1214 (2002). 

15. Burton, M. W., Noll, D. C. & Small, S. L. The Anatomy of Auditory Word Processing: 

Individual Variability. Brain Lang.  77, 119–131 (2001). 

16. Preti, M. G., Bolton, T. A. & Van De Ville, D. The dynamic functional connectome: 

State-of-the-art and perspectives. Neuroimage  160, 41–54 (2017). 

17. Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of 

structural and functional systems. Nat. Rev. Neurosci.  10, 186–198 (2009). 

18. Biswal, B. B. et al.  Toward discovery science of human brain function. Proc. Natl. Acad. 

Sci. U. S. A.  107, 4734–4739 (2010). 

19. Van Essen, D. C. et al.  The WU-Minn Human Connectome Project: an overview. 

Neuroimage 80, 62–79 (2013). 

20. Miller, K. L. et al.  Multimodal population brain imaging in the UK Biobank prospective 

epidemiological study. Nat. Neurosci.  19, 1523–1536 (2016). 

21. Gonzalez-Castillo, J. & Bandettini, P. A. Task-based dynamic functional connectivity: 

Recent findings and open questions. Neuroimage  180, 526–533 (2018). 

22. Hurlburt, R. T., Alderson-Day, B., Fernyhough, C. & Kühn, S. What goes on in the 

resting-state? A qualitative glimpse into resting-state experience in the scanner. Front. 

Psychol.  6, 1535 (2015). 

23. Smith, S. M. et al.  Correspondence of the brain’s functional architecture during 

activation and rest. Proc. Natl. Acad. Sci. U. S. A.  106, 13040–13045 (2009). 

24. Tahedl, M. & Schwarzbach, J. V. An updated and extended atlas for corresponding brain 

activation during task and rest. bioRxiv  2020.04.01.020644 (2020) 

37 
 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 25, 2020. ; https://doi.org/10.1101/2020.05.22.110817doi: bioRxiv preprint 

http://paperpile.com/b/3kCSXA/cKaZd
http://paperpile.com/b/3kCSXA/cKaZd
http://paperpile.com/b/3kCSXA/cKaZd
http://paperpile.com/b/3kCSXA/cKaZd
http://paperpile.com/b/3kCSXA/cKaZd
http://paperpile.com/b/3kCSXA/BcrsP
http://paperpile.com/b/3kCSXA/BcrsP
http://paperpile.com/b/3kCSXA/BcrsP
http://paperpile.com/b/3kCSXA/BcrsP
http://paperpile.com/b/3kCSXA/BcrsP
http://paperpile.com/b/3kCSXA/BcrsP
http://paperpile.com/b/3kCSXA/BcrsP
http://paperpile.com/b/3kCSXA/BcrsP
http://paperpile.com/b/3kCSXA/DLtmu
http://paperpile.com/b/3kCSXA/DLtmu
http://paperpile.com/b/3kCSXA/DLtmu
http://paperpile.com/b/3kCSXA/DLtmu
http://paperpile.com/b/3kCSXA/DLtmu
http://paperpile.com/b/3kCSXA/DLtmu
http://paperpile.com/b/3kCSXA/DLtmu
http://paperpile.com/b/3kCSXA/DLtmu
http://paperpile.com/b/3kCSXA/BSUDe
http://paperpile.com/b/3kCSXA/BSUDe
http://paperpile.com/b/3kCSXA/BSUDe
http://paperpile.com/b/3kCSXA/BSUDe
http://paperpile.com/b/3kCSXA/BSUDe
http://paperpile.com/b/3kCSXA/BSUDe
http://paperpile.com/b/3kCSXA/1Zh6
http://paperpile.com/b/3kCSXA/1Zh6
http://paperpile.com/b/3kCSXA/1Zh6
http://paperpile.com/b/3kCSXA/1Zh6
http://paperpile.com/b/3kCSXA/1Zh6
http://paperpile.com/b/3kCSXA/1Zh6
http://paperpile.com/b/3kCSXA/3owBm
http://paperpile.com/b/3kCSXA/3owBm
http://paperpile.com/b/3kCSXA/3owBm
http://paperpile.com/b/3kCSXA/3owBm
http://paperpile.com/b/3kCSXA/3owBm
http://paperpile.com/b/3kCSXA/3owBm
http://paperpile.com/b/3kCSXA/ScVJ0
http://paperpile.com/b/3kCSXA/ScVJ0
http://paperpile.com/b/3kCSXA/ScVJ0
http://paperpile.com/b/3kCSXA/ScVJ0
http://paperpile.com/b/3kCSXA/ScVJ0
http://paperpile.com/b/3kCSXA/ScVJ0
http://paperpile.com/b/3kCSXA/ScVJ0
http://paperpile.com/b/3kCSXA/ScVJ0
http://paperpile.com/b/3kCSXA/HV8Vw
http://paperpile.com/b/3kCSXA/HV8Vw
http://paperpile.com/b/3kCSXA/HV8Vw
http://paperpile.com/b/3kCSXA/HV8Vw
http://paperpile.com/b/3kCSXA/HV8Vw
http://paperpile.com/b/3kCSXA/HV8Vw
http://paperpile.com/b/3kCSXA/HV8Vw
http://paperpile.com/b/3kCSXA/39ndB
http://paperpile.com/b/3kCSXA/39ndB
http://paperpile.com/b/3kCSXA/39ndB
http://paperpile.com/b/3kCSXA/39ndB
http://paperpile.com/b/3kCSXA/39ndB
http://paperpile.com/b/3kCSXA/39ndB
http://paperpile.com/b/3kCSXA/39ndB
http://paperpile.com/b/3kCSXA/39ndB
http://paperpile.com/b/3kCSXA/XSWGk
http://paperpile.com/b/3kCSXA/XSWGk
http://paperpile.com/b/3kCSXA/XSWGk
http://paperpile.com/b/3kCSXA/XSWGk
http://paperpile.com/b/3kCSXA/XSWGk
http://paperpile.com/b/3kCSXA/XSWGk
http://paperpile.com/b/3kCSXA/wd7SE
http://paperpile.com/b/3kCSXA/wd7SE
http://paperpile.com/b/3kCSXA/wd7SE
http://paperpile.com/b/3kCSXA/wd7SE
http://paperpile.com/b/3kCSXA/wd7SE
http://paperpile.com/b/3kCSXA/wd7SE
http://paperpile.com/b/3kCSXA/wd7SE
http://paperpile.com/b/3kCSXA/C0Bk
http://paperpile.com/b/3kCSXA/C0Bk
http://paperpile.com/b/3kCSXA/C0Bk
http://paperpile.com/b/3kCSXA/C0Bk
http://paperpile.com/b/3kCSXA/C0Bk
http://paperpile.com/b/3kCSXA/C0Bk
http://paperpile.com/b/3kCSXA/C0Bk
http://paperpile.com/b/3kCSXA/C0Bk
http://paperpile.com/b/3kCSXA/uMIp
http://paperpile.com/b/3kCSXA/uMIp
http://paperpile.com/b/3kCSXA/uMIp
http://paperpile.com/b/3kCSXA/uMIp
https://doi.org/10.1101/2020.05.22.110817
http://creativecommons.org/licenses/by/4.0/


doi:10.1101/2020.04.01.020644. 

