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micropropagation is an effective way of isolating mutant sectors from chimeric mutants in 462 

switchgrass and obtaining non-chimeric mutants. For perennial grasses, it is difficult to obtain 463 

progeny seed due to the asynchronous flowering time and seed shattering (Cox et al., 2006). The 464 

low light intensity and lack of air movement in the greenhouse make it more difficult for 465 

container-grown transgenic switchgrass with insufficient root mass to produce viable seeds. 466 

Strong genetic-incompatibility of switchgrass is another obstacle to generate homozygous 467 

mutants. To set seeds carrying homozygous mutations, individual mutants used for crossing must 468 

have different alleles of S and Z genes (Martinez-Reyna and Vogel, 2002), which is difficult to 469 

determine because the molecular basis of the self-incompatibility in switchgrass has not been 470 

studied. Also, it takes over 6 months for switchgrass seedlings to reach reproductive stage 471 

(Hopkins et al., 1995; VanEsbroeck et al., 1997) for crossing. Given all these obstacles, the 472 

successful purification of chimeric mutants using micropropagation clearly has advantages.  473 

Switchgrass cv. Alamo is an allotetraploid with two homeologous subgenomes, but 474 

detailed information about chromosome pairing, whole or partial genome duplications, and 475 

allelic diversity of specific genes is lacking (Missaoui et al., 2005; Okada et al., 2010). With 476 

limited information gained by sequencing clones of PCR amplicons spanning the target regions, 477 

the nature of mutants was not resolved unequivocally in our previous study (Liu et al., 2018). 478 

Using the Next Generation Sequencing (NGS) technology, genotypes of micropropagated 479 

mutants were fully characterized. The two primary mutants, 52-1 and 35-2 were both revealed by 480 

NGS to be chimeric mutants, which were likely the results of continuous action of CRISPR/Cas9 481 

in somatic cells. Indeed, chimeric mutations induced by CRISPR/Cas9 have been reported in 482 

different species (Feng et al., 2014; Pan et al., 2017). For instance, Pan et al. (2017) showed that 483 

63.9% T0 transgenic plants carried chimeric mutations in tomato (Solanum lycopersicum L.). In 484 

rice, the segregation ratio of CRISPR/Cas9-induced mutations in T1 generation did not follow 485 

the expected segregation ratio, indicating the chimeric mutations in T0 plants (Xu et al., 2015).  486 

Transgene-free mutants were successfully obtained by crossing primary mutant plants 487 

with WT plants. The majority of the mutations observed in progeny were identical to the 488 

mutations in the primary mutants. For example, T1 progeny of the 52-1 carried the Pvtb1b 489 

mutations that were present in all five tillers of the primary mutant 52-1. These results 490 

demonstrate mutations induced by the CRISPR/Cas9 in T0 mutants were stably transmitted to 491 

the T1 generation without alteration. However, a mutation (128bp deletion) of Pvtb1a, not 492 
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detected in the primary mutant 52-1, was observed in the T1 transgene-free mutant plant 52-1-493 

T1-24. This deletion likely escaped detection in T0 plants due to the chimeric nature. The similar 494 

phenomenon has also been observed in maize (Lee et al., 2019).  495 

Pvtb1 genes are closely related to the tb1 genes in other monocots. The Pvtb1a-Pvtb1b 496 

double biallelic mutants produced significantly higher tiller number than the WT plants under 497 

both hydroponic and soil culture conditions. Results from the hydroponic experiments in which 498 

starting plant materials were primary tillers validated the observed differences between the 499 

mutants and the WT plants were the result of genetic alteration instead of the existing 500 

physiological difference between the WT and the mutant. Our results strongly indicate Pvtb1 501 

genes play an important role in regulating tillering in switchgrass. There was no significant 502 

difference in the number of primary tillers between the WT and 52-1-3, suggesting the function 503 

of Pvtb1 genes in switchgrass is only to regulate the rate of outgrowth of axillary buds that are 504 

destined to become tillers with one possible exception, i.e. the release of the outgrowth of the 505 

bud at the lowest node (Figure S2). This is similar to orthologs of tb1 in other species, reflecting 506 

the functional conservation of tb1 genes across species (Takeda et al., 2003; Kebrom et al., 2006; 507 

