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Abstract 15 

The carpel is the basic unit of the gynoecium in angiosperms and one of the most 16 

important morphological features distinguishing angiosperms from gymnosperms; 17 

therefore, carpel origin is of great significance in angiosperm phylogenetic origin. 18 

Recent consensus favors the interpretation that the carpel originates from the fusion of 19 

an ovule-bearing axis and the phyllome that subtends it. It has been confirmed by 20 

morphological and molecular evidence that foliar homologs are involved in carpel 21 

evolution. Consequently, if axial homologs can be traced in the carpel, it would more 22 

likely be derived from an integrated axial-foliar structure. This study aimed to reveal 23 

the axial structures in carpels by analyzing the continuous changes in vasculature 24 

from the receptacle to the carpels and ovules. Anaxagorea is the most basal genus in a 25 

primitive angiosperm family, Annonaceae. The conspicuous carpel stipe at the base of 26 

each carpel makes it an ideal material for exploring the possible axial homologous 27 

structure in the carpel. In this study, floral organogenesis and the topological 28 

vasculature structure were delineated in Anaxagorea luzonensis and Anaxagorea 29 

javanica, and a 3D-model of the carpel vasculature was reconstructed based on the 30 

serial sections. The results show that (1) at the flowering stage, the number of 31 

vascular bundles entering each Anaxagorea carpel from the receptacle was 32 

significantly higher than three, arranged in a radiosymmetric pattern, and forming a 33 

basal ring at the base of each carpel. (2) All carpel bundles were only connected with 34 

the central stele. (3) At the slightly upper part of the carpel, all lateral bundles from 35 

the basal ring were reorganized into two groups, each forming a lateral bundle 36 

complex below the respective placenta. Bundles in each lateral bundle complex were 37 

also ringed. (4) The ovule bundles were composed of non-adjacent bundles in the 38 

lateral bundle complex. The results of the present study suggest that the circular 39 

arrangement of bundles in the receptacle, carpel stipe, and placenta of Anaxagorea are 40 

in line with the composite axial-foliar nature of the carpel, and provide a 41 

morphological basis for further research on the origin of the carpel.  42 
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INTRODUCTION 46 

Since Darwin’s time, the elucidation of angiosperm origin and its evolutionary 47 

success has been a primary goal of plant science (Kennedy and Norman, 2005). The 48 

term “angiosperm” is derived from the Greek words angeion, meaning “container,” and 49 

sperma, meaning “seed.” Therefore, the carpel, an angiosperm-specific “seed 50 

container”, is the definitive characteristic of angiosperms. The carpel is the basic unit 51 

of the gynoecium; it protectively surrounds the ovules by enclosing and sealing off 52 

their rims or flanks (Dunal, 1817; Robinson-Beers, 1992; Endress, 2015). The 53 

evolution of the carpel sets angiosperms apart from other seed plants, which develop 54 

exposed ovules. Previous studies have attempted to identify the potential angiosperm 55 

ancestors through phylogenetic analyses based on fossil, morphological, and 56 

molecular data. In these studies, particular emphasis was placed on assessing which 57 

ovule-bearing structures of various seed plants could be transformed into carpels. 58 

However, due to early differentiation, the extant angiosperms and gymnosperms 59 

underwent a long independent evolutionary process that resulted in the reproductive 60 

structure of the basal angiosperms and extant gymnosperms being significantly 61 

different, although some species of the two groups may have undergone convergent 62 

evolution (Winter et al., 1999; Soltis et al., 2002; Magallon et al., 2015). As a result, 63 

the origin of the carpel has not been solved. 64 

 65 

The origin of the carpel is considered either a conduplicate leaf-like structure bearing 66 

marginal ovules, or an integration of the ovule-bearing axis and the foliar appendage. 67 

Based on developmental evidence and functional genetics studies, more recent 68 

consensus favors the latter interpretation (Skinner et al., 2004; Doyle, 2008; Wang, 69 

2010, 2018; Mathews and Kramer, 2012; Liu et al., 2014; Zhang et al., 2017; Zhang et 70 

al., 2019). Owing to the difference between the two interpretations, it is important to 71 

determine whether the ovule-bearing axis is involved in the evolution of the carpel. 72 

