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ABSTRACT		23 

Biomedical and clinical sciences are experiencing a renewed interest in the fact that males 24 
and females differ in many anatomic, physiological, and behavioral traits. Sex differences in 25 
trait variability, however, are yet to receive similar recognition. In medical science, 26 
mammalian females are assumed to have higher trait variability due to estrus cycles (the 27 
‘estrus-mediated variability hypothesis’); historically in biomedical research, females have 28 
been excluded for this reason. Contrastingly, evolutionary theory and associated data support 29 
the ‘greater male variability hypothesis’. Here, we test these competing hypotheses in 218 30 
traits measured in >27,000 mice, using meta-analysis methods. Neither hypothesis could 31 
universally explain patterns in trait variability. Sex-bias in variability was trait-dependent. 32 
While greater male variability was found in morphological traits, females were much more 33 
variable in immunological traits. Sex-specific variability has eco-evolutionary ramifications 34 
including sex-dependent responses to climate change, as well as statistical implications 35 
including power analysis considering sex difference in variance. 36 

  37 
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Significance	Statement		38 

Males and females differ in many traits. However, we know relatively little about sex 39 
differences in trait variability. In many clinical contexts, female subjects have traditionally 40 
been excluded, due to assumed higher variability caused by the estrus cycle. Contrastingly, 41 
theory from evolutionary biology predicts higher variability in males. Neither explanation 42 
universally fits the data, but specific trait groups exhibit strong sex-specific differences. Sex 43 
differences in trait variability implies, for example, that the two sexes respond differently to 44 
environmental changes, and one sex could fair worse than the other depending on the nature 45 
of changes. Also, such sex differences mean that we should regularly include both males and 46 
females in biomedical trials, carrying out statistical power calculations separately for both 47 
sexes.  48 

Keywords	49 

Sex inequality, gender difference, sexual selection, meta-regression, power analysis  50 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.23.106146doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.23.106146
http://creativecommons.org/licenses/by-nc/4.0/


4 

INTRODUCTION		51 

Sex differences arise because selection acts on the two sexes differently, especially on traits 52 
associated with mating and reproduction (1). Therefore, sex differences are widespread, a 53 
fact which is unsurprising to any evolutionary biologist. However, scientists in (bio-)medical 54 
fields have not traditionally regarded sex as a biological factor of intrinsic interest (2–7). 55 
Therefore, many (bio-)medical studies have been conducted only with male subjects, or 56 
without distinguishing between the sexes. Consequently, our knowledge is biased. For 57 
example, we know far more about drug efficacy in male compared to female subjects, 58 
contributing to unequal understanding of how the sexes respond to medical intervention (8). 59 
Only recently have (bio-)medical scientists started considering sex differences in their 60 
research (9–15). The National Institutes of Health (NIH) have implemented new guidelines for 61 
vertebrate animal and human research study designs, requiring that sex be included as a 62 
biological variable (2, 16, 17). This is an important step, but we can go much further.  63 

[Figure 1 here] 64 

When comparing the sexes, biologists generally focus on mean differences in trait values, 65 
placing little or no emphasis on sex differences in trait variability (see Fig. 1 for a diagram 66 
explaining differences in means and variances). Despite this, two hypotheses exist that 67 
explain why trait variability might be expected to differ between the sexes. Interestingly, 68 
these two hypotheses make opposing predictions.  69 

First, the “estrus-mediated variability hypothesis” (Fig. 2), which emerged in the (bio-) 70 
medical research field, assumes that the female estrus cycle (see for example 6, 18) causes 71 
higher variability across traits in female subjects. This assumption is the major reason for why 72 
female research subjects were often excluded from biomedical research trials, especially in 73 
the neurosciences, physiology and pharmacology (18). Female exclusion was based on the 74 
grounds that including/using females in empirical research led to a loss of statistical power, 75 
or that animals must be sampled across the estrus cycle for one to make valid conclusions, 76 
requiring more time and resources.  77 

Second, the “greater male variability hypothesis” suggests males exhibit higher trait variability 78 
because either: 1) they are subject to stronger sexual selection (19–21) or 2) because they are 79 
often the heterogametic sex (22) or both. In mammals, such as mice and humans, we expect 80 
males to have higher trait variability under either mechanism. This hypothesis has so far 81 
gained some support in the evolutionary and psychological literature (23, 24).  82 