Aguilar-Martinez et al., 2007; Braun et al., 2012).  508 

The Pvtb1a-Pvtb1b double biallelic mutant plants also produced more roots compared 509 

with WT plants. This result is consistent with Gaudin et al. (2014) who reports a decrease in tb1 510 

function in maize resulted in a larger root system. The increased root growth and development is 511 

likely the indirect result of increased tiller production, as each tiller normally develops its own 512 

adventitious roots. Increased tiller number has the potential to increase biomass yield in 513 

switchgrass (Chuck et al., 2011; Fu et al., 2012). The Pvtb1a-Pvtb1b mutants produced 29.6% 514 

and 15.5% more fresh and dry biomass, respectively. Although the difference on dry biomass 515 

between the wild-type and mutant plants is not statistically significant, this may change if mutant 516 

plants with more tillers and increased root mass are grown in the field where more resources are 517 

available.  518 

In maize, studies have shown that tb1 regulates branching in a dosage-dependent manner 519 

(Doebley et al., 1995; Hubbard et al., 2002). Maize heterozygous tb1 mutants had slightly more 520 

tillers than WT plants, while homozygous tb1 mutants produced more tillers than heterozygous 521 

tb1 mutants (Doebley et al., 1995). In this study, we noticed the tiller number in monoallelic 522 

heterozygous Pvtb1b mutants (AABb) was significantly higher than WT plants, suggesting that 523 
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Pvtb1b functions in a dosage-dependent manner. In addition, due to the high amino acid 524 

sequence identities between PvTB1A and PvTB1B, it is reasonable to expect they regulate 525 

tillering of switchgrass redundantly or additively. However, comparing monoallelic Pvtb1b 526 

mutant plants (AABb) with the doubly monoallelic Pvtb1a-Pvtb1b mutant plants (AaBb) did not 527 

show significant differences on tiller numbers, suggesting there is no significant additive effect 528 

between Pvtb1a and Pvtb1b. Therefore, Pvtb1a might have a minor effect on tillering in 529 

switchgrass. This is similar to Arabidopsis in which only BRC1 regulates branching, despite both 530 

BRC1 and BRC2 have the conserved TCP and R domains (Aguilar-Martinez et al., 2007; 531 

Gonzalez-Grandio et al., 2013; Seale et al., 2017).  532 

To have a better understanding of the functions of Pvtb1 genes, we examined global 533 

transcriptional changes caused by the down-regulation of Pvtb1 genes. Increased expression 534 

level of genes for TCP TFs that are associated with cell differentiation and positive regulation of 535 

development in the mutant suggested that Pvtb1 genes inhibit the tiller production through 536 

deactivating cell differentiation. In addition, HAIRY MERISTEM 3 (HAM3), the gene for GRAS 537 

family TF that interacts with WUSCHEL (WUS) TF to promote shoot meristem development 538 

(Zhou et al., 2015), was up-regulated in the mutant, suggesting increased shoot stem cell 539 

proliferation in the Pvtb1 gene knockdown mutant.  540 

Our transcriptomic analysis results suggest PvTB1a and PvTB1b regulate tillering in 541 

switchgrass by interacting with complex hormonal signaling pathways. Six cytochrome P450 542 

genes were up regulated in the mutant (Table S5). The members of cytochrome P450 family 543 

catalyze the biosynthesis of several phytohormones including auxin, brassinosteroids, and 544 

strigolactones which regulate branching across various plants species (Zhao, 2008; Kebrom et al., 545 

2013). In addition, increased expression of ABA-responsive genes, PROTEIN PHOSPHATASE 546 

2C (PP2C) genes, was observed in the mutant. These results suggest that Pvtb1 genes regulate 547 

bud development by modulating phytohormone biosynthesis and signaling. In Arabidopsis and 548 

maize, it has been shown TB1/BRC1 promotes ABA accumulation and the expression of ABA 549 

response factors to inhibit bud outgrowth (Gonzalez-Grandio et al., 2013; Yao and Finlayson, 550 

2015; Gonzalez-Grandio et al., 2017; Holalu and Finlayson, 2017; Dong, et al., 2019). Although 551 

it is well-known that TB1/BRC1 are involved in hormonal signaling pathways in different plant 552 

species, these regulation pathways are not conserved across various species (Kebrom et al., 553 

2013). For instance, cytokinins repress the expression of TB1 in rice, while they act in a pathway 554 
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independent of BRC1 in Arabidopsis (Aguilar-Martinez et al., 2007; Minakuchi et al., 2010). 555 

