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The design and interpretation of prevalence studies rely on point estimates of the performance characteristics
of the diagnostic test used. When the test characteristics are not well defined and a limited number of tests are
available, such as during an outbreak of a novel pathogen, tests can be used either for the field study itself or
for additional validation to reduce uncertainty in the test characteristics. Because field data and validation data
are based on finite samples, inferences drawn from these data carry uncertainty. In the absence of a framework
to balance those uncertainties during study design, it is unclear how best to distribute tests to improve study
estimates. Here, we address this gap by introducing a joint Bayesian model to simultaneously analyze lab
validation and field survey data. In many scenarios, prevalence estimates can be most improved by apportioning
additional effort towards validation rather than to the field. We show that a joint model provides superior
estimation of prevalence, as well as sensitivity and specificity, compared with typical analyses that model lab
and field data separately.

Prevalence is traditionally estimated by analyzing the outcomes from diagnostic tests given to a subset of the
population. During analysis of these outcomes, the sensitivity and specificity of the test, as well as the number
of samples in the survey, are incorporated into point estimates and uncertainty bounds for the true prevalence.
In many cases, sensitivity and specificity are taken to be fixed characteristics of the test [1, 2]. However,
sensitivity and specificity are themselves estimated from test outcomes in validation studies. As a result,
they, too, carry statistical uncertainty, and that statistical uncertainty should be carried forward into estimates
of prevalence [3, 4]. Since prevalence estimates may improve as sample size increases and with reduced
uncertainty in the test characteristics, a fundamental study design question arises: given a fixed number of
tests, how should one allocate them between the field and validation lab?

Here, we derive a Bayesian joint posterior distribution for prevalence and test sensitivity and specificity
based on sampling models for both the field survey data and validation data. While others have demonstrated
how to estimate prevalence from this model [4–6], we highlight the utility of this model for addressing
the problem of how to allocate a fixed number of tests between the field and the lab to produce the best
prevalence estimates. We demonstrate that, when the sensitivity and specificity of a test have not yet been
well established, that the largest improvement in prevalence estimates could result from allocating samples
to test validation rather than to the survey. Finally, we showcase how this joint model can produce improved
estimates of sensitivity and specificity compared to models based only on the lab data.

METHODS

Our goal is to estimate population seroprevalence (θ), test sensitivity (se), and test specificity (sp) by
learning from the field survey data X and the validation data V . The field survey data X contains the number
of positive tests (n+) out of Nfield samples. The validation data V contains the number of true positives (tp)
resulting fromNpos positive control samples, providing information on test sensitivity, and the number of true
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negatives (tn) resulting from Nneg negative control samples, providing information about test specificity. We
employ Bayes’ rule for estimation

Pr(θ, se, sp | X,V ) ∝ Pr(X,V | θ, se, sp) , (1)

where we assume independent uniform priors on each of the parameters {θ, se, sp}. Survey data X and vali-
dation data V are collected independently via different processes but share the test’s sensitivity and specificity.
We rewrite Eq. (1) as

Pr(θ, se, sp | X,V ) ∝ Pr(X | θ, se, sp) Pr(C | se, sp) . (2)

Given the parameter values {θ, se, sp}, the probability that a single random field test is positive is equal to
the probability of obtaining a true positive or a false positive: p = θse + (1 − θ)(1 − sp). The number of
positive outcomes after Nfield independent tests is binomially distributed, so the probability of observing n+
positive tests is

Pr(n+ | θ, se, sp) =
(
Nfield

n+

)
pn+(1− p)Nfield−n+ . (3)

If the true test sensitivity is se, then the probability that a known positive sample produces a positive test
outcome—a true positive—is se, while the probability of a false negative is 1 − se. The number of true
positives tp in a set of Npos independent positive validation test is also binomially distributed:

Pr(tp | se) =
(
Npos

tp

)
setp(1− se)Npos−tp . (4)

A parallel argument for true specificity sp and the outcomes of Nneg independent negative validation tests
leads to the probability of observing tn true negatives:

Pr(tn | sp) =
(
Nneg

tn

)
sptn(1− sp)Nneg−tn . (5)

Substituting the probabilities in Eqs. (3), (4), and (5) into Eq. (2) and absorbing constants into the proportion,
we obtain