[Figure 2 here] 83 

Here we conduct the first comprehensive test of the greater male variability and estrus-84 
mediated variability hypotheses in mice (Fig. 2; cf. 24–28), examining sex differences in 85 
variance across 218 traits in 27,147 animals. To this end, we carry out a series of meta-86 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.23.106146doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.23.106146
http://creativecommons.org/licenses/by-nc/4.0/


5 

analyses in two steps (SI Appendix Fig. S1.1). First, we quantify the natural logarithm of the 87 
male to female coefficients of variation, CV (lnCVR) for each cohort (population) of mice, for 88 
different traits, along with the variability ratio of male to female standard deviations, SD, on 89 
the log scale (lnVR, following 29, see Fig. 1). Then, we analyze these effect sizes to quantify 90 
sex bias in variance for each trait using meta-analytic methods. To better understand our 91 
results and compare them to previously reported sex differences in trait means (4), we also 92 
quantify and analyze the log response ratio (lnRR). Then, we statistically amalgamate the trait-93 
level results to test our hypotheses and to quantify the degree of sex biases in and across nine 94 
functional trait groups (for details on the grouping, see below). Our meta-analytic approach 95 
allows easy interpretation and comparison with earlier and future studies.  96 

RESULTS		97 

Data	characteristics	and	workflow	98 

We used a dataset compiled by the International Mouse Phenotyping Consortium (31) (IMPC, 99 
dataset acquired 6/2018). To gain insight into systematic sex differences, we only included 100 
data of wildtype-strain adult mice, between 100 and 500 days of age. We removed cases with 101 
missing data, and selected measurements that were closest to 100 days of age (young adult) 102 
when multiple measurements of the same trait were available. To obtain robust estimates of 103 
sex differences, we only used data on traits that were measured in at least two different 104 
institutions (see workflow diagram, SI Appendix Fig. S1.1 A).  105 

Our data set comprised 218 continuous traits (after initial data cleaning and pre-processing; 106 
SI Appendix Fig. S1.1 A-D). It contains information from 27,147 mice from 9 wildtype strains 107 
that were studied across 11 institutions. We combined mouse strain/institution information 108 
to create a biological grouping variable (referred to as “population” in SI Appendix Fig. S1.1 109 
B; see also Table S6.1 for details), and the mean and variance of a trait for each population 110 
was quantified. We assigned traits according to related procedures into functionally and/or 111 
procedurally related trait groups to enhance interpretability (referred to as “functional 112 
groups” hereafter; see also SI Appendix Fig. S1.1 G). Our nine functional trait groups were 113 
behaviour, morphology, metabolism, physiology, immunology, hematology, heart, hearing 114 
and eye (for the rationale of these functional groups and related details, see Methods and SI 115 
Appendix Table S6.3). 116 

[Figure 3 here] 117 

Testing	the	two	hypotheses	118 

We found that some means and variabilities of traits were biased towards males (i.e. ‘male-119 
biased’, hereafter; “turquoise” shaded traits, Fig. 3), but others towards females (i.e. ‘female-120 
biased’, hereafter; “orange” shading, Fig. 3) within all functional groups. These sex-specific 121 
biases occur in mean trait sizes and also in our measures of trait variability. There were strong 122 
positive relationships between mean and variance across traits (r > 0.94 on the log scale; SI 123 
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Appendix Fig. S2.1), and therefore, we report the results of lnCVR, which controls for 124 
differences in means, in the main text. Results on lnVR are presented in the electronic 125 
supplementary material (SI Appendix Fig. S5.1 and S5.2).  126 

There was no consistent pattern in which sex has more variability (lnCVR) in the here 127 
examined traits (left panel in Fig. 3A). Our meta-analytic results also did not support a 128 
consistent pattern of either higher male variability or higher female variability (see Fig. 3B, 129 
left panel: “All” indicates that across all traits and functional groups, there was no significant 130 
sex bias in variances; lnCVR = 0.005, 95% confidence interval, 95% CI = [-0.009 to 0.018]). 131 
However, there was high heterogeneity among traits (I2 = 76.5 %, SI Appendix Table S6.4; see 132 
also SI Appendix Table S6.5), indicating sex differences in variability are trait-dependent, 133 
corroborating our general observation that variability in some traits was male-based but 134 
others female-biased (Fig. 3A).   135 

