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Abstract 19 

1. African swine fever virus (ASFv) is endemic in wild boar in Eastern Europe, challenging 20 

elimination in domestic swine. Estimates of the distances between transmission events 21 

are crucial for predicting rates of disease spread to guide allocation of surveillance and 22 
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control resources. Transmission distances are mainly defined by spatial and social 23 

processes in hosts, but effects of these processes on spread are poorly understood, and 24 

inferences often include only one process.  25 

2. To understand effects of spatial and social processes on disease dynamics we developed 26 

spatially-explicit transmission models with different assumptions about social and/or 27 

spatial contact processes. We fit the models to ASFv surveillance data from Eastern 28 

Poland from 2014-2015 and evaluated how inclusion of social structure affected 29 

inference.  30 

3. The model that accounted for social along with spatial processes provided better 31 

inference of spatial spread and predicted that ~80% of transmission events are within the 32 

same family group. 33 

4. The models predicted dramatically different effective reproductive numbers, both in 34 

magnitude and variation.  35 

5. Specifying contact structure with spatial but not social processes can lead to very 36 

different disease dynamics and inference of epidemiological parameters. Uncertainty in 37 

these processes should be accounted for in predicting spatial spread in social species.  38 

 39 

KEYWORDS: African swine fever, Effective reproduction number, Spatial transmission kernel, 40 

Surveillance, Wild boar, 41 

 42 

INTRODUCTION 43 

 Spatial transmission kernels (STKs) are probability distribution functions of transmission 44 

distance between sequential cases of infection. They describe the variation and limits of spatial 45 
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disease spread per transmission event and inform how surveillance, containment, or mitigation 46 

strategies should be deployed [1]. For example, information on where cases may arise can inform 47 

what spatial radius should be used for ring culling, ring vaccination, spatial quarantine or 48 

intensive surveillance [2]. Without detailed genetic data or contact tracing data to reconstruct 49 

transmission history, STKs are predominantly estimated indirectly by fitting disease transmission 50 

models to available case data [1-3] providing valuable insight for developing intervention 51 

strategies [4-7]. However, models often make simplifying assumptions based on the available 52 

information that could have negative impacts on policy decisions if the models are not robust to 53 

violation of these assumptions. Common assumptions in models for estimating STKs include 54 

assuming a single introduction event and assuming observation of all transmission events [8]. 55 

Methods that account for these processes are important for providing more realistic predictions 56 

of spatial spread in systems where these assumptions are violated. 57 

 Another common issue is that the potential scope of contact heterogeneities is often 58 

simplified or lacking, such that uncertainty in model specification cannot be considered despite 59 

its potential importance [9]. In non-vector-borne disease systems, key drivers of contact 60 

heterogeneities include social [10] and spatial processes [2], yet our understanding of the relative 61 

role of these processes in driving spatial disease dynamics is weak in most systems [11, 12] and 62 

analyses that consider contact heterogeneities tend to focus on one or the other. Understanding 63 

the potential effects of these different elements of contact heterogeneity on inference of disease 64 

dynamics will provide insight on the appropriate scope of model uncertainty that should be 65 

considered in practical applications. 66 

 African swine fever virus (ASFv), a virulent virus of swine, emerged in domestic swine 67 

in Georgia in 2007 following a single introduction event from Africa [13]. After its initial 68 
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emergence, the virus spread quickly to Eastern Europe becoming endemic in wild boar, which 69 

has challenged elimination. With no effective vaccine or treatment options, control strategies are 70 

focused on reducing swine movement, decontamination, and culling [14]. Effectiveness of these 71 

strategies depends on being able to rapidly find new cases and target high-risk areas, thus models 72 

that can predict spatial spread are crucial tools. However, it has become clear that modeling 73 

efforts need to include realistic ecological details to improve predictions of spatial spread and our 74 

understanding of factors that drive it [15]. Wild boar have limited spatial movement and cluster 75 

into family groups suggesting that both social and spatial processes likely need to be considered 76 

for estimating STKs and thus spatial spread [16-18]. Also surveillance is mostly passive with 77 

only a small proportion of cases likely being observed, and genetic [19] and other analyses [16] 78 

suggest that re-introductions are common. Thus estimates of STKs that account for these realities 79 

are likely important for providing more accurate guidance for disease control policies.    80 