Since it has been confirmed that foliar homologs are involved in the evolution of the 73 

carpel based on morphological and molecular evidence, if axial homologs can be 74 

found in the carpel, it would indicate that the carpel more likely derived from an 75 

integrated axial-foliar structure.  76 

 77 

In this study, two Anaxagorea (Annonaceae) species were selected for floral 78 

organogenesis and vascular anatomic examination. Annonaceae represents one of the 79 

largest families in the Magnoliales that is one of the most important lineages in the 80 

early radiation of angiosperms (Sauquet et al., 2003), while Anaxagorea is the most 81 

basal genus of Annonaceae (Doyle and le Thomas, 1996; Doyle et al., 2004; Chatrou 82 

et al., 2012; Chatrou et al., 2018). Anaxagorea carpels are apocarpous (free) 83 

throughout their life history (Deroin, 1988), and each has a notably long carpel stipe 84 

(Endress and Armstrong, 2011). The aim of this study was to histologically analyze 85 

relationships among the receptacle, carpel, and ovule, based on vasculature through 86 

continuous anatomical observations and 3D reconstruction, so as to provide a 87 

morphological basis for further studies on the carpel axial-foliar origin hypothesis. 88 

 89 
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MATERIALS AND METHODS 90 

Scanning Electron Microscopy and Paraffin Sectioning  91 

Anaxagorea luzonensis flower samples at different floral stages (from early bud to 92 

young fruit) were collected from the Diaoluo Mountain, Hainan, China, in July 2017 93 

and Anaxagorea javanica from the Xishuangbanna Tropical Botanical Garden, 94 

Yunnan, China in May 2017. The gynoecia were isolated and preserved in 70% 95 

formalin-acetic acid-alcohol (5:5:90, v/v), and the fixed specimens were dehydrated in 96 

a 50% to 100% alcohol series. To delineate the structure and development of the 97 

carpel, carpels were removed from the gynoecia, passed through an iso-pentanol 98 

acetate series (SCR, Shanghai, China), critically point-dried, sputter-coated with gold, 99 

observed, and photographed under a scanning electron microscope (Tescan 100 

VEGA-3-LMU, Brno, Czech Republic). Flowers and carpels were embedded in 101 

paraffin, serially sectioned into 10–12-µm thick sections, and stained with Safranin O 102 

and Fast Green to illustrate the vasculature. The transverse sections were examined 103 

and photographed using a bright-field microscope (Olympus BX-43-U, Tokyo, Japan). 104 

In addition, longitudinal hand-cut sections were made and observed for a rough check 105 

and better understanding of the vasculature. 106 

 107 

Topological Analysis of Carpel Vasculature 108 

Consecutive paraffin sections, 12-µm each, of A. javanica were stained with aniline 109 

blue, examined and photographed after excitation at 365 nm using an epifluorescence 110 

microscope (Olympus BX-43-U, Tokyo, Japan) and a semiconductor refrigeration 111 

charged coupled device (RisingCam, MTR3CMOS). Manual image registration of 112 

each dataset was arried outusing Photoshop CC 2017 (Adobe, San Jose, CA, US). 113 

Forty-five images were selected equidistant from the 423 sections taken for the 3D 114 

reconstruction. The figures were organized according to the vascular bundle outlines 115 

of the sections by using Photoshop CC 2017 and Illustrator CC 2017 (Adobe). The 116 

xylem and phloem contours were manually drawn, extracted as paths with the pen 117 

tool, and exported in DWG format. The DWG files were imported into 3Ds Max 2016 118 

(Autodesk, San Rafael, CA, US) and sorted according to the distance and order of the 119 

sections. The paths were converted to Editable Spline curves to generate the basic 120 

modeling contour. The Loft command of Compound Objects was used to get the 121 

shape of the Editable Spline, and a complete 3D carpel vasculature model was 122 

generated. 123 

 124 

RESULTS 125 

Gynoecium Structure and Carpel Organogenesis  126 

The flowers of two study species were trimerous with a whorl of sepals, two 127 

morphologically distinct whorls of petals, and numerous stamens (and inner 128 

staminodes of A. Javanica) (Figures 1A–D).  129 

 130 

A. luzonensis usually exhibits two to four completely separate carpels (Figures 1A, 131 

G). The carpel primordia are almost hemispherically initiated and larger than the 132 

stamen primordia (Figure 1F). Each carpel consists of a plicate zone, a very short 133 

