
Predicting Alignment Distances via Continuous Sequence
Matching

Jian Chen1∗ Le Yang1∗ Lu Li1

Yijun Sun1,2,3†
1Department of Computer Science and Engineering

2Department of Microbiology and Immunology
3Department of Biostatistics

University at Buffalo, The State University of New York
Buffalo, NY 14203

Abstract

Sequence comparison is the basis of various applications in bioinformatics. Recently, the increase in the number
and length of sequences has allowed us to extract more and more accurate information from the data. However,
the premise of obtaining such information is that we can compare a large number of long sequences accurately and
quickly. Neither the traditional dynamic programming-based algorithms nor the alignment-free algorithms proposed
in recent years can satisfy both the requirements of accuracy and speed. Recently, in order to meet the requirements,
researchers have proposed a data-dependent approach to learn sequence embeddings, but its capability is limited by
the structure of its embedding function. In this paper, we propose a new embedding function specifically designed for
biological sequences to map sequences into embedding vectors. Combined with the neural network structure, we can
adjust this embedding function so that it can be used to quickly and reliably predict the alignment distance between
sequences. We illustrated the effectiveness and efficiency of the proposed method on various types of amplicon
sequences. More importantly, our experiment on full length 16S rRNA sequences shows that our approach would
lead to a general model that can quickly and reliably predict the pairwise alignment distance of any pair of full-length
16S rRNA sequences with high accuracy. We believe such a model can greatly facilitate large scale sequence analysis.

∗Equal contribution
†Corresponding Author. Email: yijunsun@buffalo.edu

1

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.05.24.113852doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.24.113852

1 Introduction
The comparison of biological sequences is probably the most important research area in the field of bioinformatics.
Sequence comparison algorithms have been widely used as the basis for various applications, such as phylogenetic
analysis [1, 2], de novo genome assembly [3, 4] and taxonomic classification [5]. In recent years, the sequences
used for comparison have changed dramatically. On the one hand, the amount of sequence data has increased sig-
nificantly. As the second-generation high throughput sequencing technology matures, we have accumulated a large
number of sequences and the total amount of sequences is still growing at a rate of (1021) bps each year [6]. On
the other hand, the length of sequences is also greatly increased. Compared with the second-generation sequencing
technology, the third-generation sequencing technologies such as single-molecule real time (SMRT) sequencing from
Pacific Biosciences (PacBio) [7] and nanopore-based sequencing from Oxford Nanopore Technologies [8] has greatly
increased the length of raw sequences, from hundreds of bps to tens of thousands, even millions of bps [9]. Although a
large number of sequences and long sequence lengths provide us with the opportunity to obtain more accurate results
in many applications [4, 5], they also place higher requirements on the accuracy and speed of sequence comparison
algorithms.

In this paper, we focus on pairwise sequence comparison, the purpose of which is to measure the similarity or distance
of a pair of sequences based on the similarity regions shared by the two sequences. The central problem is that inser-
tions/deletions in a sequence can make it difficult to identify similar regions. The classic Needleman-Wunsch (NW)
algorithm [10] solves this problem by searching for the optimal alignment between two sequences using dynamic pro-
gramming. The NW algorithm can accurately capture evolutionary relationships and is often considered a reference
method [11]. However, with the increase in the number of sequences and the increase in sequence length, its high
computational complexity makes it impossible to apply in practice. Therefore, in recent decades, researchers have
developed a large number of sequence comparison algorithms to adapt to the increase in the number and length of
sequences by avoiding the alignment process [11]. For example, the classic k-mer method [12] represents a sequence
as a vector using consecutive words of length k and then define the similarity between two vectors as the similarity of
the original sequences. Due to its fast speed, this type of method can be used for longer sequences and has become the
basic starting point for many alignment-free methods. Also, methods such as kmacs [13] use the statistics of the com-
mon subsequences to define the similarity, which can also achieve a reasonable speed for largescale analysis. However,
these methods cannot replace the alignment-based method in the ability to describe evolutionary relationships.

Recently, a data-dependent alignment-free method called SENSE [14] was proposed to estimate the alignment dis-
tance at a speed close to that of the traditional alignment-free methods. The main idea is to train the neural network
model with the supervision of true alignment distance so that the trained model can predict the alignment distance
of unseen sequences. Experiments show that SENSE can efficiently and accurately estimate alignment distances for
sequences from two sub-regions of the 16S rRNA gene. However, SENSE is only a preliminary attempt and has many
weaknesses. First, it cannot be applied to sequences of varying lengths. Second, due to the structure of its embedding
function, SENSE cannot handle insertion/deletion, which is very common in biological sequences. Finally, we will
see in the experiments that even for equal-length sequences, SENSE does not outperform traditional alignment-free
methods such as kmacs on some datasets.

