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Abstract 

During muscle regeneration, extracellular signal-regulated kinase (ERK) promotes 

both proliferation and migration. However, the relationship between proliferation and 

migration is poorly understood in this context. To elucidate this complex relationship on 

a physiological level, we established an intravital imaging system for measuring ERK 

activity, migration speed, and cell-cycle phases in mouse muscle satellite cells. We 

found that in vivo, ERK was maximally activated in satellite cells two days after injury, 

and this is then followed by increases in cell number and motility. With limited effects 

of immediate ERK activity on migration, we hypothesized that ERK increases 

migration speed in the later phase by promoting cell-cycle progression. Our cell-cycle 

analysis further revealed that in satellite cells, ERK activity is critical for the G1/S 

transition, and cells migrate more rapidly in the S/G2 phase three days after injury. 

Finally, migration speed of satellite cells was suppressed after CDK1/2, but not CDK1, 

inhibitor treatment, demonstrating a critical role of CDK2 in satellite cell migration. 

Overall, our study demonstrates that in satellite cells, the ERK-CDK2 axis not only 

promotes the G1/S transition, but also migration speed, which may provide a novel 

mechanism for efficient muscle regeneration. 
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Introduction 

To efficiently regenerate skeletal muscles, the right cells to be at the right place at the 

right time. This coordinated process is dependent on muscle stem cells, or so called 

satellite cells, that reside quiescent in uninjured muscles (Yin et al., 2013); (Ceafalan et 

al., 2014); (Tedesco et al., 2010). Upon injury, activated satellite cells start proliferation 

and differentiate into myoblasts. Myoblasts proliferate, migrate to the site of injury, and 

then differentiate into myofibers, completing the regeneration process. A subpopulation 

of satellite cells undergoes self-renewal to restore the pool of quiescent satellite cells. 

Recent studies have indicated that dysfunction of satellite cells can contribute to 

age-associated muscle diseases and influence genetic disorders such as Duchenne 

muscular dystrophy (DMD) (Blau et al., 2015); (Sousa-Victor et al., 2015); (Almada 

and Wagers, 2016).  

Several myogenic transcription factors are sequentially activated to restore muscle 

structure and function after injury. Satellite cells express the transcription factor paired 

box 7 (PAX7), which is essential for satellite cell survival and muscle regeneration 

(Seale et al., 2000); (Oustanina et al., 2004); (Kuang et al., 2006). Satellite cell 

activation is characterized by the expression of myogenic determination protein 

(MYOD) and myogenic factor 5 (MYF5). The differentiation of myoblasts involves the 

downregulation of PAX7 and the expression of myogenin (MYOG) (Ceafalan et al., 

2014); (Tedesco et al., 2010). 

The relationship between proliferation and migration is complex and 

context-dependent, and has been mostly studied in tumorigenesis and development. 

Historically, cancer cell proliferation and migration were considered to be mutually 

exclusive in time and space, which is often referred to as the “go or grow” hypothesis 

(Giese et al., 1996); (Corcoran et al., 2003); (Garay et al., 2013). This hypothesis is 

corroborated by reports showing that tumor cells in the G0/G1 phase migrate more 
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vigorously than in the S/G2/M phase (Bouchard et al., 2013); (Yano et al., 2014). 

However, several lines of evidence indicate that tumor cells can migrate faster in the 

S/G2/M phase compared to G0/G1 phase (Kagawa et al., 2013); (Haass et al., 2014). In 

development, neural crest cells in fish and avian embryo migrate faster in S phase 

(Burstyn-Cohen and Kalcheim, 2002); (Rajan et al., 2018). And during mouse cerebral 

cortex development, nuclei of neural progenitors in the ventricular zone migrate more 

vigorously in the S/G2/M phase than in G1 (Sakaue-Sawano et al., 2008). It is thus 

likely that the relationship between proliferation and migration depends on the cells, 

tissues, and the surrounding environment, and much remains unknown in other 

physiological context such as muscle regeneration. 

Extracellular signal-regulated kinase (ERK) signaling pathway has been suggested 

to play crucial roles in muscle regeneration. Previous studies have shown that ERK1/2 

promotes myoblast proliferation and migration in vitro (Suzuki et al., 2000); (Jones et 

al., 2001). In addition, ERK1/2 has also been reported to be important for muscle 

differentiation in vitro (Rommel et al., 1999); (Yokoyama et al., 2007); (Koyama et al., 

2008) and in vivo (Michailovici et al., 2014). Erk1-/- mutant mice have 40% less 

quiescent satellite cells compared to control (Le Grand et al., 2012), further 

emphasizing the importance of ERK signaling in satellite cells. In many of these reports, 

fibroblast growth factor (FGF) acts upstream of the ERK signaling pathway. The 

significance of FGF is highlighted by a muscle regeneration defect in FGF6-/- mutant 

mice (Floss et al., 1997), severe muscular dystrophy in FGF2-/-/FGF6-/-/mdx mutant 

mice (Neuhaus et al., 2003), and enhanced wound repair by the delivery of FGF2 

(Doukas et al., 2002). However, when and to what extent ERK plays its critical roles for 

muscle regeneration remains poorly understood. 