ascidiate zone (Figures 3G, 5I, J), and a long, conspicuous stipe (Figure 2F). Carpel 134 

stipe ontogenesis occurs at the early stages of carpel development (Figure 2B). The 135 

continuous growth of the flanks on the ventral side of the young carpel triggers its 136 
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early closure; however, the closure does not extend to the base of the carpel, where 137 

the carpel stipe was previously present (Figure 2C). Subsequently, the dorsal region 138 

of each carpel thickens markedly, and the stigma forms (Figures 2D, E). At anthesis, 139 

the carpels are widest at the basal region with an arch on the abaxial side. The carpel 140 

stipe remains elongate, accounts for approximately a quarter of the carpel length at 141 

anthesis, and continues to elongate during the fruiting stage (Figure 1F). Each carpel 142 

has two lateral ovules with the placentae at the ovary base (Figures 3H, 5L).  143 

 144 

A. Javanica exhibits a multicarpellate gynoecium (Figures 1B, J). The carpels are 145 

completely separate and appear whorled at initiation (Figure 1I); as the carpel volume 146 

increases, the whorled structure becomes less obvious because the space in floral apex 147 

becomes limited. Each carpel consists of a plicate zone and a conspicuous carpel stipe 148 

(Figure 2J) but lacks the short ascidiate zone. The carpel stipe ontogenesis occurs in 149 

the early stages of carpel development (Figure 2H) and remains elongate during the 150 

flowering and fruiting stages (Figures 1D, 2I–J). Each carpel has two lateral ovules. 151 

  152 
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 153 

 154 

FIGURE 1. Floral morphology and gynoecium development in two Anaxagorea species. (A) 155 

Anaxagorea luzonensis flower. (B) Anaxagorea javanica flower. (C) Young A. luzonensis 156 

fruit. (D) Mature A. javanica fruit. (E–G) A. luzonensis floral development. (H–J) A. javanica 157 

gynoecium development. s, sepal; pe, outer petal; pi, inner petal; st, stamen; si, staminode; c, 158 

carpel. Scale bars =200 μm. 159 
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 161 

 162 

FIGURE 2. Carpel organogenesis in two Anaxagorea species.  163 

(A–F) Anaxagorea luzonensis. (A) Carpel primordia. (B–C) Carpel stipe emergence. 164 

(D–E) Carpel thickening and stigma formation, showing carpel stipe elongation. (F) 165 

Mature carpels. (G–J) Anaxagorea javanica shows similar carpel developmental 166 

features to changes depicted in A–E, F. Ventral slit end indicated by arrows. Scale 167 

bars = 200 μm. 168 

 169 
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Vasculature from Receptacle to Carpel 171 

In the A. luzonensis cross-sections, the receptacle base presented a hexagon of 18 172 

bundles from the pedicel stele (Figure 3A). The hexagon had six breaks, which built 173 

up a crown of the cortical vascular system to supply the sepals and the two whorls of 174 

petals and the stamens (Figures 3B). The central stele, composed of 18 bundles, 175 

finally broke into two 9-bundle groups at the floral apex and ran into the two-carpel 176 

gynoecium (Figures 3C, D). Each group of nine bundles assembled as a basal ring 177 

around the parenchyma at each carpel base (Figures 3E). At the slightly upper part of 178 

each carpel, several bundles emerged on the lateral side, and the basal ring broke, 179 

from which the dorsal bundle separated and the lateral bundles reorganized into two 180 

groups of lateral bundle complexes (Figures 3F). In each of the lateral bundle 181 

complexes, the adjacent bundles tended to join, assembling into an amphicribral 182 

pattern (the xylem surrounded by the phloem) Figure 3G. Below each placenta, each 183 

of the amphicribral lateral bundle complexes transformed into a set of “C”-shaped 184 

lateral bundle complexes, from which the ovule bundles separated, while the other 185 

bundles ran into the ovary wall. There were no horizontal connections between the 186 

dorsal and other bundles (Figure 3H).  187 

 188 

The pseudosteles at the base of the A. Javanica receptacle were triangular, with ~ 45 189 

bundles. The outer six cortical traces were cylindrical and served the sepals and petals 190 