As expected, specific functional trait groups showed significant sex-specific bias in variability 136 
(Fig. 3B).  The variability among-traits within a functional group was lower than that of all the 137 
traits combined (SI Appendix Table S6.4). For example, males exhibited an 8.05% increase in 138 
CV relative to females for morphological traits (lnCVR = 0.077; CI = [0.041 to 0.113], I2= 67.3%), 139 
but CV was female-biased for immunological traits (6.59% higher in females, lnCVR = -0.068, 140 
CI =[-0.098 to 0.038], I2 = 40.8%) and eye morphology (7.85% higher in females, lnCVR = -141 
0.081, CI =[-0.147  to (- 0.016)], I2 = 49.8%). 142 

The pattern was similar for overall sexual dimorphism in mean trait values (here, a slight male 143 
bias is indicated by larger “turquoise” than “orange” areas; Fig. 3A, right and Fig. 3B, lnRR: 144 
“All”, lnRR = 0.012, CI = [-0.006 to 0.31]). Trait means (lnRR) were 7% larger for males (lnRR = 145 
0.067; CI = [0.007 to 0.128]) in morphological traits and 15.3 % larger in males for metabolic 146 
traits (lnRR = 0.142; CI = [0.036 to 0.248]). In contrast, females had 5.59 % [lnRR = 0.057, CI = 147 
[-0.107 to (-0.007)] larger means than those of males for immunological traits. We note that 148 
these meta-analytic estimates were accompanied by very large between-trait heterogeneity 149 
values (morphology I2 = 99.7%, metabolism I2 = 99.4%, immunology I2 = 96.2; see SI Appendix 150 
Table S6.4), indicating that even within the same functional groups, the degree and direction 151 
of sex-bias in the mean was not consistent among traits.  152 

[Figure 4 here] 153 

      	154 
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DISCUSSION		155 

We tested competing predictions from the two hypotheses for why sex-biases in trait 156 
variability exist. Neither the ‘greater male variability’ hypothesis nor the ‘estrus-mediated 157 
variability’ hypothesis explain the observed patterns in sex-biased trait variation on their own. 158 
Therefore, our results add further empirical weight to calls that question the basis for the 159 
routine exclusion of one sex in biomedical research based on the estrus-mediated variability 160 
hypothesis (3, 5–7).  161 

Greater	male	variability	vs.	estrus-mediated	variability?	162 

Evolutionary biologists commonly expect greater variability in the heterogametic sex than the 163 
homogametic sex. In mammals, males are heterogametic, and hence are expected to exhibit 164 
higher trait variability compared to females, which is also consistent with an expectation from 165 
the theory of sexual selection (24). Our results provide only partial support for the greater 166 
male variability hypothesis because the expected pattern only manifested for morphological 167 
traits (see Fig. 3 & 4). This result corroborates a previous analysis across animals, which found 168 
that the heterogametic sex was more variable in body size (24). However, our data do not 169 
support the conclusion that higher variability in males occurs across all traits including within 170 
the class of morphological traits). 171 

[Figure 4] 172 

The estrus-mediated variability hypothesis was, at least until recently (6, 12), regularly used 173 
as a rationale for including only male subjects in many biomedical studies. So far, we know 174 
very little about the relationship between hormonal fluctuations and general trait variability 175 
within and among female subjects. Our results are consistent with the estrus-mediated 176 
variability hypothesis for immunological traits only. Immune responses can strongly depend 177 
on sex hormones (32, 33), which may explain higher female variability in these traits. 178 
However, if estrus status affects traits through variation in hormone levels, we would expect 179 
to also find higher female variability in physiological and hematological traits. This was not 180 
the case in our dataset. Interestingly, however, eye morphology (structural traits, which 181 
should fluctuate little across the estrus cycle) also appeared to be more variable in females 182 
than males, but little is known about sex differences in ocular traits in general (34, 35). Overall, 183 
we find no consistent support for the female estrus-mediated variability hypothesis.  184 