25. Skipper, J. I. & Hasson, U. A Core Speech Circuit Between Primary Motor, 

Somatosensory, And Auditory Cortex: Evidence From Connectivity And Genetic 

Descriptions. bioRxiv  139550 (2017) doi:10.1101/139550. 

26. Di, X., Gohel, S., Kim, E. H. & Biswal, B. B. Task vs. rest-different network 

configurations between the coactivation and the resting-state brain networks. Front. 

Hum. Neurosci. 7, 493 (2013). 

27. Vatansever, D., Menon, D. K., Manktelow, A. E., Sahakian, B. J. & Stamatakis, E. A. 

Default Mode Dynamics for Global Functional Integration. J. Neurosci.  35, 

15254–15262 (2015). 

28. Kitzbichler, M. G., Henson, R. N. A., Smith, M. L., Nathan, P. J. & Bullmore, E. T. 

Cognitive effort drives workspace configuration of human brain functional networks. J. 

Neurosci.  31, 8259–8270 (2011). 

29. Braun, U. et al.  Dynamic reconfiguration of frontal brain networks during executive 

cognition in humans. Proc. Natl. Acad. Sci. U. S. A.  112, 11678–11683 (2015). 

30. Kaufmann, T. et al.  Task modulations and clinical manifestations in the brain functional 

connectome in 1615 fMRI datasets. Neuroimage  147, 243–252 (2017). 

31. Kim, D., Kay, K., Shulman, G. L. & Corbetta, M. A New Modular Brain Organization of 

the BOLD Signal during Natural Vision. Cereb. Cortex  28, 3065–3081 (2018). 

32. Simony, E. et al.  Dynamic reconfiguration of the default mode network during narrative 

comprehension. Nat. Commun.  7, 12141 (2016). 

33. Hasson, U. & Honey, C. J. Future trends in Neuroimaging: Neural processes as expressed 

within real-life contexts. Neuroimage  62, 1272–1278 (2012). 

34. Hasson, U., Malach, R. & Heeger, D. J. Reliability of cortical activity during natural 

stimulation. Trends Cogn. Sci.  14, 40–48 (2010). 

35. Maguire, E. A. Studying the freely-behaving brain with fMRI. Neuroimage  62, 

38 
 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 25, 2020. ; https://doi.org/10.1101/2020.05.22.110817doi: bioRxiv preprint 

http://paperpile.com/b/3kCSXA/uMIp
http://dx.doi.org/10.1101/2020.04.01.020644
http://paperpile.com/b/3kCSXA/uMIp
http://paperpile.com/b/3kCSXA/AU7c
http://paperpile.com/b/3kCSXA/AU7c
http://paperpile.com/b/3kCSXA/AU7c
http://paperpile.com/b/3kCSXA/AU7c
http://paperpile.com/b/3kCSXA/AU7c
http://dx.doi.org/10.1101/139550
http://paperpile.com/b/3kCSXA/AU7c
http://paperpile.com/b/3kCSXA/nI8G7
http://paperpile.com/b/3kCSXA/nI8G7
http://paperpile.com/b/3kCSXA/nI8G7
http://paperpile.com/b/3kCSXA/nI8G7
http://paperpile.com/b/3kCSXA/nI8G7
http://paperpile.com/b/3kCSXA/nI8G7
http://paperpile.com/b/3kCSXA/nI8G7
http://paperpile.com/b/3kCSXA/dLm2w
http://paperpile.com/b/3kCSXA/dLm2w
http://paperpile.com/b/3kCSXA/dLm2w
http://paperpile.com/b/3kCSXA/dLm2w
http://paperpile.com/b/3kCSXA/dLm2w
http://paperpile.com/b/3kCSXA/dLm2w
http://paperpile.com/b/3kCSXA/dLm2w
http://paperpile.com/b/3kCSXA/ychzB
http://paperpile.com/b/3kCSXA/ychzB
http://paperpile.com/b/3kCSXA/ychzB
http://paperpile.com/b/3kCSXA/ychzB
http://paperpile.com/b/3kCSXA/ychzB
http://paperpile.com/b/3kCSXA/ychzB
http://paperpile.com/b/3kCSXA/ychzB
http://paperpile.com/b/3kCSXA/2J0oN
http://paperpile.com/b/3kCSXA/2J0oN
http://paperpile.com/b/3kCSXA/2J0oN
http://paperpile.com/b/3kCSXA/2J0oN
http://paperpile.com/b/3kCSXA/2J0oN
http://paperpile.com/b/3kCSXA/2J0oN
http://paperpile.com/b/3kCSXA/2J0oN
http://paperpile.com/b/3kCSXA/2J0oN
http://paperpile.com/b/3kCSXA/Itml
http://paperpile.com/b/3kCSXA/Itml
http://paperpile.com/b/3kCSXA/Itml
http://paperpile.com/b/3kCSXA/Itml
http://paperpile.com/b/3kCSXA/Itml
http://paperpile.com/b/3kCSXA/Itml
http://paperpile.com/b/3kCSXA/Itml
http://paperpile.com/b/3kCSXA/Itml
http://paperpile.com/b/3kCSXA/5YrGn
http://paperpile.com/b/3kCSXA/5YrGn
http://paperpile.com/b/3kCSXA/5YrGn
http://paperpile.com/b/3kCSXA/5YrGn
http://paperpile.com/b/3kCSXA/5YrGn
http://paperpile.com/b/3kCSXA/5YrGn
http://paperpile.com/b/3kCSXA/cgD6P
http://paperpile.com/b/3kCSXA/cgD6P
http://paperpile.com/b/3kCSXA/cgD6P
http://paperpile.com/b/3kCSXA/cgD6P
http://paperpile.com/b/3kCSXA/cgD6P
http://paperpile.com/b/3kCSXA/cgD6P
http://paperpile.com/b/3kCSXA/cgD6P
http://paperpile.com/b/3kCSXA/cgD6P
http://paperpile.com/b/3kCSXA/1Gael
http://paperpile.com/b/3kCSXA/1Gael
http://paperpile.com/b/3kCSXA/1Gael
http://paperpile.com/b/3kCSXA/1Gael
http://paperpile.com/b/3kCSXA/1Gael
http://paperpile.com/b/3kCSXA/1Gael
http://paperpile.com/b/3kCSXA/I3IqP
http://paperpile.com/b/3kCSXA/I3IqP
http://paperpile.com/b/3kCSXA/I3IqP
http://paperpile.com/b/3kCSXA/I3IqP
http://paperpile.com/b/3kCSXA/I3IqP
http://paperpile.com/b/3kCSXA/I3IqP
http://paperpile.com/b/3kCSXA/IOmZ2
http://paperpile.com/b/3kCSXA/IOmZ2
http://paperpile.com/b/3kCSXA/IOmZ2
http://paperpile.com/b/3kCSXA/IOmZ2
http://paperpile.com/b/3kCSXA/IOmZ2
https://doi.org/10.1101/2020.05.22.110817
http://creativecommons.org/licenses/by/4.0/