To solve the above issues, we propose an embedding function specifically designed for biological sequences, re-
ferred to as the continuous sequence matching (CSM) function. The main idea is to construct the embedding vector
of an input sequence by matching it with a set of short kernel sequences. Besides, we took the insertions/deletions
of biological sequences into consideration to make the matching results more robust. To assess the effectiveness and
efficiency of the proposed method, we performed experiments on various types of amplicon sequences and compared
them with five competing methods. The results show that our method outperformed SENSE and other traditional
alignment-free methods on all datasets. Moreover, by comparing the CSM function with its gap-free version, we
showed that introducing gaps into the model can make the results robust to sequence changes. More importantly, the
results on full-length 16S rRNA sequences suggested that our method will lead to a universal model that can quickly
and reliably predict the pairwise distance of any full-length 16S rRNA sequence pairs. We believe that this model can
greatly facilitate large-scale sequence analysis.

2

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.05.24.113852doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.24.113852

A 1 1 1 1

T 1 1 1 1 1 1 1 1

C 1 1 1

G 1 1

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-1.0 -1.0 -1.0 -1.0 -1.0 1.4 0.4 -0.6 -1.0 -1.0 1.4 0.4 -0.6 -1.0 -1.0 -1.0 1.4 0.4 -0.6

-2.0 -2.0 -2.0 -1.8 -1.8 0.4 2.6 1.6 0.6 -0.4 0.4 0.6 -0.4 -1.4 -2.0 0.2 0.4 0.6 -0.4

-3.0 -0.6 -0.6 -1.6 -2.6 -0.6 1.6 0.8 3.0 2.0 1.0 -0.0 -1.0 -2.0 -0.0 -0.8 -0.6 -0.4 2.0

-4.0 -1.6 -0.7 0.6 -0.4 -1.4 0.6 2.8 2.0 4.2 3.2 2.2 1.2 0.2 -0.8 -1.3 -1.6 0.6 1.0

-5.0 -2.6 -0.3 -0.4 0.3 -0.7 -0.4 1.8 4.1 3.2 2.3 2.9 1.9 0.9 1.5 0.5 -0.5 -0.4 1.9

-6.0 -3.6 -1.3 -1.4 -0.7 1.7 0.7 0.8 3.1 2.3 4.6 3.6 2.6 1.6 0.6 0.3 1.9 0.9 0.9

-3.2 -1.8 1.4 -1.2

-1.5 -0.8 -0.5 1.2

1.4 -1.8 -1.4 -1.2

-0.1 1.2 -1.3 -1.3

1.3 -0.3 -1.9 -1.2

-3.2 -1.8 1.4 -1.2

-3.2 -1.8 1.4 -1.2

-1.5 -0.8 -0.5 1.2

1.4 -1.8 -1.4 -1.2

-0.1 1.2 -1.3 -1.3

1.3 -0.3 -1.9 -1.2

-3.2 -1.8 1.4 -1.2

1

1

1

1

1

1

1

1

1

1

1

Figure 1: Overview of proposed CSM model and its training process. (a) Siamese network structure and the CSM function
with a set of continuous 4-D sequences as learnable parameters. (b) The continuous sequence matching process for one
kernel sequence. The red square outlined the best matching subsequence and the red entries in the table indicate the optimal
alignment path. (c) The parameter sequence get similarity score and gradient from both best matching subsequences from
the input pair using the corresponding optimal alignment. Then combine the gradients using the gradient flow from the
cosine-distance function and the loss function

2 Methods
We developed a neural network model, referred as Continuous Sequence Matching (CSM), that embed variable length
sequences in a continuous high-dimension embedding space using a list of short learned kernel sequences of same
dimension. Each scalar entry of the embedding vector is calculated using the input sequence and one kernel sequence
through the eponymous function (CSM function). The parameters in the kernel sequences are trained in a supervised
fashion through a Siamese network structure. Alignment distance between pair of nucleotide sequences are used as
continuous valued label. The cosine distance between the pair of embedding vectors is the estimation of the label.