In line with our findings, recent studies have refuted the prediction of higher female variability 185 
(6, 12, 18, 28, 29). For example, several rodent studies have found that males are more 186 
variable than females (6, 12, 28, 29, 36, 37). Further studies should investigate whether higher 187 
female variability in immunological traits is indeed due to the estrus cycle, or generally 188 
because of greater between-individual variation (cf. Fig. 2).  189 

In general, we found many traits to be sexually dimorphic (Fig. 4), in accordance with previous 190 
studies (4). More specifically, males are larger than females, while females have higher 191 
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immunological parameters (see Fig. 4). Notably, most sexually dimorphic trait means also 192 
show the greatest differences in trait variance (Fig. 3 & Fig. 4). Indeed, theory predicts that 193 
sexually selected traits (e.g., larger body size for males due to male-male competition) are 194 
likely more variable, as these traits are often condition dependent (38). This relationship may 195 
explain why male-biased morphological traits are larger and more variable. 196 

Eco-evolutionary	implications	197 

We have used lnCVR values to compare phenotypic variability (CV) between the sexes. When 198 
lnCVR is used for fitness-related traits, it can signify sex differences in the ‘opportunity for 199 
selection’ between females and males (38). If we assume that phenotypic variation (i.e. 200 
variability in traits) has a heritable basis, then large ratios of lnCVR may indicate differences 201 
in the evolutionary potential of each sex to respond to selection, at least in the short term 202 
(41). We note, however, that in our study, lnCVR reflects sex difference in trait variability 203 
within strains, so that the observed variability differences are mainly due to phenotypic 204 
plasticity. 205 

Sex-specific differences could lead to sex-skewed populations if fitness-related traits exhibit 206 
strong sex-bias in variability. For example, disease outbreaks or the ability to deal with 207 
changing temperatures could affect one sex more severely than the other. Changes in sex-208 
ratios, in turn, can the influence mating systems (42, 43) with potential downstream effects 209 
on population dynamics. In addition, sex-specific variation and differences in evolutionary 210 
potential may also have important implications for modelling population dynamics, where 211 
such sex-specific differences are not normally taken into account. Explicitly modelling sex 212 
difference in trait variability could lead to different conclusions compared to existing models 213 
(cf. 44) .  214 

Statistical	and	practical	implications		215 

It is now mandatory to include both sexes in biomedical experiments and clinical trials funded 216 
by the NIH, unless there exists strong justification against the inclusion of both sexes (45). In 217 
order to conduct meaningful research and make sound clinical recommendations for both 218 
male and female patients, it is necessary to understand not only how trait means, but also 219 
how trait variances differ between the sexes. If one sex is systematically more variable in a 220 
trait of interest than the other, then experiments should be designed to accommodate 221 
relative differences in statistical power between the sexes (which has not been considered 222 
before, see 3, 5–7). For example, given a limited number of animal subjects in an experiment 223 
measuring immunological traits, a balanced sex ratio may not be optimal. Female 224 
immunological traits are generally more variable (i.e. higher CV and SD). If we assume that 225 
responses to an experimental treatment will be similar between the sexes for this functional 226 
trait group, we will require more females to achieve the same statistical power as for the 227 
males. 228 
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To help researchers adjust their sex-specific sample size to achieve optimal statistical power, 229 
we provide a tool (ShinyApp; https://bit.ly/sex-difference/). This tool may serve as a starting 230 
point for checking baseline variability for each sex in mice. The sex bias (indicated by the % 231 
difference between the sexes) is provided for separate traits, procedures, and functional 232 
groups. These meta-analytic results are based on our analyses of more than 2 million rodent 233 
data points, from 27,147 individual mice. We note that, however, variability in a trait 234 
measured in untreated individuals maintained under carefully standardized environmental 235 
conditions, as reported here, may not directly translate into the same variability when 236 
measured in experimentally treated individuals, or individuals exposed to a range of 237 
environments (i.e. natural populations or human cohorts). 238 

Relevantly, when two groups (e.g., males and females) show difference in variability, we 239 
violate an important statistical assumption, the homogeneity of variance or 240 
homoscedasticity. Such violation is detrimental (i.e., leading to a higher Type I error rate), 241 
especially when the two groups have different sample sizes, for which we advocate above. 242 
Therefore, we should consider incorporating heteroscedasticity (different variances) explicitly 243 
or using robust estimators of variance (also known as ‘the sandwich variance estimator’) to 244 
prevent a higher Type I error rate (46). 245 