Intravital imaging by two-photon microscopy is becoming a powerful technique to 

study the complexity of biological events in living tissues including skeletal muscle 
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(Pittet and Weissleder, 2011); (Nobis et al., 2018). For example, Webster et al. 

developed an intravital imaging technique to observe cells labeled with Pax7-CreERT2 

in living mice (Webster et al., 2016). They demonstrated that extracellular matrix 

(ECM) remnants guide the direction of migration and division plane. Another intravital 

imaging technique developed by Mercier et al. revealed that single fibers contraction 

occurs spontaneously and independently of neighboring fibers within the same muscle 

(Lau et al., 2016). More recently, Hotta et al. revealed that the temporal profile of 

microvascular hyperpermeability to be related to that of eccentric contraction-induced 

skeletal muscle injury (Hotta et al., 2018). Thus, intravital imaging provides the 

information on biological events including cell division, cell migration, myofiber 

contraction, and vascular permeability, which could never be obtained without intravital 

imaging. 

To further understand the role of ERK signaling and how cell migration is affected 

by cell-cycle modulations during muscle regeneration in vivo, we established an 

intravital imaging technique to observe live mouse muscle regeneration. We 

incorporated in this imaging system a Förster/fluorescence resonance energy transfer 

(FRET) biosensor that measures ERK and activity and a fluorescent reporter that 

indicates cell cycle. With this intravital imaging platform, we found that ERK promotes 

the G1/S phase transition and that satellite cells migrate faster in the S/G2 phase. 

Moreover, our data suggests that CDK2 is responsible for promoting migration speed of 

satellite cells. In summary, our study clarifies the cell cycle-dependent migration of 

satellite cells in vivo, and may provide a novel mechanism of efficient tissue 

regeneration. 
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Results 

ERK is activated during muscle regeneration 

Satellite cell proliferation and migration have been reported to be essential for muscle 

regeneration. To investigate the relationship between satellite cell proliferation and 

migration, we focused on ERK, which has been reported to promote both myoblast 

proliferation (Jones et al., 2001) and migration (Suzuki et al., 2000) in vitro. To study 

ERK activity in living tissues, we used a previously developed R26R-EKAREV mice 

strain that ubiquitously expressed a floxed FRET biosensor for monitoring ERK activity, 

EKAREV (Konishi et al., 2018). We crossed the R26R-EKAREV mice Pax7-CreERT2 

mice (Lepper et al., 2009) to generate R26R-EKAREV/Pax7-CreERT2 mice (Fig. 1A). 

Skeletal muscle damage was induced by cardiotoxin injection, and then live imaged 

under an upright microscope via imaging window (Fig. 1B and 1C) (Takaoka et al., 

2016). After Cre-mediated recombination induced by tamoxifen, 

R26R-EKAREV/Pax7-CreERT2 mice express a FRET biosensor for ERK, in the 

nucleus of Pax7 lineage cells, hereinafter referred to as satellite cells (green cells and 

pseudo-colored cells in Fig. 1D). Cells that were not recombined, i.e., myofibers, 

expressed a large Stokes shift fluorescent protein, tdKeima. We confirmed that tdKeima 

was expressed ubiquitously in muscle fibers before injury (magenta cells in Fig. 1D). 

Marked reduction in the number of tdKeima-expressing cells was observed between 0 

and 2 days post injury (dpi) (Fig .1D and 1E). The nuclear density of satellite cells was 

measured from the z-stack images of skeletal muscle, and assessed by a multiple 

contrast method, Scheffe’s F-test. The nuclear density was increased by 3.2 fold from 2 

to 3 dpi, indicating the proliferation of satellite cells.  

During muscle regeneration, ERK activity (FRET/CFP) in satellite cells was 

maximally increased at 2 dpi and decreased below the basal level at 5 dpi (Fig .1D and 

1F). Statistical differences were found among every different pair of days. Collectively, 
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our results indicate that ERK activation precedes proliferation in myogenic satellite 

cells. 