The CSM function works similarly as 1-D Convolutional Neural Network (CNN). The novelty of our approach is in
the behavior of the kernels. In order to adapt the insertion/deletion abundance characteristics of biological sequences.
We adopted the idea in [15, 16] in our model design. The Kernel sequences interact with the input sequence through
alignment in stead of convolution to capture edit invariant features. Further, inspired by the idea of approximate string
matching [17, 18], our kernel sequences efficiently scan the input sequence using dynamic programming in stead of fix
width sliding window in CNN. Features are extracted from best approximate subsequences (BAS) of variable length
rather than subsequence in a fixed width sliding window. Figure 1 presents the overview of the proposed method and
its training process. Overall, we adapt the classic Siamese network structure to learn the proposed embedding model.
Each kernel scans the input sequence and aligns itself to the best approximate subsequence. The gradients with respect
to the kernel sequences are calculated through back-propagation. At last we introduce a scheme to train the model
efficiently in batches to stabilize the training process and reduce the convergence time by a factor of 30 compared with
training using one pair at a time.

To be self contained we first briefly introduce the definition of alignment score and alignment distance. Then de-
scribe the detail of our model.

3

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.05.24.113852doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.24.113852

2.1 Alignment Score
In classic alignment algorithm such as Needleman-Wunsch algorithm and Smith-Waterman algorithm. The alignment
is converted to a optimal path search problem on a graph. This problem can be solved using dynamic programming.
The optimal path is computed by maximizing an objective function through filling a matrix step by step. The objective
function is a summation of user defined gap penalties and substitution scores correspond to each step. The alignment
score between a pair of sequences X : x1, ...,xl1 and Y : y1, ...,yl2 is defined as the maximum objective function value
with gap cost g. In most case stored in the last row last column of the (l1 +1)× (l2 +1) matrix F used in the dynamic
programming. F is calculated in recursion:

Fi, j =

0 if i = 0
− j ·g if j = 0
max(Fi−1, j−1 +match(xi,y j),Fi−1, j−g,Fi, j−1−g) otherwise

(1)

The alignment score is noted as SNW(X ,Y,g) = F [l1, l2].

2.2 Alignment Distance
Given an alignment between a pair of sequences. The alignment distance is computed as the ratio between number of
not matched cites and the length of alignment result. The alignment distance between two sequences X ,Y is noted as
d(X ,Y,g).

2.3 Siamese Network
Our model is designed for nucleotide sequences. The nucleotide sequence is first converted into one-hot encoded
sequence for neural network to work on as input. Each entry of the sequence is a 4 dimension vector correspond to the
4 different nucleotides: A, T, G, C. There is exactly one entry of the vector equal to 1 and all other entries are set to 0.
The model is used to generating alignment distance preserving embedding vectors for nucleotide sequences.

There are two hyper parameters in our model. The first is the number of feature channels d which is equal to the
embedding dimension. Each channel consists of a kernel sequence Ki and a scalar bias bi where i ∈ [1,d]. The second
is the length of kernel sequences l. Kernel sequences of all channel share the same dimension and length. The trainable
parameter set of the model consists of d kernel sequences and the gap cost and bias for each kernel is represented as
ω : {K1, ...,Kd ,g1, ...,gd ,b1, ...,bd ,}.

In the single pair case shown in Figure 1 (a), the model takes a pair of one-hot encoded sequences as input note
as X1 and X2. The embedding vectors for both sequences are calculated using the same set of parameters ω , noted
as~e(X1|ω) and~e(X2|ω). The i-th entry of the embedding vector is computed as following through the CSM function
which will be introduced in the next subsection:

~e(X |ω)i = ReLu(CSM(X ,Ki,gi)+b) (2)

where b is a bias term and ReLU is the rectified linear activation function [19]. The model then compute the cosine
distance between the embedding vectors as its estimation of the alignment distance. The cosine distance between
vector~u and~v is defined as the complement of cosine similarity:

dC(u,v) = 1− ~u∥∥~u∥∥ · ~v∥∥~v∥∥ (3)

Then model is trained using gradient descent algorithm to minimize the mean square error given by:

L (ω) = (d(X1,X2,gi)−dC(~e(X1|ω),~e(X2|ω)))2 (4)

In the training process, the kernel sequences are random initialized each entry is set to a value between 0 and 1. Once
the model converged, it can be used for fast and accurate homologous sequence comparison. In our application the
converged kernel sequences can be viewed as sequence motifs since each row correspond to 1 nucleotide based on the
one-hot encoded input. In the situations when each character are not considered equal such as amino acids, character
embedding vectors are used instead of one-hot vectors, each column of the learned kernel sequences can still be used
to infer the extracted pattern.