1170–1176 (2012). 

36. Spiers, H. J. & Maguire, E. A. Decoding human brain activity during real-world 

experiences. Trends Cogn. Sci.  11, 356–365 (2007). 

37. Matusz, P. J., Dikker, S., Huth, A. G. & Perrodin, C. Are We Ready for Real-world 

Neuroscience? J. Cogn. Neurosci.  31, 327–338 (2019). 

38. Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., MacIver, M. A. & Poeppel, D. 

Neuroscience Needs Behavior: Correcting a Reductionist Bias. Neuron  93, 480–490 

(2017). 

39. Varoquaux, G. & Poldrack, R. A. Predictive models avoid excessive reductionism in 

cognitive neuroimaging. Curr. Opin. Neurobiol.  55, 1–6 (2018). 

40. Olshausen, B. A. & Field, D. J. What is the other 85 percent of V1 doing. L. van 

Hemmen, & T. Sejnowski (Eds. )  23, 182–211 (2006). 

41. NeuroImage | Naturalistic Imaging: The use of ecologically valid conditions to study 

brain function | ScienceDirect.com. 

https://www.sciencedirect.com/journal/neuroimage/special-issue/10S14SQ48ND. 

42. Eickhoff, S. B., Milham, M. & Vanderwal, T. Towards clinical applications of movie 

fMRI. Neuroimage 116860 (2020). 

43. DuPre, E., Hanke, M. & Poline, J.-B. Nature abhors a paywall: How open science can 

realize the potential of naturalistic stimuli. Neuroimage  116330 (2019). 

44. Lohmann, G. et al.  Inflated false negative rates undermine reproducibility in task-based 

fMRI. bioRxiv  122788 (2017) doi:10.1101/122788. 

45. Geuter, S., Qi, G., Welsh, R. C., Wager, T. D. & Lindquist, M. A. Effect Size and Power 

in fMRI Group Analysis. bioRxiv  295048 (2018) doi:10.1101/295048. 

46. Turner, B. O., Paul, E. J., Miller, M. B. & Barbey, A. K. Small sample sizes reduce the 

replicability of task-based fMRI studies. Commun Biol  1, 62 (2018). 

47. Gordon, E. M. et al.  Precision Functional Mapping of Individual Human Brains. Neuron 

39 
 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 25, 2020. ; https://doi.org/10.1101/2020.05.22.110817doi: bioRxiv preprint 

http://paperpile.com/b/3kCSXA/IOmZ2
http://paperpile.com/b/3kCSXA/6PMXg
http://paperpile.com/b/3kCSXA/6PMXg
http://paperpile.com/b/3kCSXA/6PMXg
http://paperpile.com/b/3kCSXA/6PMXg
http://paperpile.com/b/3kCSXA/6PMXg
http://paperpile.com/b/3kCSXA/6PMXg
http://paperpile.com/b/3kCSXA/WQRNv
http://paperpile.com/b/3kCSXA/WQRNv
http://paperpile.com/b/3kCSXA/WQRNv
http://paperpile.com/b/3kCSXA/WQRNv
http://paperpile.com/b/3kCSXA/WQRNv
http://paperpile.com/b/3kCSXA/WQRNv
http://paperpile.com/b/3kCSXA/OhbXE
http://paperpile.com/b/3kCSXA/OhbXE
http://paperpile.com/b/3kCSXA/OhbXE
http://paperpile.com/b/3kCSXA/OhbXE
http://paperpile.com/b/3kCSXA/OhbXE
http://paperpile.com/b/3kCSXA/OhbXE
http://paperpile.com/b/3kCSXA/OhbXE
http://paperpile.com/b/3kCSXA/eCeJs
http://paperpile.com/b/3kCSXA/eCeJs
http://paperpile.com/b/3kCSXA/eCeJs
http://paperpile.com/b/3kCSXA/eCeJs
http://paperpile.com/b/3kCSXA/eCeJs
http://paperpile.com/b/3kCSXA/eCeJs
http://paperpile.com/b/3kCSXA/3aAq
http://paperpile.com/b/3kCSXA/3aAq
http://paperpile.com/b/3kCSXA/3aAq
http://paperpile.com/b/3kCSXA/3aAq
http://paperpile.com/b/3kCSXA/3aAq
http://paperpile.com/b/3kCSXA/3aAq
http://paperpile.com/b/3kCSXA/MTUc
http://paperpile.com/b/3kCSXA/MTUc
https://www.sciencedirect.com/journal/neuroimage/special-issue/10S14SQ48ND
http://paperpile.com/b/3kCSXA/MTUc
http://paperpile.com/b/3kCSXA/54V1
http://paperpile.com/b/3kCSXA/54V1
http://paperpile.com/b/3kCSXA/54V1
http://paperpile.com/b/3kCSXA/54V1
http://paperpile.com/b/3kCSXA/gizd
http://paperpile.com/b/3kCSXA/gizd
http://paperpile.com/b/3kCSXA/gizd
http://paperpile.com/b/3kCSXA/gizd
http://paperpile.com/b/3kCSXA/eTbz
http://paperpile.com/b/3kCSXA/eTbz
http://paperpile.com/b/3kCSXA/eTbz
http://paperpile.com/b/3kCSXA/eTbz
http://paperpile.com/b/3kCSXA/eTbz
http://paperpile.com/b/3kCSXA/eTbz
http://dx.doi.org/10.1101/122788
http://paperpile.com/b/3kCSXA/eTbz
http://paperpile.com/b/3kCSXA/irDY
http://paperpile.com/b/3kCSXA/irDY
http://paperpile.com/b/3kCSXA/irDY
http://paperpile.com/b/3kCSXA/irDY
http://dx.doi.org/10.1101/295048
http://paperpile.com/b/3kCSXA/irDY
http://paperpile.com/b/3kCSXA/aPC0
http://paperpile.com/b/3kCSXA/aPC0
http://paperpile.com/b/3kCSXA/aPC0
http://paperpile.com/b/3kCSXA/aPC0
http://paperpile.com/b/3kCSXA/aPC0
http://paperpile.com/b/3kCSXA/aPC0
http://paperpile.com/b/3kCSXA/q89z
http://paperpile.com/b/3kCSXA/q89z
http://paperpile.com/b/3kCSXA/q89z
http://paperpile.com/b/3kCSXA/q89z
http://paperpile.com/b/3kCSXA/q89z
https://doi.org/10.1101/2020.05.22.110817
http://creativecommons.org/licenses/by/4.0/