The timing of hormonal signaling in tillering has not been decided in switchgrass. Hence, more 556 

studies are needed to understand how the hormonal signals are involved in the Pvtb1-mediated 557 

regulation of branching.   558 

Altered expression of genes in response to red or far-red light in the mutant suggest that 559 

Pvtb1 genes integrate the light signal to regulate tillering in switchgrass (Figure 7). FAR-RED-560 

IMPAIRED RESPONSE1 (FAR1)-related sequence (FRS) family of transcription factors regulate 561 

plant growth and development in response to far-red light in Arabidopsis (Wang and Wang, 562 

2015). The homolog of FAR1, FAR-RED ELONGATED HYPOCOTYLS3 (FHY3) promotes 563 

shoot branching in Arabidopsis (Stirnberg et al., 2012). Further, FAR1/FHY3 promotes 564 

FHY1/FHL gene expression to facilitate phyA nuclear accumulation under far-red light condition. 565 

The down-regulation of FRS TF genes in the switchgrass mutant suggested that Pvtb1 genes may 566 

be involved in promotion of phyA nuclear accumulation to inhibit the axillary bud initiation or 567 

outgrowth. Additionally, knockdown of Pvtb1 genes increased the expression level of the 568 

Phytochrome interacting factor 4 (PIF4) gene that has been shown to regulate expression of 569 

genes involved in cell expansion (Huq and Quail, 2002). Because PIF4 is a TF regulated by 570 

phyB-mediated signaling, its activity is regulated by the red light signal (Xu, 2018). These 571 

results suggest Pvtb1 genes regulate tillering through light signaling pathways. It has been 572 

reported that tb1 genes inhibit bud outgrowth in the process of shade-avoidance-syndrome (SAS) 573 

(Kebrom et al., 2013). In Arabidopsis and sorghum, the expression levels of BRC1 and SbTB1 574 

were both up-regulated under shade (Kebrom et al., 2006; Kebrom et al., 2010; Gonzalez-575 

Grandio et al., 2013). Therefore, Pvtb1 genes might also sense the low R:FR ratio to inhibit bud 576 

outgrowth in switchgrass.  577 

Several genes associated with stress/defense responses were significantly down-regulated 578 

in the mutant. For example, 13 genes for Heat-shock proteins (Hsps)/chaperones which assist in 579 

protein refolding under stress conditions (Wang et al., 2004) were down-regulated in the mutant. 580 

It has been shown overexpression of alfalfa (Medicago sativa L.) MsHSP70 gene could enhance 581 

Arabidopsis drought and heat stress tolerance (Li et al., 2017). Soybean (Glycine max (L.) Merril) 582 

Hsp 90 family members respond differentially to abiotic stresses and reduce the damage caused 583 

by abiotic stresses in Arabidopsis (Xu et al., 2013). Hence, the down-regulation of Hsp genes in 584 

the switchgrass mutant suggest hastened outgrowth of axillary buds of the mutant might trigger 585 
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increased expression of stress/defense responsive genes. Further, the expression levels of several 586 

WRKY TF genes responsive to chitin elicitation functioning in plant defense to fungal pathogens 587 

(Libault et al., 2007) also decreased in the mutant. In Arabidopsis, WRKY TFs are necessary for 588 

resistance to pathogen infection (Zheng et al., 2006) or resistance to abiotic stresses (Chen et al., 589 

2010). It is well-known tolerance-growth trade-offs occur in plants under the low-resource 590 

conditions (Koziol et al., 2012; Bristiel et al., 2018). It has been shown that TB1 may influences 591 

sucrose levels and energy balance within dormancy buds in maize (Dong, et al., 2019). 592 

Exploration of the mechanism of PvTB1s controlling energy balance in switchgrass would 593 

provide valuable information for the improvement of switchgrass for biomass production and 594 

development of enhanced stress-tolerant cultivars.  595 

 596 

Conclusions  597 

We successfully isolated mutated segments from chimeric mutants using 598 

micropropagation. This method overcomes the difficulties of obtaining non-chimeric mutants in 599 

self-incompatible species. Further, transgene-free mutants were obtained in this research, which 600 

provided valuable germplasm for switchgrass genetic research and breeding. More importantly, 601 

we proved the stable transmission of mutations induced by the CRISPR/Cas9 system in 602 

switchgrass. We propose that Pvtb1b negatively regulates tillering in switchgrass, while the 603 