 

Immediate ERK activity is required for migration in some satellite cells but not in 

all satellite cells  

Since ERK activity regulates both cell migration and proliferation (Suzuki et al., 2000); 

(Jones et al., 2001), we first tested the relationship between ERK activity and cell 

migration speed (Fig. 2A). To examine the migration speed of myogenic progenitor 

cells, the speed was calculated from the displacement of nuclear centroids tracked more 

than 1 hour and divided by the time. The migration speed was significantly and 

maximally increased at 3 dpi and decreased at 5 dpi (Fig. 2B). Because ERK activity 

was already increased at 2 dpi (Fig. 1F), this observation indicates that ERK activation 

precedes the increase in migration speed as well as proliferation, in myogenic 

progenitor cells during muscle regeneration. 

Interestingly, we found that satellite cells migrate predominantly along the long axis 

of myofibers (Fig. 2C), consistent with the finding that extracellular matrix of the basal 

laminae around myofibers serve as a guide for satellite cells to migrate (Webster et al., 

2016). Moreover, the direction of satellite cell migration was not biased toward either of 

the ends along the long axis of myofibers (Fig. 2C). This result suggests that, at least in 

muscle regeneration at 3 dpi, satellite cell migration is governed by random walk rather 

than by chemotaxis. 

Although ERK has been reported to promote myoblast migration (Suzuki et al., 

2000), to what extent ERK activity is required for satellite cell migration is not 

completely understood. Therefore, we examined the relationship between ERK activity 

and speed in satellite cells. Unexpectedly, we failed to observe strong correlation 
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between migration speed and ERK activity at 3 dpi (Fig. 2D, only satellite cells with a 

speed of more than 7 μm/hr were defined as “migrating” and analyzed). This suggests 

that migration speed of satellite cells is not immediately determined by ERK activity. 

We next tested for immediate ERK activity requirement in satellite cell migration by 

acutely inhibiting MEK, a kinase of ERK, at 3 dpi (Fig. 2E and 2F). A MEK inhibitor 

treatment only moderately decreased the speed in migrating satellite cells (top 

histogram, Fig. 2F). Some satellite cells (43.5%) decreased in migration speed and ERK 

activity (bottom left cell population in scatter plot, Fig. 2F). However, it is important to 

note that many other migrating satellite cells (35.6%) did not alter their speed after 

MEK inhibitor treatment, even though ERK activity was significantly decreased 

(bottom right cell population in scatter plot, Fig. 2F). These results indicate that 

immediate ERK activity may regulate migration speed in some satellite cells but not in 

all satellite cells. 

 

ERK activation is required for the G1/S transition in vivo 

Due to the lack of correlation in immediate ERK activity and migration speed, we 

speculated that ERK promotes cell migration through its transcriptional targets (Fig. 2). 

This is consistent with our observation that that there was a one-day gap between the 

peak of ERK activity and the peak of cell migration speed (Fig. 1). We thus focused on 

cell-cycle progression, a key long-term process that is linked to ERK-mediated 

transcription. First, to clarify the role of ERK in cell-cycle progression in vivo, we 

inhibited ERK activity in R26Fucci2aR/Pax7-CreERT2 mice that expressed a cell cycle 

indicator, Fucci, in Pax7-expressing satellite cells. Fucci2a is composed of two chimeric 

proteins, mCherry-hCdt1 and mVenus-hGeminin, which accumulate reciprocally in the 

nucleus of the cells during the cell cycle, labeling the nuclei of G0/G1 phase cells with 

mCherry and those of S/G2/M phase cells with mVenus. The proportion of cells 
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expressing mCherry-hCdt1 and cells expressing mVenus-hGeminin was analyzed after 

ERK activity was suppressed by a MEK inhibitor, PD0325901 (Fig. 3A). Fixed muscle 

was cleared by CUBIC reagents to obtain the broad cross-sectional area of the tissue. 

By MEK inhibitor treatment at 2 and 2.5 dpi, the density of cells expressing 

mVenus-hGeminin was decreased at 3 dpi (Fig. 3B and 3C), suggesting that satellite 

cells were arrested at the G1/S boundary. This result indicates that ERK activation is 

required for the G1/S transition in vivo during muscle regeneration. 

 

Migration speed increases in the S/G2 phase 

From these data, we hypothesized that ERK promotes cell cycle progression from the 

G0/G1 to S phase, which precedes the peak of cell migration speed. To further 

investigate the relationship between cell cycle and migration in satellite cells, 

progression of cell cycle phase during muscle regeneration was examined using 

R26Fucci2aR/Pax7-CreERT2 mice. Again, Fucci2aR was expressed in satellite cells by 

injection of tamoxifen. Then, skeletal muscle damage was induced by cardiotoxin 

injection. At 0 dpi, almost all of the cells were mCherry positive, i.e., in G0 phase (Fig. 

4A and 4B). The cells expressing mVenus-hGeminin increased at 2 to 3 dpi and 

decreased at 5 dpi. These data indicate satellite cells mainly divide from 1 to 4 dpi. 