In previous work we used ASFv surveillance data from wild boar in Poland during 2014-81 

2015 to estimate the frequency of carcass-based transmission and re-introduction in outbreak 82 

dynamics while accounting for partially observed data [16]. Here, we extended the modeling 83 

approach to three different assumptions about the form of spatial transmission processes: 1) 84 

neighborhood (local transmission only), 2) exponential decay (distance distribution that includes 85 

long-distance processes), and 3) distance distribution with social structure (Fig. 1). We then 86 

predicted the STKs under each set of assumptions using the fitted models and evaluated the 87 

effects of spatial and social processes on STKs and a key epidemiological parameter – the 88 

effective reproduction number. Our results show striking differences in disease dynamics when 89 

social structure modifies spatially-determined contact heterogeneities, showing that both 90 
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processes need to be considered for accurate predictions of spatial spread in socially-structured 91 

species. 92 

 93 

METHODS 94 

Surveillance data and study site 95 

The index case of ASFv in wild boar was detected in February 2014 in the north-eastern 96 

part of the country (53°19'33"N, 23°45'31"E), less than 1 km from the border with Belarus. 97 

Subsequent cases occurred close to the Belarusian border [20, 21]. By the end of 2015, 139 wild 98 

boar tested positive for ASFv in the area, with maximum distance of 27.4km west of the border 99 

and a 100km range along the border. The affected area is dominated by a mosaic of woodlands 100 

and agricultural land (crop fields, pastures, meadows) with several large (several hundred square 101 

kilometers), continuous forests. On average, forest covers 53% of the area. In 2014, average wild 102 

boar densities were estimated at 1.5 - 2.5 boar/km2, locally ranging from 0.5-1 boar /km2  to  3-5 103 

boar/km2 (Regional Directorate of State Forests, Białystok, Poland). ASFv surveillance used a 104 

combination of active and passive mechanisms, with samples being obtained through hunter 105 

recovery (active) or reports of road kills or carcasses found on the landscape opportunistically 106 

(passive). A total of 4625 samples were from hunters, while 271 were from road kill or non-road 107 

kill carcasses. Samples, collected by veterinary services and hunters, were submitted to the 108 

National Reference Laboratory for ASFv at the National Veterinary Research Institute in 109 

Puławy, Poland. Detailed description of laboratory procedures and tests can be found in 110 

Woźniakowski et al. 2015 and Śmietanka et al. 2016. We used surveillance data from the area of 111 

8 administrative districts where ASFv occurred during 2014-2015 (‘infected zone’, 2224 samples 112 

tested) to fit the model and define spatio-temporal intensity of sampling in our model.  113 
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 114 

Process model 115 

We used a spatially-explicit, individual-based modeling framework fitted to the ASFv 116 

surveillance data using Approximate Bayesian Computation (ABC) as in Pepin et al. 2020. We 117 

evaluated three models that differed by social and spatial transmission process assumptions 118 

(described below) in host populations that were structured by family groups and dispersal as 119 

defined by field data (Fig. 1). We estimated transmission parameters and some other 120 

epidemiological and demographic parameters as described below. With parameters from the 121 

fitted models we then predicted cases over time, spatial spread over time, spatial transmission 122 

kernels, effective reproductive numbers over time, and age- and sex-structure of infected 123 

individuals. All analyses were implemented in Matlab (Version R2016b, The MathWorks, Inc., 124 