Pvtb1a may play a minor role on tillering. RNA-seq analysis revealed a complex regulatory 604 

network potentially regulating tillering in switchgrass and provided some clues to the pathways 605 

of Pvtb1 genes.       606 

 607 

608 
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Tables 862 

Table 1. Estimation of allelic composition of Pvtb1 genes in plants regenerated from node 863 

culture of the primary mutants 52-1 and 35-2.  864 

 865 

Plants name 
(genotype)   

Allelic compositions of Pvtb1 genes 

52-1-1 
52-1-4 
52-1-5 
(Aabb) 

Pvtb1a CCCCATGGACTTACCGCTTTACC........................CCACCTCAGCTACCAGCTCGGTA WT/WT        50% 
Pvtb1a CCCCAT-GACTTACCGCTTTACC.........................CCACCTTCAGCTACCAGCTCGGTA -1/+1          50% 
 
Pvtb1b CCCCAT-GACTTACCGCTTTACC........................CCACCTCAGCTACCTGCTCGGTA -1/WT            50% 

Pvtb1b CTCCATG--CTCA--GCTTTACC...........................CCACCTCAAGCTACCTGCTCGGTA Mix/+1        50% 
 

52-1-2 
(Chimeric) 
 

Pvtb1a CCCCATGGACTTACCGCTTTACC........................CCACCTCAGCTACCAGCTCGGTA WT/WT        40% 
Pvtb1a CCCCAT-GACTTACCGCTTTACC..........................CCACCTTCAGCTACCAGCTCGGTA -1/+1          18% 
Pvtb1a CCCCA-----TTACCGCTTTACC..............................CCACCTCAGCTACCAGCTCGGTA -5/WT          35% 

Pvtb1a CCCCA------TACCGCTTTACC...............................CCACCTCAGCTACCAGCTCGGTA -6/WT            7% 
 
Pvtb1b CCCCATGGACTTACCGCTTTACC........................CCACCTCAGCTACCTGCTCGGTA WT/WT        24% 
Pvtb1b CCCCAT----TTACCGCTTTACC.............................CCACCTCAGCTACCTGCTCGGTA -4/WT          28%  

Pvtb1b CCCCAT-GACTTACCGCTTTACC..........................CCACCTCAGCTACCTGCTCGGTA -1/WT          20% 

Pvtb1b CTCCATG--CTCA--GCTTTACC.............................CCACCTACAGCTACCTGCTCGGTA Mix/+1      17% 

Pvtb1b CCCCA-----TTACCGCTTTACC..............................CCACCTTCAGCTACCTGCTCGGTA -5/+1          11%  
 

52-1-3 
(aabb) 

Pvtb1a CCCCAT-GACTTACCGCTTTACC........................CCACCTTCAGCTACCAGCTCGGTA -1/+1           50% 
Pvtb1a CCCCATGGGACTTACCGCTTTACC....................CCACCTCAGCTACCAGCTCGGTA +1/WT           50% 
 
Pvtb1b CCCCAT-GACTTACCGCTTTACC........................CCACCTCAGCTACCTGCTCGGTA -1/WT            50% 

Pvtb1b CTCCATG--CTCA--GCTTTACC...........................CCACCTCAAGCTACCTGCTCGGTA Mix/+1        50% 
 

35-2-1 
(Chimeric) 
 

Pvtb1a CCCCATGGACTTACCGCTTTACC........................CCACCTCAGCTACCAGCTCGGTA WT/WT      100% 
 
Pvtb1b CCCCATGGACTTACCGCTTTACC........................CCACCTCAGCTACCTGCTCGGTA WT/WT        81% 
Pvtb1b --------------ACTTACCGCTTTACC.......................CCACCTCAGCTACCTGCTCGGTA -44/WT         13% 

Pvtb1b CCCCATG--------------------------------------------------CAGCTACCTGCTCGGTA -128bp            6% 
 

35-2-2 
(AABB) 

Pvtb1a CCCCATGGACTTACCGCTTTACC........................CCACCTCAGCTACCAGCTCGGTA WT/WT      100% 
 
Pvtb1b CCCCATGGACTTACCGCTTTACC........................CCACCTCAGCTACCTGCTCGGTA WT/WT      100% 
 

35-2-3 
(Chimeric) 
 

Pvtb1a CCCCATGGACTTACCGCTTTACC........................CCACCTCAGCTACCAGCTCGGTA WT/WT        72% 
Pvtb1a CCCCAT----TTACCGCTTTACC..............................CCACCTCAGCTACCAGCTCGGTA -4/WT           22% 
Pvtb1a CCCCATGGACTTACCGCTTTACC........................CCACCT-AGCTACCAGCTCGGTA WT/-1              6% 
 