Next, we asked whether the migration speed varies depending on the cell cycle. For 

this purpose, we focused on 3 dpi because satellite cells are both in G1/S and G2 phases 

(Fig. 4B). We tracked mCherry-positive or mVenus-positive cells for 4 hours (Fig. 4C). 

Time-lapse imaging of the skeletal muscle of R26Fucci2aR/Pax7-CreERT2 mice 

revealed that S/G2/M cells expressing the mVenus-hGeminin migrate faster than G0/G1 

cells expressing mCherry-hCdt1. The cells were classified into G0, G1, S/G2 and M 

phases to further examine the cell cycle dependence of migration speed. Cells that do 

not express Ki67 (and thus identified as G0 cells) have been previously reported to 
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express higher levels of mKO2-hCdt1 (Tomura et al., 2013). Thus, we classified cells 

expressing higher and lower levels of mCherry-hCdt1 as cells in G0 and G1 phase, 

respectively (Fig. 4D). Cells in the M phase were discriminated from cells in the S/G2 

phase by nuclear membrane breakdown and subsequent disappearance of 

mVenus-hGeminin. With these analyses, we found that the migration speed maximally 

increased in the S/G2 phase and decreased in the M phase and G1 phase, and reached 

the minimum in the G0 phase (Fig. 4E).  

 

CDK2 promotes satellite cell migration during muscle regeneration 

These results motivated us to search for a mechanism underlying cell cycle-dependent 

migration. To this end, we examined the contribution of CDKs, whose activities are 

tightly controlled throughout the cell cycle (Malumbres and Barbacid, 2009). To test the 

hypothesis that a downstream substrate of CDK directly regulates cell migration, CDK 

inhibitors were injected in mice during in vivo imaging at 3 dpi. The difference in 

migration speed of each cell was plotted against the difference in ERK activity (Fig. 5A, 

5B, and 5C). To clarify the effects of CDK inhibitors on cell migration, we focused on 

the migrating satellite cells that decreased their speed more than 7 μm/hr after the 

inhibitor treatment, and defined as “decelerated”. Gray dashed lines denote the 

threshold for classifying “decelerated” population (Fig. 5A, 5B, and 5C). Interestingly, 

decelerated cell population was increased by a CDK1/2 inhibitor, roscovitine, but not by 

a CDK1 inhibitor or a CDK4/6 inhibitor (Fig. 5D). From these results, we speculated 

that CDK2 could promote satellite cell migration. This hypothesis is also advocated by 

the facts that CDK1 is most activated in M phase and that migration speed is higher in 

the S/G2 than in M phase (Fig. 4E). Given that roscovitine is a kinase inhibitor, this 

result implies that phosphorylation of a CDK2 downstream substrate promotes satellite 

cell migration in the S/G2 phase during muscle regeneration. 
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Discussion 

Based on our results, we propose two modes of ERK action in satellite cell during 

regeneration, in the early and later phase. The effect of ERK in the early phase 

coincides with satellite cell activation and promotes cell migration, whereas the effect of 

ERK the later phase promotes the G1/S transition and cell migration though CDK2 

activation (Fig. 5E).   

We demonstrate, for the first time, that ERK is activated upon satellite cell 

activation during muscle regeneration in vivo. Our data suggests that ERK activation 

precedes other regulators of muscle regeneration. ERK activation peaks at 2 dpi, while 

the myogenic master transcription factor MyoD expression peaks at 3 to 4 dpi (Ogawa 

et al., 2015) and other mitogen-activated protein kinase p38 peaks at 7 to 14 dpi 

(Ruiz-Bonilla et al., 2008). This supports the notion that ERK is activated early in 

muscle regeneration, when satellite cells exit from quiescence in response to injury. 

The varied effects of ERK on cell migration among satellite cells in vivo could be 

caused by the difference in focal adhesion signaling. Pro-migratory functions of ERK 

and the responsible substrates have been characterized in numerous cell types. Among 

the identified substrates, two focal adhesion–associated proteins, FAK and paxillin are 

most likely to be involved in ERK-induced cell migration in satellite cells. ERK is 

suggested to interact with FAK/paxillin and promote cell migration by enhancing focal 

adhesion turnover and membrane protrusion at the front of the cells (Hauck et al., 

2000); (Liu et al., 2002); (Subauste et al., 2004); (Teranishi et al., 2009); (Singh et al., 

2019). Functional effects of FAK/paxillin were corroborated by in vivo studies showing 

that targeted deletion of FAK in satellite cells impairs skeletal muscle regeneration 

(Quach et al., 2009), and that paxillin is hyper-phosphorylared in dystrophin-deficient 

mdx muscle (Sen et al., 2011). Therefore, the difference in abundance of FAK and 
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paxillin could explain the difference in the ERK contribution on cell migration among 

satellite cells. 