95, 791–807.e7 (2017). 

48. Laumann, T. O. et al.  Functional System and Areal Organization of a Highly Sampled 

Individual Human Brain. Neuron  87, 657–670 (2015). 

49. Xu, T. et al.  Assessing Variations in Areal Organization for the Intrinsic Brain: From 

Fingerprints to Reliability. Cereb. Cortex  26, 4192–4211 (2016). 

50. Anderson, J. S., Ferguson, M. A., Lopez-Larson, M. & Yurgelun-Todd, D. 

Reproducibility of single-subject functional connectivity measurements. AJNR Am. J. 

Neuroradiol.  32, 548–555 (2011). 

51. Nastase, S. A. et al.  Narratives - Snapshot 1.0.1 - OpenNeuro. 

https://openneuro.org/datasets/ds002345/versions/1.0.1 (2019). 

52. Haxby, J. V. et al.  A common, high-dimensional model of the representational space in 

human ventral temporal cortex. Neuron  72, 404–416 (2011). 

53. Hanke, M. et al.  A high-resolution 7-Tesla fMRI dataset from complex natural 

stimulation with an audio movie. Sci Data  1, 140003 (2014). 

54. Hanke, M. et al.  A studyforrest extension, simultaneous fMRI and eye gaze recordings 

during prolonged natural stimulation. Sci Data  3, 160092 (2016). 

55. Varoquaux, G. Cross-validation failure: Small sample sizes lead to large error bars. 

Neuroimage 180, 68–77 (2018). 

56. Combrisson, E. & Jerbi, K. Exceeding chance level by chance: The caveat of theoretical 

chance levels in brain signal classification and statistical assessment of decoding 

accuracy. J. Neurosci. Methods  250, 126–136 (2015). 

57. Khosla, M., Jamison, K., Ngo, G. H., Kuceyeski, A. & Sabuncu, M. R. Machine learning 

in resting-state fMRI analysis. Magn. Reson. Imaging  64, 101–121 (2019). 

58. Hasson, U., Nir, Y., Levy, I., Fuhrmann, G. & Malach, R. Intersubject synchronization of 

cortical activity during natural vision. Science  303, 1634–1640 (2004). 

59. Nummenmaa, L., Lahnakoski, J. M. & Glerean, E. Sharing the social world via 

40 
 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 25, 2020. ; https://doi.org/10.1101/2020.05.22.110817doi: bioRxiv preprint 

http://paperpile.com/b/3kCSXA/q89z
http://paperpile.com/b/3kCSXA/q89z
http://paperpile.com/b/3kCSXA/Qip4
http://paperpile.com/b/3kCSXA/Qip4
http://paperpile.com/b/3kCSXA/Qip4
http://paperpile.com/b/3kCSXA/Qip4
http://paperpile.com/b/3kCSXA/Qip4
http://paperpile.com/b/3kCSXA/Qip4
http://paperpile.com/b/3kCSXA/Qip4
http://paperpile.com/b/3kCSXA/Qip4
http://paperpile.com/b/3kCSXA/pCNs
http://paperpile.com/b/3kCSXA/pCNs
http://paperpile.com/b/3kCSXA/pCNs
http://paperpile.com/b/3kCSXA/pCNs
http://paperpile.com/b/3kCSXA/pCNs
http://paperpile.com/b/3kCSXA/pCNs
http://paperpile.com/b/3kCSXA/pCNs
http://paperpile.com/b/3kCSXA/pCNs
http://paperpile.com/b/3kCSXA/dC2L
http://paperpile.com/b/3kCSXA/dC2L
http://paperpile.com/b/3kCSXA/dC2L
http://paperpile.com/b/3kCSXA/dC2L
http://paperpile.com/b/3kCSXA/dC2L
http://paperpile.com/b/3kCSXA/dC2L
http://paperpile.com/b/3kCSXA/dC2L
http://paperpile.com/b/3kCSXA/gaun
http://paperpile.com/b/3kCSXA/gaun
http://paperpile.com/b/3kCSXA/gaun
https://openneuro.org/datasets/ds002345/versions/1.0.1
http://paperpile.com/b/3kCSXA/gaun
http://paperpile.com/b/3kCSXA/zZbO
http://paperpile.com/b/3kCSXA/zZbO
http://paperpile.com/b/3kCSXA/zZbO
http://paperpile.com/b/3kCSXA/zZbO
http://paperpile.com/b/3kCSXA/zZbO
http://paperpile.com/b/3kCSXA/zZbO
http://paperpile.com/b/3kCSXA/zZbO
http://paperpile.com/b/3kCSXA/zZbO
http://paperpile.com/b/3kCSXA/eLx3S
http://paperpile.com/b/3kCSXA/eLx3S
http://paperpile.com/b/3kCSXA/eLx3S
http://paperpile.com/b/3kCSXA/eLx3S
http://paperpile.com/b/3kCSXA/eLx3S
http://paperpile.com/b/3kCSXA/eLx3S
http://paperpile.com/b/3kCSXA/eLx3S
http://paperpile.com/b/3kCSXA/eLx3S
http://paperpile.com/b/3kCSXA/7crKy
http://paperpile.com/b/3kCSXA/7crKy
http://paperpile.com/b/3kCSXA/7crKy
http://paperpile.com/b/3kCSXA/7crKy
http://paperpile.com/b/3kCSXA/7crKy
http://paperpile.com/b/3kCSXA/7crKy
http://paperpile.com/b/3kCSXA/7crKy
http://paperpile.com/b/3kCSXA/7crKy
http://paperpile.com/b/3kCSXA/6kNb
http://paperpile.com/b/3kCSXA/6kNb
http://paperpile.com/b/3kCSXA/6kNb
http://paperpile.com/b/3kCSXA/6kNb
http://paperpile.com/b/3kCSXA/6kNb
http://paperpile.com/b/3kCSXA/ka3s
http://paperpile.com/b/3kCSXA/ka3s
http://paperpile.com/b/3kCSXA/ka3s
http://paperpile.com/b/3kCSXA/ka3s
http://paperpile.com/b/3kCSXA/ka3s
http://paperpile.com/b/3kCSXA/ka3s
http://paperpile.com/b/3kCSXA/ka3s
http://paperpile.com/b/3kCSXA/aU2U
http://paperpile.com/b/3kCSXA/aU2U
http://paperpile.com/b/3kCSXA/aU2U
http://paperpile.com/b/3kCSXA/aU2U
http://paperpile.com/b/3kCSXA/aU2U
http://paperpile.com/b/3kCSXA/aU2U
http://paperpile.com/b/3kCSXA/yoC4N
http://paperpile.com/b/3kCSXA/yoC4N
http://paperpile.com/b/3kCSXA/yoC4N
http://paperpile.com/b/3kCSXA/yoC4N
http://paperpile.com/b/3kCSXA/yoC4N
http://paperpile.com/b/3kCSXA/yoC4N
http://paperpile.com/b/3kCSXA/PBES
https://doi.org/10.1101/2020.05.22.110817
http://creativecommons.org/licenses/by/4.0/