Natick, Massachusetts, United States). A full description of the individual-based model is given 125 

in Pepin et al. (2020). Below is an overview of the approach with emphasis on differences from 126 

our previous work. 127 

We used a 5 x 5 km (25 km2) gridded landscape to map spatial movement. The total 128 

landscape size was 120 x 50 km (6000 km2), similar to the ‘infected’ zone. Grid cells each had a 129 

carrying capacity of 0.5 or 2 boars/km2, which controlled heterogeneity in population density 130 

across the landscape through density-dependent reproduction. In previous work we found that 131 

this level of heterogeneous boar density fit the surveillance data better than homogenous 132 

densities of 1, 2 or 4 wild boar / km2 [16]. 133 

Individual-boar attributes were monitored and updated at a daily time step. These 134 

included age, unique group identification, X and Y coordinates of the home range centroid, grid-135 

cell ID; and status of life, reproduction, disease. Thus, the distribution of wild boar locations was 136 
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continuous but density was controlled at the grid cell level. The variable attributes changed based 137 

on time, age, group size, grid-cell density, natal dispersal timing, and the disease transmission 138 

process. Attributes that were fixed at birth included sex, dispersal distance, dispersal age, and age 139 

at natural death. Thus, natal dispersal age and distance, and natural death, occurred at pre-set 140 

ages and distance (for dispersal). 141 

Individual-boar status was updated by the following order of processes: daily movement 142 

(defined by the contact processes described below) and disease transmission, natural mortality 143 

(occurring according to the pre-set age), natal dispersal (occurring according to the pre-set age), 144 

dispersal due to other factors (i.e., family groups becoming too large, single females searching 145 

for groups; occurring based on current family group size), surveillance sampling (permanent 146 

removal of individuals from the landscape), conception (rates dependent on current grid cell 147 

density), and new births (occurring with gestating females reach the end of their gestation 148 

period). Fixed parameters included longevity (a data-based distribution), litter size (6), age at 149 

reproductive maturity (180 days), minimum time between conception and farrowing (90 days), 150 

gestation time (115 days), age of natal dispersal (~Poisson(13 months) truncated between 10-24 151 

months), dispersal distance (~Weibull(2.5,0.5)), maximum size of family groups (10), incubation 152 

period for ASFv (~Poisson(4 days) truncated at 1), infectious period for ASFv (~Poisson(5 days) 153 

truncated at 1), and disease-induced mortality (100%). There were also fixed seasonal trends that 154 

varied monthly for conception probability and carcass persistence that were based on data [22-155 

25]. Rationale and sources for these parameters are derived from ecological studies of wild boar 156 

and are described in Pepin et al. 2020.  157 

Based on the attributes and processes described above, epidemiological states for 158 

individual boar included: susceptible, exposed, infectious, infectious carcass, uninfectious 159 
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carcass, and removed from the landscape. Mortality only occurred from the disease (leading to 160 

an infectious carcass) or reaching the age of longevity (leading to an uninfectious carcass). The 161 

hunting process of alive individuals caused direct removal from the landscape (no carcass). Our 162 

model also included multiple spatio-temporal scales of spatial processes because the dispersal 163 

process (~Weibull(2.5,0.5) allowed for longer-distance movements and occurred less frequently 164 

relative to the contact process that occurred daily and mostly at shorter distances.  165 

We compared three different forms of contact structure: 1) neighborhood (local 166 

transmission only), 2) exponential decay (distance distribution that includes long-distance 167 

processes), and 3) distance distribution with social structure (Fig. 1). Forms 1 and 2 are common 168 

ways of considering contact in space at population-level scales [26], whereas 3 incorporates 169 

heterogeneity due to social groups. For 1, infectious individuals could transmit to all susceptible 170 

individuals within a fixed radius with equal probability. The radius of the local neighborhood 171 

was constant across individuals and time – thus similar to a queen’s neighbor effect (Eq. 1). For 172 

2, infectious individuals could transmit to all susceptible individuals on the landscape, but the 173 

probability of transmission decayed with distance (Eq. 2). Model structure 3 was the same as 2, 174 

except that transmission rates varied due to both group membership and space - individuals in 175 

the same family group had higher transmission rates with each other relative to those among 176 

family groups (Eq. 3). In general the daily force of infection () for each contact structure was 177 

defined as follows: 178 
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     181 