Multiple lines of evidence support a pro-migratory role of CDK2 though stathmin, a 

phosphorylation-regulated tubulin-binding protein. First of all, stathmin is suggested to 

be phosphorylated at Ser25 by CDK2, in a consensus CDK/MAPK phosphorylation 

motif, PXS*P (Chi et al., 2008). In agreement with our model, several papers have 

demonstrated that p27, the cyclin-dependent kinase inhibitor, inhibits cell migration 

though CDK2 and stathmin (Baldassarre et al., 2005); (Schiappacassi et al., 2008); 

(Schiappacassi et al., 2011); (Nadeem et al., 2013). Furthermore, p27 knockout mouse 

showed increased body weight along with muscle weight (Kiyokawa et al., 1996), 

whereas stathmin knockout mouse developed age-dependent myopathy (Liedtke et al., 

2002). More interestingly, the expression of stathmin has been suggested to increase as 

myoblasts undergo differentiation (Balogh et al., 1996); (Gonnet et al., 2008); (Casadei 

et al., 2009). Further study is needed regarding the mechanism by which CDK2 promote 

cell migration. 

We speculate that the cell cycle-dependent migration in satellite cells may 

contribute to efficient regeneration and differentiation, mediated by CDK2, p21, and the 

myogenic master transcription factor MyoD. Of note, crosstalk between cell cycle 

regulators and myogenic regulatory factors has been well characterized in vitro. 

Expression of MyoD peaks in mid-G1, and is reduced to its minimum level at the G1/S 

transition (Kitzmann et al., 1998). In late G1, MyoD is degraded by the ubiquitin 

proteasome system, which is triggered by cyclin E/CDK2-dependent phosphorylation of 

MyoD at Ser200 (Song et al., 1998); (Kitzmann et al., 1999); (Tintignac et al., 2004). In 

turn, MyoD inhibits CDK2 activity by inducing expression of the cyclin-dependent 

kinase inhibitor p21 (Halevy et al., 1995); (Guo et al., 2015). Although satellite cells 

need to proliferate and migrate into the site of injury, they also need to stop migrating 
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and differentiate into myotubes, by fusing to each other or to the remaining myofibers. 

We speculated that such migration control is important especially where cells migrate 

stochastically along the long axis of myofibers (Fig. 2C). Thus, higher motility of 

satellite cells in S/G2 would help to supply satellite cells at the site of injury, whereas 

lower motility of satellite cells in G1 would be beneficial to induce efficient 

differentiation into myofibers. 

In summary, we demonstrated that satellite cells migrate in a cell cycle-dependent 

manner and that both ERK and CDK2 contribute to promoting their migration during 

muscle regeneration in vivo, which may provide the mechanism underlying efficient 

muscle regeneration. These findings highlight the importance of studying molecular 

activity, cell migration, and cell-cycle phases in living tissue with intravital imaging. 
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Figure Legends 

Figure 1. ERK is activated during muscle regeneration. 

(A) Scheme of R26R-EKAREV/Pax7-CreERT2 mice. (B) Experimental scheme of 

Cre-mediated recombination and in vivo imaging of skeletal muscle regeneration. (C) 

Layout for the in vivo imaging system. The muscle under the imaging window was 

observed with a two-photon microscope repetitively. (D) Representative images of 

myogenic progenitor cells at 0, 1, 2, 3, and 5 days post injury (dpi). Biceps femoris 

muscles were imaged as indicated time points, and shown in maximum intensity 

projection images of 30 μm z-stack with 2 μm intervals. EKAREV-NLS was used to 

monitor the biosensor in the nucleus. Green and magenta cells in merged images 

represent myogenic progenitor cells and the myofibers, respectively (top panels). ERK 

activity (FRET/CFP) images of myogenic progenitor cells shown in the 

intensity-modulated display (IMD) mode (bottom panels). (E) Averaged nuclear density 

of myogenic progenitor cells calculated from the z-stack images (bars, SDs; N = 3 mice 

for each day; *p < 0.05; p value is given with an asterisk). (F) ERK activity 

(FRET/CFP) of myogenic progenitor cells. Different color represents datasets from a 

different mouse (bars, averages; N = 3 mice for each day; ***p < 0.001; p values are 

given with asterisks). 

 

Figure 2. Immediate ERK activity is required for migration in some satellite cells 

but not in all satellite cells. 