Conclusion	246 

We have shown that sex biases in variability occur in many mouse traits but that the direction 247 
of those biases differs between traits. Neither the ‘greater male variability’ nor the ‘estrus-248 
mediated variability’ hypothesis provides a general explanation for sex-differences in trait 249 
variability. Instead, we have found that the direction of the sex bias varies across traits and 250 
among trait types (Fig. 3 & 4). Our findings have important ecological and evolutionary 251 
ramifications. If the differences in variability correspond to the potential of each sex to 252 
respond to changes in specific environments, this sex difference needs to be incorporated 253 
into demographic and population-genetic modelling. Moreover, in the (bio-)medical field, our 254 
results should inform decisions during study design by providing more rigorous power 255 
analyses that allow researchers to incorporate sex-specific differences for sample size. We 256 
believe that taking sex-differences in trait variability into account will help avoid misleading 257 
conclusions and provide new insights into sex differences across many areas of biological and 258 
bio-medical research. Ultimately, such considerations will not only better our knowledge, but 259 
also close the current gaps in our biased knowledge (47). 260 

METHODS	261 

Data	selection	and	process	262 

The IMPC (International Mouse Phenotyping Consortium) provides a comprehensive 263 
catalogue of mammalian gene function for investigating the genetics of health and disease, 264 
by systematically collecting phenotypes of knock-out and wild type mice. To investigate 265 
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differences in trait variability between the sexes, we only considered the data for wild-type 266 
control mice. We retrieved the dataset from the IMPC server in June 2018 and filtered it to 267 
contain non-categorical traits for wildtype mice. The initial dataset comprised over 2,500,000 268 
data points for 340 traits. In cases where multiple measurements were taken over time, data 269 
cleaning started with selecting single measurements for each individual and trait. In these 270 
cases, we selected the measurement closest to “100 days of age”. We excluded data for 271 
juvenile and unsexed mice (SI Appendix Fig. S1.1 A; this data set and scripts can be found on  272 
https://bit.ly/code-mice-sex-diff; raw data: https://doi.org/10.5281/zenodo.3759701).  273 

Grouping	and	effect	size	calculation	274 

We created a grouping variable called “population” (SI Appendix Fig. S1.1 B). A population 275 
comprised a group of individuals belonging to a distinct wild-type strain maintained at one 276 
particular location (institution); populations were identified for every trait of interest. Our 277 
data were derived from 11 different locations/institutions, and a given location/institution 278 
could provide data on multiple populations (see SI Appendix Table S6.1 for details on numbers 279 
of strains and Institutions). We included only populations that contained data points for at 280 
least 6 individuals, and which had information for members of both sexes; further, these 281 
populations for a particular trait had to come from at least two institutions to be eligible for 282 
inclusion. After this selection process, the dataset contained 2,300,000 data points across 232 283 
traits.  284 

We used the function escalc in the R package, metafor (48) to obtain lnCVR, lnVR and lnRR 285 
and their corresponding sampling variance for each trait for each population; we worked in 286 
the R environment for data cleaning, processing and analyses (R Core Team 2017 (49); version 287 
3.6.0; for the versions of all the software packages used for this article and all the details and 288 
code for the statistical analyses, see the electronic supplements).  289 

Meta-analyses:	overview	290 

We conducted meta-analyses at two different levels (SI Appendix Fig. S1.1 C-J). First, we 291 
conducted a meta-analysis for each trait for all three effect size types (lnRR, lnVR and lnCVR), 292 
calculated at the ‘population’ level (i.e. using population as a unit of analysis). Second, we 293 
statistically amalgamated overall effect sizes estimated at each trait (i.e. overall trait means 294 
as a unit of analysis) after accounting for dependence among traits. In other words, we 295 
conducted second-order meta-analyses (50). We used the second-order meta-analyses for 296 
three different purposes: A) estimating overall sex biases in variance (lnCVR and lnVR) and 297 
mean (lnRR) in the nine functional groups (for details, see below) and in all these groups 298 
combined (the overall estimates); B) visualizing heterogeneities across populations for the 299 
three types of effect size in the nine functional trait groups, which complemented the first set 300 
of analyses (SI Appendix Fig. S1.1 I, Table S6.6); and C) when traits were found to be 301 
significantly sex-biased, grouping such traits into either male-biased and female-biased traits, 302 
and then, estimating overall magnitudes of sex bias for both sexes again for the nine 303 
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functional trait groups. Only the first second-order meta-analysis (A) directly related to the 304 
testing of our hypotheses, we report the method detail and the results of B and C in SI 305 
Appendix.  306 