 183 

Where  is a fixed local neighborhood (Eq. 1) delimiting the contact radius, xi,j is the distance 184 

between infectious individual k (Ik) and susceptible individual j (Sj),  is the rate at which 185 

transmission decays with distance (Eq. 2 and 3), d denotes alive individuals or direct 186 

transmission, c denotes infectious carcasses or carcass-based transmission,  is the transmission 187 

rate that is specific to the transmission mechanism (d or c), 0,{j} is the baseline rate at which re-188 

introduction occurs to susceptible individuals near the Eastern border ({Sj}), and family group 189 

structure (w denotes contacts within the same family group, absence of w denotes among family 190 

groups; Eq. 3).  191 

 192 

Observation model 193 

Because surveillance sampling was small compared to the full population it was 194 

important to calibrate the process model with an observation model. Thus, we sampled the true 195 

disease dynamics according to the surveillance process that was used in Poland, i.e., alive 196 

individuals were available to be harvested by hunters, and carcasses were available to be found 197 

for carcass sampling. As negative samples could not be georeferenced to the grid cell level (they 198 

were only available at the district level), we were not able to account for the spatial distribution 199 
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of sampling accurately. However, there were strong temporal trends in the number of samples 200 

collected thus we used those trends to describe sampling heterogeneity. First, we calculated the 201 

relative number of boar sampled by hunters and carcass-sampling from the data (number 202 

sampled on day t/maximum ever sampled separately for each method) to produce seasonal trends 203 

in the proportion of the population sampled. Then we multiplied the seasonal trend data for each 204 

method by the scaling factors (h and c) to determine the daily proportion of boar that would be 205 

sampled (detection probability) by hunter harvesting or dead carcasses across the landscape at 206 

random. We assumed that boar < 6 months of age would not be hunted (typically not targeted by 207 

hunters) and that boar < 3 months of age would not be sampled by the dead carcass method 208 

(because they are unlikely to be found).  209 

 210 

Model fitting and evaluation 211 

Unknown parameters were estimated based on Approximate Bayesian Computation 212 

(ABC) with rejection sampling as described in Pepin et al. 2020. For all models, estimated 213 

parameters included: frequency of introduction at the eastern border (0,{j}), d, c, scaling 214 

parameters on seasonal trends of hunted hosts (h) and carcass sampling (c), a scaling parameter 215 

on seasonal trends in the length of carcass persistence on the landscape (), and a scaling 216 

parameter on seasonal patterns of host birth probabilities (). In addition, we estimated spatial 217 

parameters that describe three different contact structures: 1) ξ (nearest-neighbor), 2)  (the 218 

decay of contact probability with distance, and 3) w,d and w,c (direct and carcass-based 219 

transmission rates for within-group contacts). Prior distributions are listed in Table S1 (with 220 

restrictions: d>c, w,d>d, w,c>c) and were informed by movement and contact data [17, 18, 221 

27, 28]. 222 
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To sample across parameter space efficiently we used a Latin hypercube algorithm to 223 

generate 979,592 parameter sets and then ran the model twice on each parameter set (for a total 224 

of 1,959,184 iterations; or 2 chains of 979,592). d, c, and c were sampled on a log scale. A 225 

two-tiered approach was applied for evaluating parameter sets to improve efficiency. Simulations 226 

were terminated early if they were unrealistic, specifically: 1) when landscape-wide host density 227 

< 20% of the initial density, 2) > 150 new cases per day; 3) no new cases sampled for 6 months, 228 

or 4) > 300 total cases (more than double the actual number). We then only considered parameter 229 

sets for which the simulation reached the end of the two-year time frame. The posterior 230 

distributions consisted of all unique parameter sets (considering both chains) that were within the 231 

absolute distance of three metrics: the sum of absolute differences between observed and 232 

simulated surveillance data for monthly cases from live and dead animals (considered 233 

separately), and the maximum monthly Euclidian distance of cases from the eastern border. 234 

Distance metric tolerance values were 48 for monthly cases from carcasses, 24 for monthly cases 235 

from hunter-harvest samples, and 120 for maximum distance from the border. This allowed 236 

average error rates of 2 (carcass) and 1 (hunter harvest) cases, and 5 km from the border per 237 

month on average.  These error rates represent levels of uncertainty that we expected from the 238 

data sources in our system, sensitivity analyses revealed that less stringent error rates would 239 

affect the posterior distribution estimates (data not shown), and more stringent error rates would 240 

require restrictively large computational resources unless prior distributions are more informed. 241 