(A) Representative time-lapse images of satellite cells (white dots) and their cell tracks 

(pseudo-colored lines) (left). FRET/CFP ratio images of satellite cells (IMD mode dots) 

and their cell tracks (white lines) (right). (B) Migration speed of myogenic progenitor 

cells, which was calculated from the displacement of EKAREV-NLS centroids tracked 
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more than 1 hour and divided by the time. Different color represents datasets from a 

different mouse (bars, averages; N = 3 mice for each day; ***p < 0.001; p values are 

given with asterisks). (C) Representative cell tracks for 2 hours. X-axis corresponds to 

the long axis of myofibers. (D) Scatter plot of normalized ERK activity (FRET/CFP) 

against migration speed in migrating satellite cells. Satellite cells with a speed of more 

than 7 μm/hr were defined as “migrating” and taken into account. ERK activity was 

normalized by the averaged ERK activity of each mouse. Different color represents 

datasets from a different mouse (N = 3 mice). (E) Representative images of satellite 

cells (white dots) and their cell tracks (two-colored lines). Yellow lines indicate cell 

tracks during the first two hours. Blue lines indicate cell tracks during the latter two 

hours after treatment with DMSO (1 mL/kg) or a MEK inhibitor (PD0325901, 5 mg/kg). 

(F) The difference in migration speed and ERK activity in satellite cells, calculated by 

subtracting values before MEKi treatment from values after MEKi treatment. Gray 

dashed lines indicate the median of ERK activity and migration speed in DMSO group. 

Percentages of each cell groups after MEKi treatment are indicated in the scatter plot. 

Histograms of the difference in migration speed and ERK activity are shown at the top 

and right side of the figure, respectively (N = 4 mice for DMSO group; N =3 mice for 

MEKi group). 

 

Figure 3. ERK activation is required for the G1/S transition. 

(A) Experimental scheme of Cre-mediated recombination and tissue clearing. Mice 

were injected with or without a MEK inhibitor (PD0325901, 5 mg/kg) at 2 and 2.5 dpi, 

and fixed at 3 dpi. (B and C) Representative images (B) and averaged nuclear density 

(C) of regenerating regions in the mouse skeletal muscle expressing Fucci in satellite 

cells. Magenta and green colors represent cells in the G0/G1 and the S/G2/M phase, 
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respectively. Mice were analyzed according to the experimental scheme described in 

(A) (bars, SDs; N = 3 mice for each group; *p < 0.05; p value is given with an asterisk). 

 

Figure 4. Migration speed of satellite cells increases in the S/G2 phase. 

(A) Representative images of satellite cells expressing Fucci at 0, 2, 3, and 5 dpi. Biceps 

femoris muscles were imaged as indicated time points, and shown in maximum 

intensity projection images of 100 μm z-stack with 2 μm intervals. Magenta and green 

dots indicate cells in the G0/G1 phase and those in the S/G2/M phase, respectively. (B) 

Averaged nuclear densities of satellite cells expressing Fucci calculated from the z-stack 

images (bars, SDs; N = 3 mice for each day; ***p < 0.001; p value is given with 

asterisks). (C) Representative images of cell trajectories for 4 hours at 3 dpi. Magenta 

and green lines indicate the trajectories of cells in the G0/G1 phase and those in the 

S/G2/M phase, respectively. (D) Representative probability density distribution of the 

mCherry-hCdt1 intensity. A red dashed line indicates a threshold to discriminate cells in 

the G0 and G1 phase. The threshold was defined as an intersection of two Gaussian 

distributions fitted to the data. (E) Migration speed of satellite cells expressing Fucci 

during each cell cycle phase at 3 dpi. Cells in the G0 and G1 phase were discriminated 

by the threshold determined in (D). Cells in the M phase was discriminated from cells in 

the S/G2 phase by cytosolic distribution and subsequent disappearance of 

mVenus-hGeminin. Different color represents datasets from different mice (bars, 

averages; N = 3 mice for each day; ***p < 0.001; p values are given with asterisks). 

 

Figure 5. CDK2 promotes cell migration during muscle regeneration 

(A, B, and C) The difference in migration speed and ERK activity in satellite cells, 

calculated by subtracting values before the drug treatment from values after the drug 
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treatment. Gray dashed lines indicate 7 μm/hr of decrease in migration speed. 

Histograms of the difference in migration speed and ERK activity are shown at the top 

and right side of the figure, respectively (N = 4 mice for DMSO group; N = 4 mice for 

CDK1/2i group; N =3 mice for CDK1i group; N = 3 mice for CDK4/6i group). Mice 

expressing EKAREV-NLS in satellite cells were injected intravenously with DMSO (1 

mL/kg), CDK1/2 inhibitor (roscovitine, 0.05 mg/kg), CDK1 inhibitor (RO-3306, 1 

mg/kg), or CDK4/6 inhibitor (palbociclib, 1 mg/kg) during in vivo imaging at 3 dpi. (D) 

Percentage of decelerated cell population after DMSO or CDK inhibitors. Migrating 

satellite cells that decreased their speed more than 7 μm/hr are defined as “decelerated” 

and taken into account (bars, SDs; *p < 0.05; n.s., not significant; p value is given with 

an asterisk). (E) Schematic model of cell cycle progression and cell migration by ERK 

and CDK2 in satellite cells during muscle regeneration. 
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Materials and Methods 

 

Reagents 

PD0325901 (FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan), roscovitine 

(Sigma-Aldrich, St. Louis, MO), RO-3306 (Tokyo Chemical Industry, Tokyo, Japan), 

and palbociclib (Chemietek, Indianapolis, IN) were applied as inhibitors for MEK, 

CDK1/2, CDK1, and CDK4/6, respectively. 