intersubject neural synchronisation. Curr Opin Psychol  24, 7–14 (2018). 

60. Andric, M., Goldin-Meadow, S., Small, S. L. & Hasson, U. Repeated movie viewings 

produce similar local activity patterns but different network configurations. Neuroimage 

142, 613–627 (2016). 

61. Boeke, E. A., Holmes, A. J. & Phelps, E. A. Toward Robust Anxiety Biomarkers: A 

Machine Learning Approach in a Large-Scale Sample. Biol Psychiatry Cogn Neurosci 

Neuroimaging  (2019) doi:10.1016/j.bpsc.2019.05.018. 

62. Kapur, S., Phillips, A. G. & Insel, T. R. Why has it taken so long for biological 

psychiatry to develop clinical tests and what to do about it? Mol. Psychiatry  17, 

1174–1179 (2012). 

63. Gershon, R. C. et al.  NIH toolbox for assessment of neurological and behavioral 

function. Neurology  80, S2–6 (2013). 

64. Giorgino, T. & Others. Computing and visualizing dynamic time warping alignments in 

R: the dtw package. J. Stat. Softw.  31, 1–24 (2009). 

65. Tucker, B. V. et al.  The Massive Auditory Lexical Decision (MALD) database. Behav. 

Res. Methods  51, 1187–1204 (2019). 

66. Feinberg, D. A. et al.  Multiplexed echo planar imaging for sub-second whole brain FMRI 

and fast diffusion imaging. PLoS One  5, e15710 (2010). 

67. Feinberg, D. A. & Setsompop, K. Ultra-fast MRI of the human brain with simultaneous 

multi-slice imaging. J. Magn. Reson.  229, 90–100 (2013). 

68. Todd, N. et al.  Evaluation of 2D multiband EPI imaging for high-resolution, whole-brain, 

task-based fMRI studies at 3T: Sensitivity and slice leakage artifacts. Neuroimage  124, 

32–42 (2016). 

69. Cauley, S. F., Polimeni, J. R., Bhat, H., Wald, L. L. & Setsompop, K. Interslice leakage 

artifact reduction technique for simultaneous multislice acquisitions. Magn. Reson. Med. 

72, 93–102 (2014). 

41 
 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 25, 2020. ; https://doi.org/10.1101/2020.05.22.110817doi: bioRxiv preprint 

http://paperpile.com/b/3kCSXA/PBES
http://paperpile.com/b/3kCSXA/PBES
http://paperpile.com/b/3kCSXA/PBES
http://paperpile.com/b/3kCSXA/PBES
http://paperpile.com/b/3kCSXA/PBES
http://paperpile.com/b/3kCSXA/ePcoY
http://paperpile.com/b/3kCSXA/ePcoY
http://paperpile.com/b/3kCSXA/ePcoY
http://paperpile.com/b/3kCSXA/ePcoY
http://paperpile.com/b/3kCSXA/ePcoY
http://paperpile.com/b/3kCSXA/ePcoY
http://paperpile.com/b/3kCSXA/HjxN
http://paperpile.com/b/3kCSXA/HjxN
http://paperpile.com/b/3kCSXA/HjxN
http://paperpile.com/b/3kCSXA/HjxN
http://paperpile.com/b/3kCSXA/HjxN
http://dx.doi.org/10.1016/j.bpsc.2019.05.018
http://paperpile.com/b/3kCSXA/HjxN
http://paperpile.com/b/3kCSXA/vkuZ
http://paperpile.com/b/3kCSXA/vkuZ
http://paperpile.com/b/3kCSXA/vkuZ
http://paperpile.com/b/3kCSXA/vkuZ
http://paperpile.com/b/3kCSXA/vkuZ
http://paperpile.com/b/3kCSXA/vkuZ
http://paperpile.com/b/3kCSXA/vkuZ
http://paperpile.com/b/3kCSXA/Nlog
http://paperpile.com/b/3kCSXA/Nlog
http://paperpile.com/b/3kCSXA/Nlog
http://paperpile.com/b/3kCSXA/Nlog
http://paperpile.com/b/3kCSXA/Nlog
http://paperpile.com/b/3kCSXA/Nlog
http://paperpile.com/b/3kCSXA/Nlog
http://paperpile.com/b/3kCSXA/Nlog
http://paperpile.com/b/3kCSXA/Eism
http://paperpile.com/b/3kCSXA/Eism
http://paperpile.com/b/3kCSXA/Eism
http://paperpile.com/b/3kCSXA/Eism
http://paperpile.com/b/3kCSXA/Eism
http://paperpile.com/b/3kCSXA/Eism
http://paperpile.com/b/3kCSXA/oGH8
http://paperpile.com/b/3kCSXA/oGH8
http://paperpile.com/b/3kCSXA/oGH8
http://paperpile.com/b/3kCSXA/oGH8
http://paperpile.com/b/3kCSXA/oGH8
http://paperpile.com/b/3kCSXA/oGH8
http://paperpile.com/b/3kCSXA/oGH8
http://paperpile.com/b/3kCSXA/oGH8
http://paperpile.com/b/3kCSXA/cLEb
http://paperpile.com/b/3kCSXA/cLEb
http://paperpile.com/b/3kCSXA/cLEb
http://paperpile.com/b/3kCSXA/cLEb
http://paperpile.com/b/3kCSXA/cLEb
http://paperpile.com/b/3kCSXA/cLEb
http://paperpile.com/b/3kCSXA/cLEb
http://paperpile.com/b/3kCSXA/cLEb
http://paperpile.com/b/3kCSXA/siwG
http://paperpile.com/b/3kCSXA/siwG
http://paperpile.com/b/3kCSXA/siwG
http://paperpile.com/b/3kCSXA/siwG
http://paperpile.com/b/3kCSXA/siwG
http://paperpile.com/b/3kCSXA/siwG
http://paperpile.com/b/3kCSXA/46lu
http://paperpile.com/b/3kCSXA/46lu
http://paperpile.com/b/3kCSXA/46lu
http://paperpile.com/b/3kCSXA/46lu
http://paperpile.com/b/3kCSXA/46lu
http://paperpile.com/b/3kCSXA/46lu
http://paperpile.com/b/3kCSXA/46lu
http://paperpile.com/b/3kCSXA/46lu
http://paperpile.com/b/3kCSXA/46lu
http://paperpile.com/b/3kCSXA/m98p
http://paperpile.com/b/3kCSXA/m98p
http://paperpile.com/b/3kCSXA/m98p
http://paperpile.com/b/3kCSXA/m98p
http://paperpile.com/b/3kCSXA/m98p
http://paperpile.com/b/3kCSXA/m98p
https://doi.org/10.1101/2020.05.22.110817
http://creativecommons.org/licenses/by/4.0/