Meta-analyses:	population	as	an	analysis	unit	307 

To obtain degree of sex bias for each trait mean and variance (SI Appendix Fig. S1.1 C), we 308 
used the function rma.mv in the R package metafor (48) by fitting the following multilevel 309 
meta-analytic model (sensu 51): 310 

ESi ~ 1 + (1 |Strainj ) + (1 | Locationk) + (1 | Uniti) + Errori, 311 

where ‘ESi’ is the ith effect size (i.e. lnCVR, lnVR and lnRR) for each of 232 traits, the ‘1’ is the 312 
overall intercept (other ‘1’s are random intercepts for the following random effects), ‘Strainj’ 313 
is a random effect for the jth strain of mice (among 9 strains), ‘Locationk’ is a random effect 314 
for the kth location (among 11 institutions), ‘Uniti’ is a residual (or effect-size level or 315 
‘population-level’ random effect) for the ith effect size, ‘Errori’ is a random effect of the 316 
known sampling error for the ith effect size. Given the model above, meta-analytic results had 317 
two components: 1) overall means with standard errors (95% confidence intervals), and 2) 318 
total heterogeneity (the sum of the three variance components, which is estimated for the 319 
random effects).  320 

We excluded traits which did not carry useful information for this study (i.e. fixed traits, such 321 
as number of vertebrae, digits, ribs and other traits that were not variable across wildtype 322 
mice; note that this may be different for knock-down mutant strains) or where the meta-323 
analytic model for the trait of interest did not converge, most likely due to small sample size 324 
from the dataset (14 traits, see SI Appendix, for details: Meta-analyses; 1. Population as 325 
analysis unit). We therefore obtained a dataset containing meta-analytic results for 218 traits 326 
at this stage, to use for our second-order meta-analyses (SI Appendix Fig. S1.1 D).  327 

Meta-analyses:	accounting	for	correlated	traits	328 

Our dataset of meta-analytic results included a large number of non-independent traits. To 329 
account for dependence, we identified 90 out of 218 traits, and organized them into 19 trait 330 
sub-groups (containing 2-10 correlated traits, see SI Appendix Fig. S1.1 E). For example, many 331 
measurements (i.e. traits) from hematological and immunological assays were hierarchically 332 
clustered or overlapped with each other (e.g., cell type A, B and A+B). We combined the meta-333 
analytic results from 90 traits into 19 meta-analytic results (Fig. 3F) using the function robu in 334 
the R package, robumeta with the assumption of sampling errors being correlated with the 335 
default value of r = 0.8 (52). Consequently, our final dataset for secondary meta-analyses 336 
contained 147 traits (i.e. the newly condensed 19 plus the remaining 128 independent traits, 337 
see SI Appendix Fig 1.1 , Table S6.2), which we assume to be independent of each other. 338 

Second-order	meta-analyses:	trait	as	an	analysis	unit	339 
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We created our nine overarching functional groups (SI Appendix Fig. S1.1 G) by condensing 340 
the IMPC’s 26 procedural categories into related clusters (see SI Appendix Table S6.3 for 341 
details on clustering of traits, procedures and grouping terms). 342 

To test our two hypotheses about how trait variability changes in relation to sex, we 343 
estimated overall effect sizes for nine functional groups by aggregating meta-analytic results 344 
via a ‘classical’ random-effect models using the function rma.uni in the R package metafor 345 
(48). In other words, we conducted three sets of 10 second-order meta-analyses (i.e. meta-346 
analyzing 3 types of effect size: lnRR, lnVR and lnCVR for 9 functional groups and one for all 347 
the groups combined, SI Appendix Fig. S1.1 H).   348 
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Fig. 1.  466 

Overview of meta-analytic methods used to detect differences in means and variances in any 467 
given trait (e.g., body size in mice). The orange shaded mice represent females (F), turquoise 468 
shaded mice stand for males (M). The solid “dot” represents a mean trait value within the 469 
respective group. Solid lines represent standard deviation, with upper and lower bounds 470 
indicated by diamond shapes. Below, we present three types of effect sizes that can be used 471 
for comparing two groups, along with the respective formulas and interpretations. Compared 472 
to lnVR, lnCVR provides a more general measure of the difference in variability between two 473 
groups (mean-adjusted variability ratio). 474 

 475 
  476 

Comparing two groups: 

Response Ratio: 

Which group has larger mean value? 