 

Transgenic mice 

Gt(ROSA)26Sortm1(CAG-loxP-tdKeima-loxP-EKAREV-NLS) (hereinafter called 

R26R-EKAREV-NLS) mice have been developed previously (Konishi et al., 2018). 

These mouse lines are designed to express the tdKeima fluorescent protein before 

Cre-mediated recombination and EKAREV after recombination, under the CAG 

promoter in the ROSA26 locus. Gt(ROSA)26Sortm1(Fucci2aR)Jkn (hereinafter called 

R26Fucci2aR) mice have been developed previously (Mort et al., 2014). 

B6;129-Pax7tm2.1(cre/ERT2)Fan/J (hereinafter called Pax7-CreERT2) mice have been 

developed previously (Lepper et al., 2009) and were provided by Atsuko 

Sehara-Fujisawa (Kyoto University, Kyoto, Japan). This mouse line is designed to 

express a tamoxifen-inducible Cre recombinase–oestrogen receptor fusion protein, 

CreERT2 under the endogenous promoter in the Pax7 locus.  

To develop transgenic mice expressing EKAREV-NLS or Fucci in satellite cells 

specifically, R26R-EKAREV-NLS or R26Fucci2aR mice were crossed with 

Pax7-CreERT2 mice. To induce Cre mediated recombination, tamoxifen 

(Sigma-Aldrich) dissolved in corn oil (Sigma-Aldrich) were injected into 

intraperitoneally (75 mg/kg) once a day consecutively for five days. Mice were housed 
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in a specific-pathogen-free facility and received a routine chow diet and water ad 

libitum. Adult female and male mice of 2 to 6 months of age were used for the in vivo 

imaging. The animal protocols were reviewed and approved by the Animal Care and 

Use Committee of Kyoto University Graduate School of Medicine (No.14079, 15064, 

16038, 17539, and 18086). 

 

Muscle injury with cardiotoxin 

To investigate the muscle regeneration, muscle damage was induced by cardiotoxin. 

The skin over the skeletal muscle was shaved and cleaned with 70% ethanol. The 

skeletal muscle was injected with 10 μL of cardiotoxin (Sigma-Aldrich or Latoxan, 

Portes lès Valence, France) in DDW (1 mg/mL). 

 

In vivo imaging of skeletal muscle 

For repetitive observations, the custom-made imaging window were implanted in the 

femoral region as described previously (Takaoka et al., 2016) before cardiotoxin 

injection. For a single observation, the skin over the tibialis anterior (TA) was shaved 

and incised to expose approximately 1 cm2 of the TA muscle as described previously 

(Konagaya et al., 2017) after cardiotoxin injection. Mice were anaesthetized with 1 to 

1.5% isoflurane (FUJIFILM Wako Pure Chemical Corporation) mixed with oxygen 

delivered at 1 L/min. Drugs were injected intravenously during imaging. 

 

Tissue clearing 

For tissue clearing, the TA muscle was collected from mice and fixed in 4% PFA 

overnight in 4oC. The fixed organs were immersed in CUBIC-1 reagent for 5 days and 
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then further immersed in CUBIC-2 reagent. ScaleCUBIC-1 (reagent-1A) was prepared 

as a mixture of 10 wt% urea (Nacalai Tesque, Kyoto, Japan), 5 wt% N, N, N’, 

N’-tetrakis (2-hydroxypropyl) ethylenediamine (Tokyo Chemical Industry), 10 wt% 

Triton X-100 (Nacalai Tesque), and 25 mM NaCl (Nacalai Tesque). ScaleCUBIC-2 

(reagent 2) was prepared as a mixture of 50 wt% sucrose (Nacalai Tesque), 25 wt% urea, 

10 wt% 2, 2’, 2”-nitrilotriethanol (FUJIFILM Wako Pure Chemical Corporation), and 

0.1% (v/v) Triton X-100 (Susaki et al., 2014). 