70. Cox, R. W. AFNI: software for analysis and visualization of functional magnetic 

resonance neuroimages. Comput. Biomed. Res.  29, 162–173 (1996). 

71. Iglesias, J. E., Liu, C.-Y., Thompson, P. M. & Tu, Z. Robust brain extraction across 

datasets and comparison with publicly available methods. IEEE Trans. Med. Imaging  30, 

1617–1634 (2011). 

72. Holmes, C. J. et al.  Enhancement of MR images using registration for signal averaging. 

J. Comput. Assist. Tomogr. 22, 324–333 (1998). 

73. Fischl, B. FreeSurfer. Neuroimage  62, 774–781 (2012). 

74. Destrieux, C., Fischl, B., Dale, A. & Halgren, E. Automatic parcellation of human 

cortical gyri and sulci using standard anatomical nomenclature. Neuroimage  53, 1–15 

(2010). 

75. Friedman, L., Glover, G. H., Krenz, D., Magnotta, V. & FIRST BIRN. Reducing 

inter-scanner variability of activation in a multicenter fMRI study: role of smoothness 

equalization. Neuroimage  32, 1656–1668 (2006). 

76. Caballero-Gaudes, C. & Reynolds, R. C. Methods for cleaning the BOLD fMRI signal. 

Neuroimage 154, 128–149 (2017). 

77. Liu, X., Zhen, Z., Yang, A., Bai, H. & Liu, J. A manually denoised audio-visual movie 

watching fMRI dataset for the studyforrest project. Sci Data  6, 295 (2019). 

78. Smith, S. M. et al.  Resting-state fMRI in the Human Connectome Project. Neuroimage 

80, 144–168 (2013). 

79. Griffanti, L. et al.  Hand classification of fMRI ICA noise components. Neuroimage  154, 

188–205 (2017). 

80. Welvaert, M. & Rosseel, Y. On the definition of signal-to-noise ratio and 

contrast-to-noise ratio for FMRI data. PLoS One  8, e77089 (2013). 

81. Murphy, K., Bodurka, J. & Bandettini, P. A. How long to scan? The relationship between 

fMRI temporal signal to noise ratio and necessary scan duration. Neuroimage  34, 

42 
 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 25, 2020. ; https://doi.org/10.1101/2020.05.22.110817doi: bioRxiv preprint 

http://paperpile.com/b/3kCSXA/RjBp
http://paperpile.com/b/3kCSXA/RjBp
http://paperpile.com/b/3kCSXA/RjBp
http://paperpile.com/b/3kCSXA/RjBp
http://paperpile.com/b/3kCSXA/RjBp
http://paperpile.com/b/3kCSXA/RjBp
http://paperpile.com/b/3kCSXA/WNnW
http://paperpile.com/b/3kCSXA/WNnW
http://paperpile.com/b/3kCSXA/WNnW
http://paperpile.com/b/3kCSXA/WNnW
http://paperpile.com/b/3kCSXA/WNnW
http://paperpile.com/b/3kCSXA/WNnW
http://paperpile.com/b/3kCSXA/WNnW
http://paperpile.com/b/3kCSXA/DEjn
http://paperpile.com/b/3kCSXA/DEjn
http://paperpile.com/b/3kCSXA/DEjn
http://paperpile.com/b/3kCSXA/DEjn
http://paperpile.com/b/3kCSXA/DEjn
http://paperpile.com/b/3kCSXA/DEjn
http://paperpile.com/b/3kCSXA/DEjn
http://paperpile.com/b/3kCSXA/NpuG
http://paperpile.com/b/3kCSXA/NpuG
http://paperpile.com/b/3kCSXA/NpuG
http://paperpile.com/b/3kCSXA/NpuG
http://paperpile.com/b/3kCSXA/NpuG
http://paperpile.com/b/3kCSXA/9hcw
http://paperpile.com/b/3kCSXA/9hcw
http://paperpile.com/b/3kCSXA/9hcw
http://paperpile.com/b/3kCSXA/9hcw
http://paperpile.com/b/3kCSXA/9hcw
http://paperpile.com/b/3kCSXA/9hcw
http://paperpile.com/b/3kCSXA/9hcw
http://paperpile.com/b/3kCSXA/ffgm
http://paperpile.com/b/3kCSXA/ffgm
http://paperpile.com/b/3kCSXA/ffgm
http://paperpile.com/b/3kCSXA/ffgm
http://paperpile.com/b/3kCSXA/ffgm
http://paperpile.com/b/3kCSXA/ffgm
http://paperpile.com/b/3kCSXA/ffgm
http://paperpile.com/b/3kCSXA/Zjkt
http://paperpile.com/b/3kCSXA/Zjkt
http://paperpile.com/b/3kCSXA/Zjkt
http://paperpile.com/b/3kCSXA/Zjkt
http://paperpile.com/b/3kCSXA/Zjkt
http://paperpile.com/b/3kCSXA/CnPu
http://paperpile.com/b/3kCSXA/CnPu
http://paperpile.com/b/3kCSXA/CnPu
http://paperpile.com/b/3kCSXA/CnPu
http://paperpile.com/b/3kCSXA/CnPu
http://paperpile.com/b/3kCSXA/CnPu
http://paperpile.com/b/3kCSXA/1FbX
http://paperpile.com/b/3kCSXA/1FbX
http://paperpile.com/b/3kCSXA/1FbX
http://paperpile.com/b/3kCSXA/1FbX
http://paperpile.com/b/3kCSXA/1FbX
http://paperpile.com/b/3kCSXA/1FbX
http://paperpile.com/b/3kCSXA/1FbX
http://paperpile.com/b/3kCSXA/pZFA
http://paperpile.com/b/3kCSXA/pZFA
http://paperpile.com/b/3kCSXA/pZFA
http://paperpile.com/b/3kCSXA/pZFA
http://paperpile.com/b/3kCSXA/pZFA
http://paperpile.com/b/3kCSXA/pZFA
http://paperpile.com/b/3kCSXA/pZFA
http://paperpile.com/b/3kCSXA/pZFA
http://paperpile.com/b/3kCSXA/767q
http://paperpile.com/b/3kCSXA/767q
http://paperpile.com/b/3kCSXA/767q
http://paperpile.com/b/3kCSXA/767q
http://paperpile.com/b/3kCSXA/767q
http://paperpile.com/b/3kCSXA/767q
http://paperpile.com/b/3kCSXA/5oqD
http://paperpile.com/b/3kCSXA/5oqD
http://paperpile.com/b/3kCSXA/5oqD
http://paperpile.com/b/3kCSXA/5oqD
http://paperpile.com/b/3kCSXA/5oqD
http://paperpile.com/b/3kCSXA/5oqD
https://doi.org/10.1101/2020.05.22.110817
http://creativecommons.org/licenses/by/4.0/