Which group is more variable? 

lnRR	>	0		è male-biased	mean	trait	values	

lnRR	=		 ln(	 	 	 						)	

lnVR	>	0		è traits	more	variable	in	males	
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lnVR	=		 ln(				 	 	)	
Variability Ratio: 

Coefficient of Variation	Ra0o:	

Which group is more variable when 
controlling for the means? 

lnCVR	>	0		è male-biased	mean	trait	values	

lnCVR	=		ln(	 	 	 						)	
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Fig. 2.  477 

The two hypotheses (“Greater Male Variability” vs ”Estrus Mediated variability”) have 478 
different underlying predictions on how variabilities influence total observed phenotypic 479 
variance (Vtotal in the figure). For Greater Male Variability, the within-subject [or within-trait] 480 
variation Vwithin could be potentially negligible or is equal in males and females. This is 481 
illustrated as the shaded distributions around each individual mean (dashed vertical lines), 482 
which are of equal area for the males (turquoise) and females (orange). The greater value of 483 
Vtotal is driven by wider distribution of mean trait values in males compared to females (i.e. 484 
Vbetween, represented by a thick horizontal bar). The estrus-mediated variability hypothesis, in 485 
contrast, assumes that within-subject [or within trait] variability is much higher in females 486 
than in males (broader orange-shaded trait distributions than blue-green distributions), while 487 
the variability of the means between individuals stays the same (thick horizontal bars). 488 

  489 

 490 
  491 
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Fig. 3: 492 

Panel A shows the numbers of traits across functional groups that are either male-biased 493 
(turquoise) or female-biased (orange; as in SI Appendix Fig. S1.1 D). The x-axes in Panel A 494 
show the overall percentages of traits, coloured shading is indicative of direction of sex-bias 495 
sex (if meta-analytic means < 0, then they are female-based whereas if they are > 0, male-496 
based). White numbers in the turquoise bars represent numbers of traits that show male-bias 497 
within a given group of traits, number in the orange area the number of female-biased traits. 498 
Panel B shows effect sizes and 95% CI from separate meta-analysis for each functional group 499 
(SI Appendix Fig. S1.1 H). Traits that are male biased in Panel B are shifted towards the 500 
righthand side of the zero-midline (near the turquoise male symbol), whereas female bias is 501 
shifted towards the left (near orange symbol). 502 

  503 
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Fig. 4. 504 

Summary of sex-differences in the mean trait values (lnRR) and variances (lnCVR) across ten 505 
functional trait groups. 506 

 507 

Behaviour 
è	few	sex-biased	mean	trait	values	
è	li3le	sex-bias	in	trait	variability	

Morphology 
è	mostly	male-biased	mean	trait	values	
è	traits	o2en	more	variable	in	males	

Metabolism 
è	mostly	male-biased	mean	trait	values	
è	li3le	sex-bias	in	trait	variability	

Physiology 
è	few	sex-biased	mean	trait	values	
è	li3le	sex-bias	in	trait	variability	

Immunology 
è	mostly	female-biased	mean	trait	values	
è	traits	o2en	more	variable	in	females	

Hemathology 
è	few	sex-biased	mean	trait	values	
è	li3le	sex-bias	in	trait	variability	

Heart 
è	few	sex-biased	mean	trait	values	
è	li3le	sex-bias	in	trait	variability	

Hearing 
è	few	sex-biased	mean	trait	values	
è	li3le	sex-bias	in	trait	variability	

Eye 
è	few	sex-biased	mean	trait	values	
ètraits	more	variable	in	females	

All traits 
è	few	sex-biased	mean	trait	values	
èli3le	sex-bias	in	trait	variability	