4

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.05.24.113852doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.24.113852

2.4 Continuous Sequence Matching Function
The CSM function is a modified local-global alignment algorithm using dynamic programming. Given a input high
dimension sequence X : x1, ...,xL and a kernel sequence K : k1, ...,kn (n� L) of same dimension and a gap penalty g
as input. the CSM function find the BAS X ′ of X that has maximum alignment score aligned with the kernel sequence
K among all the sub-sequences of S. Let the start and end index of the BAS be is and ie and the length noted as
m = je− js +1, then the BAS is X ′ = xis , ...,xie = x′1, ...,x

′
m. The CSM function can be written as:

CSM(X ,K,g) = max
is,ie

(SNW(X ′,K,g)) (5)

An example is shown in Figure 1 (b).

In our case the substitution score of the i-th vector and j-th vector is their dot product. An commonly used algorithms
[18] identifies the best matching sub-sequence and calculates the best matching score using dynamic programming. In
particular, it constructs a (m+1)× (n+1) matrix T and fill it recursively as following:

Ti, j =

0 if i = 0
− j ·g if j = 0
max(Ti−1, j−1 + xi · k j,Ti−1, j−g,Ti, j−1−g) otherwise

(6)

The (i, j) entry Ti, j represents the maximum alignment score between any sub-sequence Xi′:i = xi′ ...xi, i′ < i of X that
ends at position i and the prefix of the kernel sequences of length j, K : k1...k j. The maximum value of the last row
of T stores the maximum alignment score between any sub-sequence ends at any index and the full kernel sequence,
which is the output of the CSM function. Note that the length of the BAS is not always equal to the length of the
kernel sequence since the starting index of the it is calculated by the standard backtracking algorithm [18]. The CSM
function can calculate the output value without backtracking the start index is. This reduce the running time in testing
process. However the start index is required in the backpropagation stage. An example of alignment between K and
one-hot encoded DNA sub-sequence is shown in Figure 1 (c). The left sub-sequence is aligned with the kernel with 1
gap and have a CSM function output 5.7 and the right one is aligned with 2 gaps and have CSM function output 4.6.

As the gap penalty increases to infinity. The embedding method is degenerated to a 1-D single layer CNN with
stride of 1 and no padding followed by a global max-pooling layer. As g→ ∞, the matrix F is calculated as:

Ti, j = Ti−1, j−1 + xi · k j,(i · j 6= 0) (7)

The CSM function allows kernel sequences to extract more robust feature from the input in the presence of inser-
tion/deletion which increases the generalization ability of the model. In the next section, a perturbation experiment
will show the advantage of CSM over CNN.

2.5 Gradient Computation version
In the training process, gradient of the loss function with respect to (w.r.t) each parameter is used to update our model
by the well known back-propagation algorithm. Based on the chain rule, the gradient can be written as follows

∂L (ω)

∂ω
=

[
∂L (ω)

∂CSM(X ,K,g)
∂CSM(X ,K,g)

∂K
,

∂L (ω)

∂b

]
(8)

The gradient of elementary functions can be calculated automatically by standard machine learning library like Pytorch
and Tensorflow. Then we only need to discuss the gradient computation of the CSM function w.r.t the kernel sequences.
In fact, only the entries on the optimal alignment path between kernel sequence and the BAS contribute to the output
value of CSM function. However, the optimal alignment is settled down only in the current iteration. The alignment
will possibly change in the next iteration which result in high variance in the training process. In our implementation
we applied the soft version of Needleman-Wunsch algorithm[15] to approximate the gradient. The soft-max function

5

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.05.24.113852doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.24.113852

is used to replace the discontinuous max function in the recursion to make the dynamic processing differentiable.

maxγ(~v) = γ log

(
∑

i
exp(vi/γ)

)
(9)

∂maxγ(~v)
∂vi

= exp(
vi−maxγ(~v)

γ
) (10)

The soft alignment score between the BAS and kernel is noted as Sγ

NW(X ′,K,g). The hyperparameter γ controls the
trade-off between accuracy and smoothness. But in our case, the direct application of this soft approach will result
in O(lL) time complexity, again, L is the length of the input sequence due to the soft-max function unnecessarily
blending the possible alignment outside the BAS into the gradient computation which hardly has contribution to the
output. To reduce the computation burden we only use the BAS to compute the gradient.