Average distance metrics for parameter sets from the posterior distribution were used to 242 

evaluate goodness of fit along with R2 values (squared correlation of observed and predicted case 243 

and spatial distance trajectories, Table S1) and mean absolute error (MAE, Fig. 2). For each 244 

fitted model we predicted outbreak dynamics using 1000 random samples from the posterior 245 
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distribution. The average of the 1000 predictions was used to calculate R2 and MAE. We also 246 

tested the ability of our models to forecast ASF dynamics by using the parameters estimated 247 

from fits to the 2014-2015 data to predict the first 7 months of 2016 (Jan.-Jul.). We predicted 248 

underlying spatial transmission kernels, effective reproductive number over time, and age-sex 249 

structure of cases by simulating from the fitted models. 250 

 251 

RESULTS 252 

Parameter inference and model fit 253 

The model with both social and spatial processes (Model 3) qualitatively captured spatial 254 

spread better than Models 1 (Local neighborhood only) and 2 (Distance distribution only), and 255 

Model 1 largely overestimated cases during the largest peak (Fig. 2). Also, the posterior 256 

distribution of transmission probabilities were much lower and more realistic for Models 2 and 3 257 

relative to Model 1 (see d and c in Table S1). The inferred STK for each model revealed two 258 

distinct peaks symbolic of within- and between-group transmission (Fig. 3), but predicted 259 

different amounts of within group transmission when within and between-group transmission 260 

probabilities were allowed to vary (Model 3). Model 3 predicted the highest proportion of within 261 

group transmission (0.8), followed by model 2 (0.6) and model 1 (0.3) (Fig. 3). For both Models 262 

2 and 3, between-group transmission peaked between 0.5 km and 1 km, with a peak proportion 263 

of transmission events reaching 0.05 and 0.02 for Model 2 and Model 3, respectively (Fig. 3). 264 

For Model 1, between-group transmission events plateaued between 1-1.5 km at a frequency of 265 

0.2 before dropping rapidly to a frequency of 0 around 1.5km (Fig. 3). The realized STKs for 266 

Models 2 and 3 had long tails that indicated a low frequency of long-distance pathogen dispersal 267 

(Fig. 3). 268 
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 269 

Impacts of model structure on epidemiological processes 270 

The specification of spatial and social transmission processes in the model structure 271 

resulted in different inference of Re. Model 1 (mean: 2.5 with 95% confidence interval: [1.8, 272 

3.2]) predicted higher average Re over time, followed by Model 3 (1.5 [1.1-2.0]), and then Model 273 

2 (1.1 [1.0-1.3]), including both direct and carcass-based transmission (Fig. 4).  However, 274 

predictions from Model 2 suggest Re is relatively homogenous over time, while Models 1 and 3 275 

predicted much more variability, with Re values reaching above a value of 4 on multiple 276 

occasions, and above a value of 8 at least once (Fig. 4). Model 3 predicted higher Re during 277 

annual birth pulses (Fig. 4). Models 1 and 2 predicted lower contributions of carcass-based 278 

transmission in overall Re whereas Model 3 predicted more similar levels of each transmission 279 

mechanism (with carcass-based transmission being slightly lower on average). All models 280 

predicted that the infected class is predominantly composed by juveniles (<6 months of age; Fig. 281 

S1-S3), reflecting the age-structure in the population. However, Models 1 and 2 predicted a 282 

slight male-bias in infected individuals while Model 3 predicted a slight female bias (Fig. S1-283 

S3). 284 

 285 

DISCUSSION 286 

Understanding how infectious diseases spread in space and time is key for developing 287 

effective surveillance and intervention strategies [6]. Statistical inference of wildlife disease 288 

systems is often challenged by partially observed data, multiple pathogen introductions, and a 289 

limited understanding of host contact processes, all of which create uncertainty in our ability to 290 

characterize patterns of infectious disease spread. Here we demonstrate an approach for 291 
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estimating patterns of ASFv spread that accounts for these complexities while evaluating how 292 

different assumptions about contact structure influence the inference of spatial disease dynamics. 293 