 

Two-photon excitation microscopy 

For repetitive observations, living mice were observed with an FV1200MPE-BX61WI 

upright microscope (Olympus, Tokyo, Japan) equipped with an XLPLN25XWMP 

water-immersion objective lens (Olympus), where the pixel size was 1.59 um/pixel. For 

a single observation, living mice were observed with an FV1200MPE-IX83 inverted 

microscope (Olympus) equipped with a UPlanSApo 30x/1.05NA silicon oil-immersion 

objective lens (Olympus), where the pixel size was 1.325 um/pixel. The microscopes 

were equipped with an InSight DeepSee Ultrafast laser (0.95 W at 900 nm) (Spectra 

Physics, Mountain View, CA). The scan speed was set at 2 to 10 µs/pixel. The 

excitation wavelength for CFP, GFP, and RFP was 840, 960, and 1040 nm, respectively. 

Fluorescent images were acquired with the following filters and mirrors: (1) an 

infrared-cut filter BA685RIF-3 (Olympus), (2) two dichroic mirrors DM505 (Olympus) 

and DM570 (Olympus), and (3) four emission filters FF01-425/30 for second harmonic 

generation (SHG) (Semrock, Rochester, NY), BA460-500 for CFP/SHG (Olympus), 

BA520-560 for FRET/GFP (Olympus), and 645/60 for RFP (Chroma Technology, 

Bellows Falls, VT). The microscopes were equipped with a two-channel GaAsP 

detector unit and two multialkali detectors. FLUOVIEW software (Olympus) was used 
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to control the microscope and to acquire images, which were saved in the multilayer 

12-bit tagged image file format. 

 

Lightsheet microscopy 

Images of cleared tissues were acquired with a Lightsheet Z.1 microscope (Zeiss, 

Oberkochen, Germany) equipped with a single side light sheet and two lenses: an EC 

Plan-Neofluar 5x/0.16 detection objective lens and LSFM clearing 5x/0.1 illumination 

objective lens. The excitation wavelength for mVenus and mCherry was 488 and 561 

nm, respectively. The light sheet thickness was 12.67 μm. A laser blocking filter, LBF 

405/488/561/640, secondary beam splitters, SBS LP490 and SBS LP560, and emission 

filters, BP505-545 and BP575-615, were used. Images were saved in the multilayer 

16-bit tagged image file format. ZEN software (Zeiss) was used to control the 

microscope and to acquire images. Samples were immersed in a 1:1 mixture of silicon 

oil TSF4300 (Momentive Performance Materials Japan, Tokyo) and mineral oil 

(Sigma-Aldrich) during image acquisition. 

 

Image processing 

Acquired images were processed with ImageJ (National Institutes of Health, Bethesda, 

MD, USA) and MATLAB software (MathWorks, Natick, MA). 

ImageJ software was used to obtain x- and y-coordinates of the nuclei centroid. First, 

z-stack images were aligned using an ImageJ plug-in “Correct 3D drift” (Parslow et al., 

2014). The CFP or SHG images were used as landmarks for the correction. Corrected 

z-stack images were processed with a median filter (5x5x5 pixels) and subtracted 

background noise with a top-hat filter (11x11 pixels). Filtered images were maximum 

intensity projected along the z axis. The nuclei were tracked with an ImageJ plug-in 
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“Trackmate” (Tinevez et al., 2017). For efficient tracking, CFP images were contrast 

adjusted using an ImageJ plug-in “Stack Contrast Adjustment” (Čapek et al., 2006). The 

parameters in Trackmate were set as follows: 

Detector: LoG detector 

Estimated blob diameter: 5 pixels 

Intensity threshold: 0 

Median filter: false 

Sub-pixel localization: true 

Local maxima: 3 (for SECFP in EKAREV-NLS), 5 (for mVenus in Fucci), and 1 (for 

mCherry in Fucci) 

Tracker: Simple LAP tracker 

Linking max distance: 10 pixels 

Gap-closing max distance: 10 pixels 

Gap-closing max frame: 2 

MATLAB standard and custom-written scripts were used to obtain the FRET/CFP 

ratio and the speed. The FRET/CFP ratio was calculated by dividing the averaged FRET 

intensity by the averaged CFP in the radial distance of 1-pixel from the centroid. The 

speed was calculated by dividing the displacement of the centroid by the time. 

 

Statistical analysis 

Graphing and statistical analysis was performed with MATLAB software. Statistical 

differences between two experimental groups were assessed by Student’s two-sample 
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two-sided t-test. Statistical differences among experimental groups more than two were 

assessed by Scheffe’s F-test. Statistical significances were indicated by asterisks (*p < 

0.05; **p < 0.01; ***p < 0.001). 
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Figure 2. Immediate ERK activity is required for migratio in some
satellite cells but not in all satellite cells
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Figure 4. Migration speed increases in the S/G2 phase
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Figure 5. CDK2 promotes cell migration during muscle regeneration
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