∂CSM(X ,K,g)
∂K

≈
∂Sγ

NW(X ′,K,g)
∂K

(11)

The recursion in the computation of F changes to

Fi, j =

−i ·g if i = 0
− j ·g if j = 0
maxγ(Fi−1, j−1 + x′i · k j,Fi−1, j−g,Fi, j−1−g) otherwise

(12)

The gradient w.r.t the kernel and gap cost can be written as:

∂Sγ

NW(X ′,K,g)
∂k j

=
ie−is+1

∑
i=1

∂Sγ

NW(X ′,K,g)
∂Fi, j

∂Fi, j

∂k j
(13)

∂Sγ

NW(X ′,K,g)
∂g

=
∂Fm,n

∂g
(14)

We can see, the calculation of ∂Sγ

NW(X ′,K,g)
∂Fi, j

can be done recursively with stop condition ∂Sγ

NW(X ′,K,g)
∂Fie−is+1,m

= 1. The recursive
call is derived from the fact that each entry Fi, j only contribute to the three neighbors Fi+1, j,Fi+1, j+1,Fi, j+1. This term
can be write as:

∂Sγ

NW(X ′,K,g)
∂Fi, j

=
∂Sγ

NW(X ′,K,g)
∂Fi+1, j

· ∂Fi+1, j
∂ (Fi, j−g) +

∂Sγ

NW(X ′,K,g)
∂Fi+1, j+1

· ∂Fi+1, j+1
∂ (Fi, j+x′i+1·k j+1)

+
∂Sγ

NW(X ′,K,g)
∂Fi, j+1

· ∂Fi, j+1
∂ (Fi, j−g) (15)

The gradient w.r.t the gap cost g is also computed recursively, with stop condition: ∂Fi,0
∂g =−i and ∂F0, j

∂g =− j:

∂Fi, j
∂g =

∂Fi, j
∂ (Fi−1, j−g) ·

∂ (Fi−1, j−g)
∂g +

∂Fi, j
∂ (Fi−1, j−1+x′i·k j)

· ∂ (Fi−1, j−1+x′i·k j)

∂g +
∂Fi, j

∂ (Fi, j−1−g) ·
∂ (Fi, j−1−g)

∂g (16)

For simplicity purpose, we write ∂Sγ

NW(X ′,K,g)
∂Fi, j

as Qi, j and ∂Fi, j
∂g as Pi, j. The approximate gradient computation of the

CSM function is given in Algorithm 1:

6

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.05.24.113852doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.24.113852

Algorithm 1: Gradient computation CSM function
Input: Sequence: X : x1, ...,xL, kernel: K : k1, ...,km, gap cost: g, soft-max hyperparameter: γ

1 Initialize matrix T = (L+1)× (n+1) with Ti,0 =−ig,∀i ∈ [1,m] and fill the matrix T for all i · j 6= 0:

Ti, j = max(Ti−1, j−1 + xi · k j,Ti−1, j−g,Ti, j−1−g)

2 Compute the BAS region: ie = arg max
i

Ti,n, trace back from je to j = 0 to get is. BAS length: n = je− js +1, retrieve

X ′ = x js , ...,x je note as x′1, ...,x
′
n

3 Initialize zero matrix F = (m+2)× (n+2) with Fi,0 =−ig, Fi,n+1 = ∞,∀i ∈ [0,m], F0, j =− jg, Fm+1, j = ∞,∀ j ∈ [1,n].
Fill F for ∀(i, j) ∈ [1,m]× [1,n]:

Fi, j = maxγ (Fi−1, j−1 + x′i · k j,Fi−1, j−g,Fi, j−1−g)

Fm+1,n+1 = Fm,n

4 Initialize zero matrix Q = (m+2)× (n+2) with Qm+1,n+1 = 1, and fill Q for ∀(i, j) ∈ [1,m]× [1,n]:

Qi, j = Qi+1, j · exp(Fi, j−g−Fi+1, j
γ

)+Qi+1, j+1 · exp(Fi, j+x′i+1·k j+1−Fi+1, j+1
γ

)+Qi, j+1 · exp(Fi, j−g−Fi, j+1
γ

)