(Figures 4A, B). At a slightly higher level, the androecial bundles emerged and 191 

served the stamens by repeated branching, and the staminode bundles emerged as a 192 

crown around the central stele (Figure 4C). Before entering the gynoecium, the 193 

central stele enlarged and broke up into ~ 70 bundles to supply the nine carpels, and 194 

each carpel was served by 7–10 bundles (Figures 4D–E). The vascular bundle 195 

arrangement was similar to ascending sections in A. luzonensis, with the basal ring 196 

and amphicribral lateral bundle complexes presented in each carpel (Figures 4F–H). 197 

 198 
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 199 

 200 

FIGURE 3. Ascending paraffin transections of Anaxagorea luzonensis flower.  201 

(A) Base of receptacle. (B) Mid-section of androecia, showing stamen bundles and 202 

central stele. (C) Top of receptacle, showing central stele divided into two groups (* 203 

marked the breaks). (D) Bundles from the central stele enter carpels. (E) Base of 204 

carpels, showing basal ring. (F) Upper part of carpel stipes, showing the basal ring 205 

breaks (marked as *). (G) Bottom of ovary locule, showing amphicribral lateral 206 

bundle complexes (left) and “C”-shaped lateral bundle complexes (right). (H) Base of 207 

ovary locule. st, stamen; db, dorsal bundle; lbc, lateral bundle complex; vb, ventral 208 

bundle; ob, ovule bundle. Scale bars = 500 μm. 209 

 210 
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 212 

 213 

FIGURE 4. Ascending paraffin transections of Anaxagorea javanica flower. 214 

(A) Base of receptacle, showing six groups of vascular bundles and sepal connections. 215 

(B) Points of petal connection to receptacle, showing perianth bundles. (C) 216 

Androecial bundles serving stamens by repeated branching. (D–E) Base of 217 

gynoecium, showing enlarged central stele breaks and bundles distributed into carpels. 218 

(F–G) Carpel vasculature at different positions. (F1) Detailed view of (F), showing 219 

basal ring of carpel. (H) Amphicribral lateral bundle complexes in carpel. st, stamen; 220 

si, staminode; c, carpel; db, dorsal bundle; lbc, lateral bundle complex. Scale bars = 221 

500 μm. 222 

 223 
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3D-Reconstruction of Carpel Vascular Topology 225 

At the base of a mature A. luzonensis carpel, 15 discrete bundles were arranged in a 226 

radiosymmetric pattern, forming a basal ring around the central parenchyma (Figure 227 

5A). At the slightly upper part, the basal ring curved inward on the ventral side and 228 

broke away from the invagination (Figures 5B, C). The bundles (except the dorsal) 229 

divided into two groups on each side of the carpel, each forming a lateral bundle 230 

complex, which was also ring-arranged. At the flowering stage, the lateral bundle 231 

complexes corresponded to the above-mentioned sections of the amphicribral 232 

complexes (Figures 5D–F). Below each placenta, bundles of each lateral bundle 233 

complex broke up on the dorsal side and transformed into a “C”-shaped lateral bundle 234 

complex (Figures 5G, H). The bundles on the ventral side of each lateral bundle 235 

complex gathered together (excluding the ventral bundle) and entered each ovule, 236 

while other bundles entered into the ovary wall. The ovule bundles were amphicribral. 237 

(Figures 5I–L).  238 

 239 

Consecutive cross-sections of A. Javanica were similar in vasculature to those of A. 240 

luzonensis (Figures 6A–D). The base of the mature A. Javanica carpel exhibited 16 241 

distinct bundles forming the basal ring (Figure 6A, F). The 3D model showed that (1) 242 

the basal ring and lateral bundle complex were cylindrical (Figures 6F, H). (2) The 243 

ovules were fed directly by bundles from the base of the carpel through the lateral 244 

bundle complex. (3) Each ovule bundle was formed from several non-adjacent lateral 245 

bundles, and two bundles of them that fed each ovule joined on the ventral side 246 

(Figures 6G, I). (4) The dorsal bundle remained independent throughout ontogenesis, 247 

without any link to other bundles (for details, please refer to the supplemental data). 248 

  249 
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 250 

 251 

FIGURE 5. Ascending paraffin transections of mature A. luzonensis carpel.  252 

(A) Carpel base, showing basal ring. (B–C) Basal ring breaks on ventral side. (D–F) 253 