Pr(θ, se, sp | X,V ) ∝
(
[1−sp+ θ(se+ sp−1)]n+ [sp− θ(se+ sp−1)]Nfield−n+

)
× sptn(1−sp)Nneg−tnsetp(1−se)Npos−tp . (6)

Equation (6) provides the form of the joint posterior distribution of θ, se, and sp, allowing one to learn
simultaneously about these quantities and see how they depend on the data. Although the joint posterior
distribution is not amenable to analytic computations (e.g. calculating expectations and variances), it is easily
sampled using a Markov chain Monte Carlo (MCMC) algorithm. These posterior samples can then be used
to estimate any summary statistics of interest, including point estimates (e.g., posterior means and modes)
and credible intervals for the parameters. Posterior samples can further be passed as inputs into subsequent
modeling tasks to account for uncertainty in prevalence [7, 8]. (See an An in-browser javascript calculator
for computing the posterior distribution [9] and open-source code in R and Python [10].)

This model framework assumes that each diagnostic test is independent of the others and that the condi-
tions in the field and validation are sufficiently similar that the diagnostic test has the same sensitivity and
specificity in both. No attempts have been made to address or consider biases in the field sampling procedure
itself.
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RESULTS

To demonstrate the impact of conducting additional validation tests, we computed the posterior distribu-
tions in Equation (6) for two scenarios in which field survey data consisting of 75 positive and 425 negative
tests were analyzed using two sets of validation data. The first set was based on 100 validation tests and the
other based on 200 validation tests, with tests split equally between positive and negative controls in both
cases. Both validation data sets contained 94% true positives and 98% true negatives. The increase in vali-
dation samples resulted in a change in the 95% posterior credible interval for prevalence from [0.053, 0.182]
to [0.082, 0.180] (Figure 1), corresponding to a 24% reduction in the credible interval width from additional
validation data alone.
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FIG. 1. Increased validation effort decreases prevalence uncertainty. Prevalence estimates from 75 (n+) positives
in 500 (Nfield) field samples, using validation outcomes of {tp, tn} = {47, 49} based on Nneg = Npos = 50 samples
(dashed line), {94, 98} based on Nneg = Npos = 100 samples (solid line). Widths of 95% credible intervals decreased
by 24% (prevalence), 32% (sensitivity), and 34% (specificity) due to increased validation efforts. Dotted line shows a
Bayesian analysis of the same data using point estimates of 94% sensitivity and 98% specificity, equivalent to infinite lab
validation data, for reference.

To compare the results of finite validation efforts to the theoretical optimum of infinite validation tests, we
computed a posterior distribution for prevalence using point estimates of 94% sensitivity and 98% specificity.
This results in a decrease in the width of the posterior credible interval by an additional 30% (Figure 1).
The marginal impact of each additional validation test on posterior prevalence uncertainty decreases as this
theoretical limit is approached.

When there is a limit on the number of tests that a prevalence study can use, due to budget, time, throughput,
or other constraints, it may be tempting to deploy as many tests as possible to the field. This follows an
intuition that additional field samples will decrease uncertainty in estimates of θ. However, while that intuition
is correct, additional validation samples will also indirectly decrease uncertainty in θ by reducing uncertainty
around sensitivity and/or specificity. By taking posterior uncertainty as the quantity to be minimized, we
can search over combinations of Nfield, Nneg, and Npos, representing the numbers of field, negative control,
and positive control tests, respectively. When the total number of tests N = Nfield + Nneg + Npos is fixed,
only two sample sizes can be specified freely, which means that this sample allocation problem becomes a
minimization over a two-dimensional grid.

To demonstrate the use of this approach, we considered the allocation ofN = 1000 tests in a setting where
sensitivity and specificity are suspected to be around se = 0.93 and sp = 0.98 (based on, for instance, a
similar test constructed by the same manufacturer) and in a population with suspected prevalence of 0.15.
We allocated Npos and Nneg to positive and negative controls, respectively, with the remainder allocated to
Nfield. We then sampled from the posterior distribution for θ in Eq. (6) conditional on data equal to the
expected counts of tp, tn, and n+. From these posterior samples, we computed the width of the 90% credible
interval, and recorded it, before continuing to a new choice of sample allocation. Through this process, we

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.23.112649doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.23.112649
http://creativecommons.org/licenses/by-nc-nd/4.0/


4

100 200 300 400 500 600
Npos (sensitivity calibration)