Results show that both spatial and social sources of contact heterogeneity are important for 294 

capturing the spatial dynamics of ASFv in wild boar of Eastern Poland, and that not accounting 295 

for both processes can lead to very different inferences of a key epidemiological quantity, Re.  296 

Our results highlight the importance of considering both spatial and social processes in 297 

estimating STKs. There are numerous approaches for modeling contact heterogeneities due to 298 

spatial [2, 26, 29, 30] and social processes [10]. Network models are a useful approach for 299 

accounting for contact heterogeneity but these are often focused only on heterogeneities due to 300 

social structure [10], while neglecting spatial processes. Including both of these processes in a 301 

single network makes it difficult to disentangle the role of each process, which can be important 302 

for designing optimal control strategies. On the flip side, the field of movement ecology has 303 

developed new strategies for accounting for heterogeneities due to animal movement [11, 12], 304 

but these methods remain underdeveloped for application in disease ecology, and also have not 305 

been used to disentangle spatial and social processes. In order to provide practical inference for 306 

control of important animal diseases it will be important to develop methods that can account for 307 

heterogeneities due to both social and spatial processes, in a manner that the role of each process 308 

can be inferred. This will allow control to be targeted to the appropriate process while improving 309 

predictions of spatial spread for optimizing risk-based surveillance and control. 310 

Our models suggested that between 30-80% of transmission events were within the same 311 

family group and almost all transmission events were within 1.5 km, with some rare events at 312 

longer distances. STK estimates can be used to establish control and surveillance zones. For 313 

example, depopulation efforts could be intensified (or abandoned to allow natural fade out) 314 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2020. ; https://doi.org/10.1101/2020.05.24.113332doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.24.113332
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

 

within 1.5 km where most transmission is occurring, with surveillance intensified out to further 315 

distances (i.e., the tail of the STK) to capture the rare long-distance spreading events. A useful 316 

approach could be to employ an adaptive radius that focuses intervention efforts within 99% (or 317 

more – this should be validated with modeling) of the STK, but adapts surveillance based on 318 

real-time surveillance. However, the precise recommendations will depend on how soon a 319 

detection is made relative to where the infection front is currently. With ASFv travelling at 1-2 320 

km per month [18], the radii for high-intensity culling and surveillance would need to be 321 

increased by 1-2 km for each month that detection has lagged behind the infection front, 322 

highlighting the importance of accurate predictions of spatial spread. A longer lag time for 323 

detection will also amplify challenges that arise from long-distance jumps highlighting that this 324 

process is especially important to understand. 325 

Long-distance jumps were observed on multiple occasions in Poland after 2015 [19] and are 326 

thought to be due to human-mediated activities, [31, 32]. Thus, developing estimates of STKs 327 

that account for mechanisms of long-distance dispersal will be important for appropriately 328 

targeting disease control going forward. Our approach allowed for some long-distance events but 329 

we assumed a monotonic functional form for contact distances, such that we did not infer the 330 

effects of spatial contact processes occurring on multiple spatial scales. In order to infer spatial 331 

spread with later surveillance data (i.e., 2016-present when longer-distance events occurred 332 

multiple times), it will be important to incorporate other spatial mechanisms in the inference of 333 

the STK, perhaps using covariate data that can inform these long-distance processes. Such an 334 

approach would provide refined recommendations for surveillance and control targets at longer 335 

distances.  336 
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Our estimates of Re  (ranging from 1.1-2.5 on average across models) were similar to an 337 

estimate of R0 of ASFv in wild boar (1.13-3.77) in Russia [33]. However, although our estimates 338 

were similar in magnitude, they revealed substantial temporal variation in Re that could impact 339 

policy decisions. For example, all models estimated higher Re during seasonal birth pulses 340 

indicating that at this time of year we may expect to see higher rates of spatial spread. 341 