Pvtb1b CCCCATGGACTTACCGCTTTACC........................CCACCTCAGCTACCTGCTCGGTA WT/WT        87%  
Pvtb1b CCCCATG-------------------------------------------------------CAGCTACCTGCTCGGTA -128bp    7% 

Pvtb1b CCCCATG----TACCGCTTTACC............................CCACCTCAGCTACCTGCTCGGTA -4/WT             6% 
 

35-2-4 
(Chimeric) 
 

Pvtb1a CCCCATGGACTTACCGCTTTACC........................CCACCTCAGCTACCAGCTCGGTA WT/WT      100% 
 
Pvtb1b CCCCATGGACTTACCGCTTTACC........................CCACCTCAGCTACCTGCTCGGTA WT/WT        75% 
Pvtb1b CCCCA-----TTACCGCTTTACC.............................CCACCTCAGCTACCTGCTCGGTA -5/WT           25% 
 

WT-1 
(AABB) 

Pvtb1a CCCCATGGACTTACCGCTTTACC........................CCACCTCAGCTACCAGCTCGGTA WT/WT      100% 
 
Pvtb1b CCCCATGGACTTACCGCTTTACC........................CCACCTCAGCTACCTGCTCGGTA WT/WT      100% 
 

 866 

Representative sequences of Pvtb1 mutations induced by CRISPR/Cas9 with deletions (dashed 867 

lines), insertions (italic, bold letters) and substitutions (red letters). Sequences complementary to 868 
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PAM sequence are in bold. Sequences between two target sites are indicated by black dots. WT-869 

1 is the WT plant derived from the same callus line from which all the primary mutants were 870 

obtained and used as a control.  871 

872 
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Table 2. Phenotype of the WT and the micropropagated biallelic mutant plants, after 12 weeks of 873 

growth in pots filled with soil.  874 

Genotype Tiller number 
Stem diameter 
(mm) 

Plant height 

 (m) 

Fresh weight 

 (g plant-1) 

Dry weight (g 
plant-1) 

AABB (WT) 22.4 ± 1.44 b 4.56 ± 0.13 a 1.67 ± 0.11 a 34.5 ± 1.30 b 10.3 ± 0.98 a 

aabb (52-1-3) 56.6 ± 4.31 a 3.94 ± 0.14 b 1.45 ± 0.07 a 44.7 ± 4.13 a 11.9 ± 0.71 a 

 875 

Note: Values are means ± s.d. (n = 5 plants). Different letters at the same column indicate 876 

significant differences at P < 0.05 level. 877 

878 
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Table 3. Transgene-free T1 mutants obtained from crossing each of the primary mutants with 879 

genetically compatible wild-type plants.  880 

 881 

† T1 seeds collected from each of the primary mutants were germinated and allowed to grow for 882 

a month.  883 

‡The presence of the transgene was analyzed using PCR with gRNA/Cas9-specific primers 884 

(Supplementary Table S6). 885 

886 

T0 Mutant # Progeny 
analyzed†  

# of Cas9 
negative‡ 

Cas9 negative 
Monoallelic 
Pvtb1a-Pvtb1b 
mutant 

Monoallelic 
Pvtb1b mutant 

Monoallelic 
Pvtb1a mutant 

Non-mutant 

52-1 
 

30 12 5 5 0 2 

35-2 
 

20 18 0 0 2 16 

35-1 
 

6 3 1 0 0 2 
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Table 4. The average tiller number of transgene-free T1 mutants and that of the siblings carrying 887 

no mutations (null segregants) and the percentage increase of tiller number for mutants over non-888 

mutant siblings. 889 

 890 

 891 

All data are shown as mean ± standard deviation. A and a represent the wild-type and mutant 892 

allele of Pvtb1a gene, respectively whereas B and b represent the wild-type and the mutant allele 893 

of the Pvtb1b gene, respectively. The percentage increase of tiller number for each genotype was 894 

calculated by comparing the mutant plants with the wild-type plants at the same developmental 895 

stage using the one-tailed Student’s t-test. Different letters at the same column indicate 896 

significant differences at P < 0.05 level. 897 

898 

Genotype N Average tiller number % increase of tiller 
number in mutant over 
the WT 