Ascending carpel stipe sections, showing lateral bundles reconstituted to two sets of 254 

ring-arranged lateral bundle complexes. (G–H) Top of carpel stipe, showing 255 

“C”-shaped lateral bundle complex. (I–K) Below ovary locule, showing formation of 256 

ovule bundles. (L) Base of ovary locule. db, dorsal bundle; lb, lateral bundle; vb, 257 

ventral bundle; ob, ovule bundle. Scale bars = 500 μm. 258 
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 260 

 261 

FIGURE 6. 3D construction of A. javanica vasculature.  262 

Bundle outlines colored green, xylem red, and purple, among which bundles 263 

associated with ovule bundles are colored purple. (A–D) Aniline blue-stained A. 264 

javanica sections for modeling. (E) Longitudinal section of mature A. javanica carpel 265 

(left) and 3D vasculature model, dotted lines on longitudinal section indicate 266 

vasculature position in carpel. (F) Perspective from base of carpel vasculature. (G) 267 

Perspective from base of carpel (xylem only). The arrow indicates the intersection of 268 

two lateral bundles which fed two ovules respectively. (H) Cross-section of 3D model 269 

corresponding to (C), showing ring-arranged lateral bundle complexes. (I) 3D model 270 

section showing distribution of vascular bundles at base of ovary. db, dorsal bundle; 271 

vb, ventral bundle; ob, ovule bundle, lb, lateral bundle. Scale bars = 500 μm. 272 
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 274 

DISCUSSION 275 

In this study, 3D reconstruction was used to resolve the complex spatial relationship 276 

of carpel vasculature in Anaxagorea. In addition, this study is the first to report the 277 

basal ring and the ringed lateral bundle complex in the carpel. Observations on the 278 

continuous changes in vasculature from the receptacle to the carpel showed that the 279 

ringed vasculature pattern was topologically continuous and repeatedly presented in 280 

the pedicel, the receptacle, the base of the carpel, and the placenta. 281 

 282 

Anaxagorea Carpel Organogenesis 283 

Peltate carpels have been suggested to be plesiomorphic in Annonaceae (Deroin, 1988; 284 

Igersheim and Endress, 1997; Surveswaran et al., 2010; Couvreur et al., 2011) and in 285 

some studies, Anaxagorea carpels have been reported to exhibit an ascidiate base 286 

(Deroin, 1988), while they have been described as completely plicate in others 287 

(Endress and Armstrong, 2011). In this study, floral organogenesis revealed that the 288 

carpel stipe emerges from the base of A. luzonensis and A. javanica carpels in the 289 

early stages of carpel development and elongate with the development of the carpel. 290 

In the flowering stage, the ventral slit of A. luzonensis terminates close to the base of 291 

the ovary locule, resulting in a very short ascidiate zone, while in A. javanica, it may 292 

continue below the ovary locule. These variations might suggest a transformation 293 

from peltate to plicate carpels in this genus. The specific carpel stipe of Anaxagorea 294 

provides a buffer for the drastic changes in carpel base vasculature and makes it an 295 

ideal material for exploring the possible axial homologous structure in the carpel. 296 

 297 

Anaxagorea Floral Vasculature 298 

Previous studies have reported that the Annonaceae gynoecium is fed by an enlarged 299 

central stele, and each carpel is usually fed by three bundles, one median and two 300 

lateral (Deroin, 1989; De Craene, 1993; Deroin and Norman, 2016; Deroin and 301 

Bidault, 2017). However, in A. luzonensis and A. javanica, the number of vascular 302 

bundles that fed the carpel during anthesis is significantly more than three, regardless 303 

of the number of carpels, and the number of vascular bundles enter the A. luzonensis 304 

gynoecium is consistent with the central stele. The bundles entering the carpel are 305 

arranged in a radiosymmetric pattern, and this pattern maintains spatiotemporal 306 

continuity throughout the carpel stipe. Considering that radiosymmetric vasculature is 307 

a universal feature in vascular plant stems (Metcalfe and Chalk, 1979; Evert, 2006; 308 

Beck, 2010; McKown and Dengler, 2010; Evert and Eichhorn, 2011), it is plausible 309 

that the basal ring represents the homology of the carpel and the axial structures. In 310 

the basal ring, there are two lateral bundles which are fed to both ovules (lb8 and lb9 311 

in Figure 6G), which makes the topological structure of the basal ring unable to be 312 

flattened into a leaf-like structure bearing marginal ovules. 313 

 314 

It has been reported that in Anaxagorea, the ovules are served by the lateral bundle 315 

complex from the base of the carpel [e.g., A. luzonensis (Deroin, 1997); A. 316 

crassipetala (Endress, 2011)]. This pattern is different from that of most cases in 317 