5 Compute the gradient w.r.t kernel ∇K:

∇K j =
ie−is+1

∑
i=1

Qi, j exp
(

Fγ

i−1, j−1 + x′ik j−Fγ

i, j/γ

)
x′i

6 Initialize zero matrix P = (m+2)× (n+2) with Pi,0 =−i, ∀i ∈ [0,m], P0, j =− j, ∀ j ∈ [1,n] and fill the matrix P for
∀(i, j) ∈ [1,m]× [1,n]:

Pi, j = exp(Fi−1, j−g−Fi, j
γ

) · (Pi−1, j−1)+ exp(Fi−1, j−1+x′i·k j−Fi, j
γ

) ·Pi−1, j−1 + exp(Fi−1, j−g−Fi, j
γ

) · (Pi, j−1−1)

∇g = Pm,n

Return: ∇K, ∇g

2.6 Fast Random Batch
In the training process, the computation of embedding vectors using the CSM function is the bottle neck. Our default
model have 200 kernel sequences of length 20. Without parallel computing, the embedding process is equivalent to
do alignment between the input sequence of length approximately 1500 and parameter sequence of length 4000. This
process is required for both sequences fed to the model in each update makes the training for a pair even slower than
the alignment. The high variance in the training process results in slow convergence. Therefore requiring more update
steps. Collectively make the training process time consuming.

We propose a method to train the model efficiently by random sampled batches from a large pairwise training ma-
trix. In each iteration, n sequences are randomly sampled and the (n2− n)/2 pairwise labels are extracted from the
training set forms a small alignment distance matrix D. The model compute the embedding vector for the sampled
sequences using current parameters. Then a pairwise cosine distance matrix of the embedding vectors DC is computed
as prediction. The mean squared error between the label matrix and the predicted matrix is minimized.

L (ω) = ‖D(S)−DC (~e(S|ω))‖F (17)

Although batch training stabilizes the gradient descent process, it does not guarantee reduction of training time since
there is a trade-off between update frequency and update effectiveness. If the batch size is too large, even the model
converge after fewer updates, it is possible each updates cost too much time that the training process end up slower
than training without batch. For our method, in each iteration, the embedding vector is calculated O(n) times and the
gradient is averaged among O(n2) prediction-label pairs. This allow us to have enough distance label to smooth our

7

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.05.24.113852doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.24.113852

Figure 2: Overview of the network structure used in batch training.

gradient while the time cost of each iteration dominated by the CSM function is still small enough to be collectively
time conserving. Based on our experiment, n = 5 is a good choice.

2.7 Related Work
We compared the proposed method with 3 data-independent and 2 data-dependent methods. For data-independent
methods, we compared with kmacs [13], k-mer [12], FFP [20] since they had shown competitive performance in
previous study [14]. See [11] for a complete review of alignment free methods. For data-dependent methods, the first
method is SENSE [14], which is the first data dependent method for sequence comparison. It uses a Siamese neural
network to learn a CNN-based embedding function based on training datasets. The second method, referred to as
single-layer CNN, is a gap-free version of the proposed method. In particular, if we do not allow insertion/deletion in
the proposed CSM function, it will degenerate to a single-layer CNN followed by a global maximum pooling function.
We compare our method with single-layer CNN to assess the effectiveness of introducing insertion/deletion.

3 Experimental Results
To demonstrate the effectiveness and efficiency of the proposed method, we performed large-scale experiments on
four real-world sequence datasets and compare the performance with five competing methods.

3.1 Dataset
Four amplicon sequence datasets were used in our experiment. We used two full-length 16S rRNA datasets. The first
dataset is the Greengenes full-length 16S rRNA database [21], which contains 1,262,986 curated sequences of length
ranging from 1,111 to 2,368. The second dataset was generated from a Zymo mock community [5]. The samples
in this dataset were sequenced by an amplicon sequencing methodology based on PacBio CCS sequencing, which
can produce accurate full-length 16S rRNA sequences without assembly. As CCS reads are generated in a mixture
of forward and reverse-complement orientations, we performed a pre-processing procedure using the remove Primers
function in the DADA2 R package [22] to remove primers and orients all the sequences in the forward direction. After
pre-processing, the Zymo dataset contains 69,367 sequences of length ranging from 1,187 to 1,518. We also use two
datasets that covers the subregions of the 16S rRNA gene. Qiita was generated from 66 skin, saliva and feces samples
collected from Yanomani, the uncontacted Amerindians [23]. It contains 6,734,572 sequences of 151 bp that cover the
V4 hyper-variable region of the 16S rRNA gene. RT988 contains 4,119,942 sequences from 90 oral plaque samples,
each of which is 464-465 bp in length and covers the V3-V4 regions. For both Qiita and RT988, we performed pre-
processing procedures including pair-end joining, quality filtering and length filtering before the analysis. For all the
datasets, we removed duplicate sequences.