Additionally, estimates of the Re over time suggested a different role for carcass-based 342 

transmission in driving ASF transmission, with Models 1 and 2 suggesting that carcass-based 343 

transmission is lower than direct transmission while Model 3 suggested that the two types of 344 

transmission occurred at similar frequencies.  345 

In addition to differences in Re, the different contact structures predict differences in the role 346 

of sex in transmission over time. Model 3 predicted a slight female bias because this model 347 

predicted that 80% of transmission events occurred within family groups, which are female-348 

biased. In contrast, Models 1 and 2 predicted a slight male bias because they predicted more 349 

between-group transmission and with a 50:50 sex ratio there are more independent males relative 350 

to family groups. Although it is known that males will travel longer distances than females [34], 351 

especially during mating season to seek out females, we did not account for this temporal 352 

heterogeneity in dispersal. Considering these types of movement heterogeneities in future work 353 

could be important for improving our understanding of which sex might present a higher risk of 354 

ASFv transmission and persistence.  355 

Considered separately, spatial and social processes can have similar impacts on disease 356 

dynamics. For example, social aggregation and spatial structuring can both reduce epidemic 357 

potential by fragmented populations or by restricting the spread of pathogens [10, 35]. However, 358 

our results highlight that spatial and social processes can also have quite different impacts on 359 
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epidemiological quantities, especially estimates of STKs, Re, the frequency of different 360 

transmission mechanisms, and potential risk factors such as sex. Being able to appropriately infer 361 

the role of these quantities is crucial for optimizing disease control strategies. When these 362 

contact heterogeneities are inappropriately accounted for it can bias inference (e.g., [36]) and 363 

potentially misguide policy decisions [9]. Moving forward, the field of disease ecology needs to 364 

develop mainstream methods that account for multiple sources of contact heterogeneities in a 365 

manner that their relative roles can be inferred. This will allow uncertainties in contact processes 366 

to be appropriately evaluated and incorporated into predictions of spatial spread [9] and control 367 

to be targeted to the most important risk factors. 368 
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Figures 382 
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Fig 1. Schematic of methods and contact structures.  385 
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 387 

Fig. 2. Model fits to the observed surveillance data (red). Lines are the mean predictions from 388 

1000 simulations with each fitted model (see legend in B for color code). Shading around the 389 

lines areas are 95% prediction intervals of the means. Shading on the right side of plots indicates 390 

the time frame for out-of-sample predictions. 391 

 392 

 393 

 394 

 395 
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 396 

Fig. 3. Realized spatial transmission kernels for each model (see legend). The X-axis is the 397 

distance between home range centroids of infectious and susceptible individuals for which 398 

transmission occurred. Y-axis is the proportion of all transmission events. Lines are the means of 399 

100 simulations using random samples from the posterior distributions of the fitted models. 400 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2020. ; https://doi.org/10.1101/2020.05.24.113332doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.24.113332
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

 

 401 

Fig. 4. Effective reproduction number (Re) over time for each model. Effective reproduction 402 

number at a given time point was calculated as the average number of transmissions made 403 

throughout the infectious period for individuals that initially became infectious on day t (where t 404 

is a day on the X-axis). Dark lines are the means of 100 simulations using random samples from 405 

the posterior distributions of the fitted models; shading indicates 95% prediction intervals of the 406 

means. Overall means with 95% prediction intervals for each model and each transmission 407 
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mechanism (black: direct, red: carcass-based) were: A) 1.9 [1.4, 2.3], 0.6 [0.4, 0.9], B) 0.9 [0.8 408 

1.0], 0.2 [0.2, 0.3], C) 0.9 [0.7, 1.1], 0.6 [0.4, 0.9]. 409 

 410 

 411 

  412 
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 544 

Table S1 Contact structure: Neighborhood Exp. Decay (ED) ED & social structure

R
2

Monthly cases in sample 0.57 ± 0.0059 0.51 ± 0.0054 0.55 ± 0.0060

(Median of the R
2
's for 1000 individual 

time series ± 95% confidence interval)

all
0.48 ± 0.0054 0.43 ± 0.0046 0.47 ± 0.0049

Monthly distance from border in sample 0.28 ± 0.018 0.29 ± 0.017 0.31 ± 0.018

(Median of the R
2
's for 1000 individual 

time series ± 95% confidence interval)