AABb (mutant) 4 26.0 ± 4.7b 30 ± 23 
AaBb (mutant) 5 29.2 ± 4.4b 45 ± 20 
AABB (WT) 6 20.0 ± 1.4a 0 ± 10 
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Figure Legends 899 

Figure 1. Multiple sequence alignment of TB1 proteins. (A). Multiple sequence alignments of 900 

TB1 orthologs from various species.  The black line indicates the TCP domain, while the grey 901 

line indicates the R domain. Protein names are shown before each sequence.  902 

 903 

Figure 2. Tiller development in the double biallelic mutant 52-1-3 (aabb) and 52-1-1 mutant 904 

(monoallelic for Pvtb1a and biallelic for Pvtb1b, Aabb) and the WT at various times after 905 

transfer to hydroponic devices. Values are means ± s.d. (mutants, n = 3 plants; WT, n = 6 plants). 906 

* indicated significance differences between mutants and WT at P < 0.05.  907 

 908 

Figure 3. Phenotypic characterization of the Pvtb1a-Pvtb1b biallelic mutant (52-1-3, aabb) and 909 

the WT. (A). Phenotype of the Pvtb1a-Pvtb1b biallelic mutant and the WT after 8 weeks of 910 

growth in a hydroponic device. Bar = 3 cm; (B). Weekly changes in tiller numbers in the 52-1-3 911 

mutant and the WT after transfer to a hydroponic device; (C). Schematic diagram for tiller 912 

ordering in switchgrass. 1° denotes primary tillers, 2° denotes secondary tillers, 3° denotes 913 

tertiary tillers; (D). Number of tillers of different orders in the 52-1-3 mutant and the WT after 8 914 

weeks of growth in hydroponic devices. Values are means ± s.d. (B, n = 3 plants; D, n = 6 plants). 915 

* indicated significant differences at P < 0.05. 916 

 917 

Figure 4. Phenotypic characterization of tiller production with primary tillers developed from 918 

main stems of the Pvtb1a-Pvtb1b double biallelic mutant (52-1-3, aabb) as starting materials and 919 

cultured in a hydroponic devise for 8 weeks. (A). Visual appearance of the WT (left) and the 920 

mutant (right) after 8 weeks of culture; (B). Total number of tillers and tiller number for each 921 

class of tillers after 8 weeks of culture. 1° denotes primary tillers, 2° denotes secondary tillers, 3° 922 

denotes tertiary tillers. Values are means ± s.d. (n = 3 plants). * indicated significant differences 923 

at P < 0.05. 924 

 925 

Figure5. Weekly changes in root number in the Pvtb1a-Pvtb1b double biallelic mutant (52-1-3, 926 

aabb) and the WT after transfer to hydroponic devices. Values are means ± s.d. (B and D, n = 3 927 

plants; C, n = 6 plants). * indicated significant differences at P < 0.05. 928 

 929 
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Figure 6. Enriched GO terms and differentially expressed genes of the Pvtb1 genes knockdown 930 

mutant. A. Gene set enrichment analysis of up-regulated genes; B. Gene set enrichment analysis 931 

of down-regulated genes. Each red circle represents a GO term. Two color bars indicate P-value 932 

ranging from 0.05 to 0.001 and 1.0 × 10-7, respectively.  933 

 934 

Figure 7. Expression patterns of representative differentially expressed genes (DEGs) involved in 935 

transcription regulation, phytohormone signal transduction and stress/defense responses 936 

previously characterized in Arabidopsis. Three color bars represent the range of fold change for 937 

DEGs, where red indicates up-regulation while green indicates down-regulation. 938 

 939 

Supplementary Figure S1. Micropropagation of switchgrass. Longitudinally split nodal segments 940 

were cultured on the MS-0 medium without plant growth regulators. 941 

 942 

Supplementary Figure S2. Outgrowth of the lowest axillary bud in mutant plants and the wild-943 

type plants. Arrow indicates a tiller developing from the lowest node in the Pvtb1a-Pvtb1b 944 

mutant (52-1-3, aabb), which is usually absent in the WT. The WT plant was about 2 weeks 945 

older than the mutant plant. Other tillers were removed for better view. 946 

 947 

Supplementary Figure S3. Estimation of allelic composition of Pvtb1 genes in cDNA samples of 948 

the mutant 52-1. 949 

 950 

Supplementary Figure S4. Mean-Difference plot showing the log-fold change and average 951 

abundance of each gene. Significantly up- and down-regulated genes in the mutant are 952 

highlighted in red and blue, respectively. 953 

 954 
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