8

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.05.24.113852doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.24.113852

3.2 Experimental Setting
3.2.1 Training and Testing Data

All data-dependent methods (CSM, single-layer CNN and SENSE) require training samples to tune parameters. For
our method and the single-layer CNN, training sequences were generated by randomly selecting 5 groups of 1000
sequences from each of Greengenes, Qiita and RT988. For SENSE, we randomly selected sequences and trimmed
them to fixed lengths (Qiita: 151, RT988: 465) since it can only take fix-length sequences as input. We also randomly
sampled 10 groups of 1000 sequences from Qiita, RT988, Greengenes and Zymo in order to compare the performance.
Again, the testing sequences for SENSE were trimmed to fixed length (Qiita: 151, RT988: 465). For each group of
sequences, we generated the pairwise alignment of all 499,500 possible sequence pairs by using the NW algorithm
implemented in seqAn [24] with NCBI default parameters (match score: 2, mismatch score: −3, gap existence cost:
−5, gap extension cost: -2) and calculated the alignment distances the same way as in [14]. Batch size is set to 5.

3.2.2 Hyperparameter Selection

For our method, we used 200 kernel sequences of length 20 across all the experiments. To train our model, we used
the Adam optimizer [25] to minimize the mean square error using stochastic gradient descent with the learning rate
10−3. For single-layer CNN, we used the exactly same setting as our method except that it does not have the gap
parameter. For SENSE, the number of CNN layers is set to 3, filter length to 11, the number of filters in three layers
to 16, 32 and 48, and the length of the output embedding vectors is the same as the length of the input sequence. For
kmacs and FFP (V3.19), we used the source code downloaded from their websites. For k-mer, we used our own C++
implementation optimized for amplicon sequence data by using sparse k-mer count representation. For k-mer, kmacs
and FFP, we tested 10 parameters for each method since there is no principal way to estimate the optimal parameter.

3.3 Average Relative Error as Accuracy Measurement
In this paper, we used the mean relative error (MRE) to measure the effectiveness of the algorithms. The relative
error is calculated by dividing the absolute difference/error between the predicted distance and the aligned distance by
the aligned distance. Due to the large range of the alignment distance (from < 0.01 to > 0.3), relative error is more
suitable for measuring the quality of approximation than the absolute error. Furthermore, the physical meaning of
relative error is more clear. For example, if the MRE of an algorithm is 10%, it means that on average, the prediction
of this algorithm deviates by 10% from the true alignment distance, regardless of the value of the true alignment
distances.

3.4 Perturbation Experiment
The purpose of the perturbation experiment is to justify the necessity of gap awareness. The sequences sampled from
large curated database are usually from different species. Therefore their 16S rRNA gene sequence similarity < 98.7%
[26]. Difference between two sequences of same species can be viewed as perturbation. This experiment shows the
CSM model can generate more robust embedding vectors in the presence of individual differences which is crucial in
many sequence analysis application. The experiment is performed on synthetic data to simulate slight individual dif-
ferences. First, 200 sequences are randomly sampled from the Greengene database. Then for each sequence, 5 slightly
different synthetic sequences are generated by randomly insert, delete and substitute nucleotide at each position with
probability 0.01. The pairwise alignment distance of the 1000 generated sequences are then used for testing. The
result is shown in Figure 3.

We can see the CNN model tend to give larger prediction, especially on pairs with smaller alignment distance. Miss
detection of similar pairs can be problematic in many sequence based analysis. For example, when doing database
search, the query sequence is not 100% identical to the sequence of the correct species, CSM can generate more similar
embedding vectors for slightly different sequences compare to CNN.

9

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.05.24.113852doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.24.113852

(a) CSM (b) CNN

Figure 3: Perturb analysis. (a) Result of CSM model, MRE 4.5%. (b) Result of CSM model, MRE 9.5%.