Annonaceae, in which has ovules are served by separate vascular bundles branching 318 

directly from the dorsal bundles [e.g., Cananga (Deroin and Le Thomas, 1989); 319 
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Deeringothamnus (Deroin and Norman, 2016); and Pseudartabotrys (Deroin and 320 

Bidault, 2017)] or from relatively dorsally positioned bundles of the lateral network of 321 

bundles [e.g., Meiocarpidium (Deroin, 1987); and Ambavia (Deroin and Le Thomas, 322 

1989)]. Our study showed that the topological structure of the ring-arranged lateral 323 

bundle complexes plays a key role in forming the ovule bundles and that it facilitates 324 

the non-adjacent bundles to approach each other and merge. The dorsal bundle 325 

remained independent throughout, and there were no horizontal connections between 326 

dorsal bundle and the lateral bundle complexes. The ventral bundle participated in the 327 

formation of the spatial ring- arrangement of the lateral bundle complexes; however, it 328 

was not involved in forming of ovule bundles. The stimulus for vascular bundle 329 

formation comes from the base of the leaf primordium. After primordium formation, 330 

auxin sinks down into the inner tissue, thereby defining the course of subsequently 331 

differentiated vascular bundle (Runions et al., 2014). According to the hypothesis that 332 

the placenta or ovule may originate from the bracteole-terminal ovule system of 333 

female secondary reproductive branch, it is essential to explore whether the 334 

ring-arranged lateral bundle complexes are related to ovule organogenesis. Another 335 

important distinction between Anaxagorea and other genera of Annonaceae is that 336 

Anaxagorea exhibits explosive dehiscence of fruits; therefore, the ring-shaped lateral 337 

bundle complex may also be associated with that feature. 338 

 339 

Observation of the different developmental stages of the Anaxagorea carpel showed 340 

that the amphicribral bundle complexes in the placenta developed into the 341 

ring-arranged lateral bundle complexes with carpel maturation. The ovule bundles are 342 

also amphicribral. In the vasculature development, the amphicribral bundles could be 343 

discrete inversely collateral bundles near the point of fusion, because their xylem 344 

portions need to approach each other before they become concentric (Endress, 2019). 345 

Based on derivation, the amphicribral bundles are frequently observed in small 346 

branches of early land plants, monocots, or immature young branches of dicots (Fahn, 347 

1990). If the carpels are indeed derived from the integrated axial-foliar complex, it 348 

could explain why the amphicribral bundles are widespread in angiosperm placentae 349 

and funiculi [e.g., Papaver (Kapoor, 1973); Psoraleae (Lersten and Don, 1966); 350 

Drimys (Tucker, 1975); Nicotiana (Dave et al., 1981); Whytockia (Wang and Pan, 351 

1998); Pachysandra (Von Balthazar and Endress, 2002); Magnolia (Liu et al., 2014); 352 

Michelia (Zhang et al., 2017); Actinidia (Guo et al., 2013); and Dianthus (Guo et al., 353 

2017)]. However, this does not imply that the amphicribral bundle can be used to 354 

determine the type of organ from which it was formed because the histology of a 355 

vascular bundle is greatly influenced by the subsequent older vascular bundle to 356 

which it connects (Endress, 2019). 357 

 358 

In Anaxagorea, the central stele, basal ring, ringed lateral bundle complex, and 359 

amphicribral ovule bundle exhibit similar topological properties, which supports the 360 

view that the carpel is the product of fusion between an ovule-bearing axis and the 361 

phyllome that subtends it. The composite origin of carpels facilitates the 362 

understanding of the composite origin of ovules, i.e., determining how the 363 

bract-bracteole-terminal ovule system in angiosperm precursors evolved into an 364 

angiosperm carpel. However, the homology comparison based on vasculature has 365 
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some limitations. The underlying signals regulating vasculature are not yet fully 366 

understood. Technologies that are capable of simultaneously providing functional, 367 

physiological, and anatomical information, such as Magnetic Resonance Imaging and 368 

the visualization of molecular processes, could help facilitate future research. 369 
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