565–574 (2007). 

82. Pajula, J. & Tohka, J. How Many Is Enough? Effect of Sample Size in Inter-Subject 

Correlation Analysis of fMRI. Comput. Intell. Neurosci.  2016, 2094601 (2016). 

83. Chen, G., Taylor, P. A., Shin, Y.-W., Reynolds, R. C. & Cox, R. W. Untangling the 

relatedness among correlations, Part II: Inter-subject correlation group analysis through 

linear mixed-effects modeling. Neuroimage  147, 825–840 (2017). 

84. Lahnakoski, J. M. et al.  Stimulus-related independent component and voxel-wise analysis 

of human brain activity during free viewing of a feature film. PLoS One  7, e35215 

(2012). 

85. Boldt, R. et al.  Listening to an audio drama activates two processing networks, one for all 

sounds, another exclusively for speech. PLoS One  8, e64489 (2013). 

86. Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. & Wager, T. D. 

Large-scale automated synthesis of human functional neuroimaging data. Nat. Methods 

8, 665–670 (2011). 

87. Berman, M. G. et al.  Evaluating functional localizers: the case of the FFA. Neuroimage 

50, 56–71 (2010). 

88. Abeni, L., Goel, A., Krasic, C., Snow, J. & Walpole, J. A measurement-based analysis of 

the real-time performance of linux. in Proceedings. Eighth IEEE Real-Time and 

Embedded Technology and Applications Symposium  133–142 (2002). 

89. Skipper, J. I., Devlin, J. T. & Lametti, D. R. The hearing ear is always found close to the 

speaking tongue: Review of the role of the motor system in speech perception. Brain 

Lang. 164, 77–105 (2017). 

90. Skipper, J. I., van Wassenhove, V., Nusbaum, H. C. & Small, S. L. Hearing lips and 

seeing voices: how cortical areas supporting speech production mediate audiovisual 

speech perception. Cereb. Cortex  17, 2387–2399 (2007). 

91. Skipper, J. I., Nusbaum, H. C. & Small, S. L. Listening to talking faces: motor cortical 

43 
 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 25, 2020. ; https://doi.org/10.1101/2020.05.22.110817doi: bioRxiv preprint 

http://paperpile.com/b/3kCSXA/5oqD
http://paperpile.com/b/3kCSXA/TJHi
http://paperpile.com/b/3kCSXA/TJHi
http://paperpile.com/b/3kCSXA/TJHi
http://paperpile.com/b/3kCSXA/TJHi
http://paperpile.com/b/3kCSXA/TJHi
http://paperpile.com/b/3kCSXA/TJHi
http://paperpile.com/b/3kCSXA/DRVM
http://paperpile.com/b/3kCSXA/DRVM
http://paperpile.com/b/3kCSXA/DRVM
http://paperpile.com/b/3kCSXA/DRVM
http://paperpile.com/b/3kCSXA/DRVM
http://paperpile.com/b/3kCSXA/DRVM
http://paperpile.com/b/3kCSXA/DRVM
http://paperpile.com/b/3kCSXA/s467
http://paperpile.com/b/3kCSXA/s467
http://paperpile.com/b/3kCSXA/s467
http://paperpile.com/b/3kCSXA/s467
http://paperpile.com/b/3kCSXA/s467
http://paperpile.com/b/3kCSXA/s467
http://paperpile.com/b/3kCSXA/s467
http://paperpile.com/b/3kCSXA/s467
http://paperpile.com/b/3kCSXA/s467
http://paperpile.com/b/3kCSXA/nLdz
http://paperpile.com/b/3kCSXA/nLdz
http://paperpile.com/b/3kCSXA/nLdz
http://paperpile.com/b/3kCSXA/nLdz
http://paperpile.com/b/3kCSXA/nLdz
http://paperpile.com/b/3kCSXA/nLdz
http://paperpile.com/b/3kCSXA/nLdz
http://paperpile.com/b/3kCSXA/nLdz
http://paperpile.com/b/3kCSXA/rVpv
http://paperpile.com/b/3kCSXA/rVpv
http://paperpile.com/b/3kCSXA/rVpv
http://paperpile.com/b/3kCSXA/rVpv
http://paperpile.com/b/3kCSXA/rVpv
http://paperpile.com/b/3kCSXA/rVpv
http://paperpile.com/b/3kCSXA/h5ma
http://paperpile.com/b/3kCSXA/h5ma
http://paperpile.com/b/3kCSXA/h5ma
http://paperpile.com/b/3kCSXA/h5ma
http://paperpile.com/b/3kCSXA/h5ma
http://paperpile.com/b/3kCSXA/h5ma
http://paperpile.com/b/3kCSXA/h5ma
http://paperpile.com/b/3kCSXA/PfCe
http://paperpile.com/b/3kCSXA/PfCe
http://paperpile.com/b/3kCSXA/PfCe
http://paperpile.com/b/3kCSXA/PfCe
http://paperpile.com/b/3kCSXA/PfCe
http://paperpile.com/b/3kCSXA/hBBSP
http://paperpile.com/b/3kCSXA/hBBSP
http://paperpile.com/b/3kCSXA/hBBSP
http://paperpile.com/b/3kCSXA/hBBSP
http://paperpile.com/b/3kCSXA/hBBSP
http://paperpile.com/b/3kCSXA/hBBSP
http://paperpile.com/b/3kCSXA/hBBSP
http://paperpile.com/b/3kCSXA/Oq5fr
http://paperpile.com/b/3kCSXA/Oq5fr
http://paperpile.com/b/3kCSXA/Oq5fr
http://paperpile.com/b/3kCSXA/Oq5fr
http://paperpile.com/b/3kCSXA/Oq5fr
http://paperpile.com/b/3kCSXA/Oq5fr
http://paperpile.com/b/3kCSXA/Oq5fr
http://paperpile.com/b/3kCSXA/kmzG
https://doi.org/10.1101/2020.05.22.110817
http://creativecommons.org/licenses/by/4.0/