all
0.19 ± 0.016 0.14 ± 0.011 0.28 ± 0.011

Monthly cases in sample 0.65 0.57 0.63

(R
2
 of median values from 1000 points at 

each month)

all
0.55 0.48 0.53

Monthly distance from border in sample 0.53 0.49 0.53

(R
2
 of median values from 1000 points at 

each month)

all
0.49 0.38 0.55

Distance metrics
a 

Median absolute error in monthly live 

cases ± 95% confidence interval in sample
20 ± 0.8 20 ± 0.9 20 ± 0.5

Median absolute error in monthly carcass 

cases ± 95% confidence interval in sample
44 ± 1.4 43 ± 2.8 44 ± 0.8

Median absolute error in monthly distance 

from border ± 95% confidence interval in sample
109.5 ± 5.0 111.7 ± 5.7 106.6 ± 3.0

Number of values in posterior distribution 16 / 1,959,184 = 

0.00082%

7 / 1,959,184 = 

0.00036%

53 / 1,959,184 = 

0.0027%

Uniform Priors

Probability of direct transmission given 

proximity (d)
[0.0001,1]

b [0.0046, 1.0] [0.039, 0.15] [0.0003, 0.18]

Probability of carcass-based transmission 

given proximity (c)
[0.0001,1]

b [0.0002, 0.53] [0.0038, 0.029] [0.0001, 0.029]

Annual frequency of spillover from 

neighboring country (0,{j})
[0,60]

c [13, 59] [9, 60] [6, 59]

Detection probability in hunted boar 

samples (h)
[0.0005,0.1]

b [0.0006, 0.012] [0.0007, 0.021] [0.0007, 0.017]

Detection probability in carcass samples 

(c)
[0.0005,0.8]

b [0.012, 0.080] [0.017, 0.045] [0.014, 0.30]

Scaling parameter on seasonal trends in 

carcass persistence ()
[0.1,1.5] [0.58, 1.47] [0.77, 1.41] [0.17, 1.47]

Scaling parameter on seasonal trends in 

conception probability (θ)
[0.5,6] [0.93, 5.73] [1.31, 5.87] [0.67, 5.88]

Constant contact radius () [0.5,5] [1.09, 3.35] NA NA

Rate parameter for decay of contact 

probability with distance ()
[0.1,2.5] NA [1.62, 2.49] [0.05, 2.49]

Probability of direct transmission given 

contact is in the same group (w,d)
[0.01,1] NA NA

[0.077, 0.98]

Probability of carcass-based transmission 

given contact is in the same group (w,c)
[0.001,1] NA NA

[0.14, 0.97]
a
Median distance  metrics ± 95% confidence intervals for 1000 simulations from the posterior distribution.

b
These prior distributions were sampled on a natural log scale.

c
0 indicates one introduction ever whereas values > 0 indicate the number of introductions / year.

95% credible intervals of posterior distributions
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 548 

Figure S1. The demographic dynamics of African swine fever virus based on Model 1 549 

output (Neighborhood). Top plots show the frequency of infection in wild boar of different age 550 

classes (left) and sexes (right). Each line is a prediction from a separate sample of the posterior 551 

distribution of the fitted exponential decay & social structure model (100 trajectories in total). 552 

Bottom plots show the corresponding age class and sex distributions of infection over all time. 553 
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 557 

Figure S2. The demographic dynamics of African swine fever virus based on Model 2 558 

output (exponential decay). Top plots show the frequency of infection in wild boar of different 559 

age classes (left) and sexes (right). Each line is a prediction from a separate sample of the 560 

posterior distribution of the fitted exponential decay & social structure model (100 trajectories in 561 

total). Bottom plots show the corresponding age class and sex distributions of infection over all 562 

time. 563 
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 566 

Figure S3. The demographic dynamics of African swine fever virus based on Model 3 567 

output (social and exponential). Top plots show the frequency of infection in wild boar of 568 

different age classes (left) and sexes (right). Each line is a prediction from a separate sample of 569 

the posterior distribution of the fitted exponential decay & social structure model (100 570 

trajectories in total). Bottom plots show the corresponding age class and sex distributions of 571 

infection over all time. 572 
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