100

200

300

400

500

600

N
ne

g 
(s

pe
ci

fic
ity

 c
al

ib
ra

tio
n)

0.060

0.065

0.070

0.075

0.080+

90
%

 C
I w

id
th

FIG. 2. Optimized allocation of tests. Uncertainty in prevalence estimates, represented as 95% credible interval width,
is shown as a heatmap for various allocations of N = 1000 tests, when prevalence is suspected to be 0.15, sensitivity
0.93, and specificity 0.98. Each pixel represents a choice of Nneg and Npos, where Nfield = N − Nneg − Npos. Widths
are indicated by color (see colorbar) with values larger than 0.09, or invalid choices of Npos and Nneg, in white. Each
pixel was computed based on data equal to the expected test results for that allocation and using posterior samples from
Eq. (6). Optimal allocations for the studied scenario favor allocation to negative controls over positive controls, with only
600-700 samples allocated to the field survey.

found that at least twice as many samples should be allocated to specificity validation (Nneg) as compared to
sensitivity validation (Npos), and that around 1/3 of the 1000 total tests should be used for validation instead
of for the field study (Figure 2). These specific allocation recommendations do not generalize to other N ,
prevalence, or test characteristics, but the search procedure itself is fully generalizable.

A second consequence of jointly modeling the validation and field data is that estimates of sensitivity and
specificity may be affected by field survey data. Mathematically, this is because sensitivity and specificity
appear in the probabilities of both the field and lab data sets in Eqs. (3), (4), and (5). To illustrate this
point, we considered a scenario in which 95 of 100 negative controls were found to be negative during
validation, resulting in a point estimate of specificity of 0.95, followed by a large study in a low prevalence
area that resulted in only 10 positive tests out of 1000 samples. Such field data would appear inconsistent
with the validation data, because even if prevalence were zero, one would expect 50 positives from 1000
field tests. However, an analysis based on Eq. (6) resolves this apparent inconsistency by inferring that the
test’s specificity is likely to be higher than 0.95, with a posterior mean of 0.961 and posterior mode of 0.977
(Figure 3, solid line). For comparison, we also analyzed the validation data separately using a uniform prior
on specificity, which produced a beta posterior distribution with a posterior mean of 0.941 and a posterior
mode at 0.95 (Figure 3, dashed line).

DISCUSSION

The sensitivity and specificity of a diagnostic test are inferred from a finite number of validations tests.
As a consequence, sensitivity and specificity themselves carry uncertainty, which affects the statistical inter-
pretation of prevalence surveys in the field. Studies that use only point estimates of test characteristics can
dramatically underestimate uncertainty around prevalence (Figure 1). Here, we showed how this issue can be
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FIG. 3. Test outcomes from the field affect estimates of sensitivity and specificity. Specificity estimates are shown for
validation outcomes {tp, tn} = {100, 95} based on Npos = Nneg = 100 controls analyzed independently of field data
(dashed line; Beta posterior distribution) or jointly with n+ = 10 positives in Nfield = 1000 field samples (solid line).
While Fig. 1 illustrates the influence of lab validation data on prevalence estimates, this figure illustrates the less intuitive
influence of field survey data on specificity estimates. This effect of field data is strongest on specificity when prevalence
is low, and strongest on sensitivity when prevalence is high.

ameliorated by jointly modeling field data and validation data using standard Bayesian techniques. Bayesian
frameworks such this one can be used even when no validation data is available [11–13], can easily incor-
porate prior information about prevalence, sensitivity, or specificity from, other pilot or validation studies,
and can jointly model the application of multiple diagnostic tests with different performance characteristics
simultaneously [11]. These methods also avoid the need to rely on asymptotic approximations [1] in the
process of calculating confidence intervals.

The direct inclusion of validation tests in prevalence estimation not only allows uncertain sensitivity and
specificity to affect prevalence estimates (Figures 1 and 2), but also allows field data to affect sensitivity and
specificity estimates (Figure 3). This underscores the importance of reporting the raw outcomes validation
tests. The outcomes of validation tests should be included directly in publications that analyze field data
whenever possible, motivated by statistical and reproducibility requirements.

By highlighting the marginal value of additional validation effort, joint models like Eq. (6) expose the
tradeoff between collecting validation and field data when tests are limited. This simulation-informed ap-
proach to sample allocation allows a finite number of samples to be maximally utilized via strategic study
design [7, 14, 15].
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