activation during speech perception. Neuroimage  25, 76–89 (2005). 

92. Everingham, M., Sivic, J. & Zisserman, A. Hello! My name is... Buffy’'--Automatic 

Naming of Characters in TV Video. in BMVC  vol. 2 6 (pdfs.semanticscholar.org, 2006). 

93. Torabi, A., Pal, C., Larochelle, H. & Courville, A. Using Descriptive Video Services to 

Create a Large Data Source for Video Annotation Research. arXiv [cs.CV]  (2015). 

94. Filippova, K. & Hall, K. B. Improved Video Categorization from Text Metadata and 

User Comments. in Proceedings of the 34th International ACM SIGIR Conference on 

Research and Development in Information Retrieval  835–842 (ACM, 2011). 

95. Abu-El-Haija, S. et al.  YouTube-8M: A Large-Scale Video Classification Benchmark. 

arXiv [cs.CV]  (2016). 

96. Kay, W. et al.  The Kinetics Human Action Video Dataset. arXiv [cs.CV]  (2017). 

97. Bartels, A. & Zeki, S. The chronoarchitecture of the cerebral cortex. Philos. Trans. R. 

Soc. Lond. B Biol. Sci.  360, 733–750 (2005). 

98. Skipper, J. I. & Zevin, J. D. Brain reorganization in anticipation of predictable words. 

bioRxiv  101113 (2017) doi:10.1101/101113. 

99. Russakovsky, O. et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. 

Comput. Vis.  115, 211–252 (2015). 

100. Nishimoto, S. et al.  Reconstructing visual experiences from brain activity evoked by 

natural movies. Curr. Biol.  21, 1641–1646 (2011). 

 

44 
 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 25, 2020. ; https://doi.org/10.1101/2020.05.22.110817doi: bioRxiv preprint 

http://paperpile.com/b/3kCSXA/kmzG
http://paperpile.com/b/3kCSXA/kmzG
http://paperpile.com/b/3kCSXA/kmzG
http://paperpile.com/b/3kCSXA/kmzG
http://paperpile.com/b/3kCSXA/kmzG
http://paperpile.com/b/3kCSXA/k07Tl
http://paperpile.com/b/3kCSXA/k07Tl
http://paperpile.com/b/3kCSXA/k07Tl
http://paperpile.com/b/3kCSXA/k07Tl
http://paperpile.com/b/3kCSXA/HBDGW
http://paperpile.com/b/3kCSXA/HBDGW
http://paperpile.com/b/3kCSXA/HBDGW
http://paperpile.com/b/3kCSXA/HBDGW
http://paperpile.com/b/3kCSXA/gIRhb
http://paperpile.com/b/3kCSXA/gIRhb
http://paperpile.com/b/3kCSXA/gIRhb
http://paperpile.com/b/3kCSXA/gIRhb
http://paperpile.com/b/3kCSXA/gIRhb
http://paperpile.com/b/3kCSXA/CSckI
http://paperpile.com/b/3kCSXA/CSckI
http://paperpile.com/b/3kCSXA/CSckI
http://paperpile.com/b/3kCSXA/CSckI
http://paperpile.com/b/3kCSXA/CSckI
http://paperpile.com/b/3kCSXA/ZyFva
http://paperpile.com/b/3kCSXA/ZyFva
http://paperpile.com/b/3kCSXA/ZyFva
http://paperpile.com/b/3kCSXA/ZyFva
http://paperpile.com/b/3kCSXA/ZyFva
http://paperpile.com/b/3kCSXA/9j7I
http://paperpile.com/b/3kCSXA/9j7I
http://paperpile.com/b/3kCSXA/9j7I
http://paperpile.com/b/3kCSXA/9j7I
http://paperpile.com/b/3kCSXA/9j7I
http://paperpile.com/b/3kCSXA/9j7I
http://paperpile.com/b/3kCSXA/q7yqc
http://paperpile.com/b/3kCSXA/q7yqc
http://paperpile.com/b/3kCSXA/q7yqc
http://dx.doi.org/10.1101/101113
http://paperpile.com/b/3kCSXA/q7yqc
http://paperpile.com/b/3kCSXA/z2NlL
http://paperpile.com/b/3kCSXA/z2NlL
http://paperpile.com/b/3kCSXA/z2NlL
http://paperpile.com/b/3kCSXA/z2NlL
http://paperpile.com/b/3kCSXA/z2NlL
http://paperpile.com/b/3kCSXA/z2NlL
http://paperpile.com/b/3kCSXA/z2NlL
http://paperpile.com/b/3kCSXA/z2NlL
http://paperpile.com/b/3kCSXA/Cl3IS
http://paperpile.com/b/3kCSXA/Cl3IS
http://paperpile.com/b/3kCSXA/Cl3IS
http://paperpile.com/b/3kCSXA/Cl3IS
http://paperpile.com/b/3kCSXA/Cl3IS
http://paperpile.com/b/3kCSXA/Cl3IS
http://paperpile.com/b/3kCSXA/Cl3IS
http://paperpile.com/b/3kCSXA/Cl3IS
https://doi.org/10.1101/2020.05.22.110817
http://creativecommons.org/licenses/by/4.0/