3.5 Benchmark Analysis
First we compare the predictive abilities of all the methods on the full-length 16S sequences. Two non overlap sets
are extracted from the Greengenes database, training and testing. The three data-dependent methods, are trained on
the training set. All methods are tested on testing sets and Zymo dataset to compare the generalization ability of the
CSM model and its CNN special case. Table 1 reports the MRE and CPU time on these two datasets and Figure 4 and
Figure 5 plot the estimated distances against the alignment distance for the Greengenes and Zymo, respectively. On
Greengenes, we can see that CSM and single-layer CNN performed best with a large margin. SENSE and kmacs are
distant second with kmacs. Considering that SENSE is trained on Greengene, we can conclude that SENSE failed to
capture the characteristics of the full-length 16S sequences, even if it has a much more number of parameters to adjust.
In contrast, the CSM model used much less parameters (4200) to achieve a higher accuracy.

(a) CSM (b) CNN

(c) kmacs (k=2) (d) k-mer (k=5) (e) FFP (l=12)

Figure 4: Visualization of alignment distances versus estimated distances computed by six methods performed on
Greengenes dataset.

10

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.05.24.113852doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.24.113852

The results on Zymo has an obvious feature that the accuracy of all methods has decreased, whether they are data-
dependent or data-independent. One possible explanation is that, compared to sequences in the Greengene database,
the sequences in the Zymo dataset are raw sequences that have more variations, which tends to make the alignment
distances more difficult to predict. Remarkably, despite this difficulty, CSM still performed best among all methods.
It is also worth noting that single-layer CNN can no longer match the performance with CSM. The implication of
these results is twofold. First, this result shows that introducing insertion/deletion provides a strong resistance to the
variation in the data. Second, it shows that the proposed method is able to build a general model for full-length 16S
rRNA sequences. Once a model is trained, we can applied it to predict the alignment distance between any pair of
full-length sequences with a high accuracy guarantee, no matter where the sequences come from and whether they are
curated. Such model can greatly facilitate the applications based on 16S sequence comparison due to its effectiveness
and efficiency.

Greengenes Zymo

Method Parameter CPU time (s) MRE p-value CPU time (s) MRE p-value

CSM default 40.5 (0.2) 4.5% (0.01%) – 41.2 (0.05) 13.1% (0.4%) –

Single-layer CNN default 24.3 (1.7) 4.8% (0.06%) 3.5e-08 24.0 (0.5) 20.9% (1.1%) 5.3e-04

kmacs

k = 1 189.1 (0.9) 16.8% (0.3 %) 191.3 (0.8) 36.4% (0.7%)

k = 2 210.1 (1.7) 12.7% (0.2%) 1.6e-29 214.7 (1.0) 24.4% (0.4%) 3.1e-06

k = 3 229.7 (1.0) 18.0% (0.3%) 231.9 (0.8) 28.3% (0.3%)

k = 4 249.1 (2.8) 25.4% (0.3%) 248.2 (0.3) 37.6% (0.4%)

k = 5 269.7 (4.7) 31.8% (0.3%) 263.6 (0.3) 44.1% (0.4%)

k = 6 294.3 (9.6) 36.8% (0.3%) 280.7 (0.8) 48.3% (0.4%)

k = 7 303.2 (1.9) 41.0% (0.3%) 293.0 (0.5) 51.9% (0.4%)

k = 8 317.3 (2.1) 44.3% (0.3%) 304.4 (0.2)) 55.0% (0.4%)

k = 9 342.6 (16.0) 47.2% (0.3%) 316.8 (0.6) 57.6% (0.4%)

k = 10 362.6 (25.1) 49.6% (0.2%) 327.4 (0.3) 59.7% (0.4%)

k-mer

k = 3 3.4 (0.01) 67.7% (0.3%) 3.5 (0.02) 53.7% (0.4%)

k = 4 9.9 (0.05) 35.7% (0.3%) 10.0 (0.4) 40.1% (0.4%) 1.2e-07

k = 5 26.7 (0.2) 30.1% (0.5%) 8.5e-29 26.8 (0.3) 107.0% (1.4%)

k = 6 44.0 (0.1) 103.5% (0.7%) 43.3 (0.1) 200.7% (1.7%)

k = 7 51.2 (0.7) 154.2% (0.8%) 51.0 (0.1) 271.7% (1.9%)

k = 8 52.6 (0.5) 181.0% (0.8%) 53.0 (0.2) 318.9% (2.4%)

k = 9 52.3 (0.3) 181.1% (0.8%) 53.0 (0.2) 318.7% (2.4%)

k = 10 52.1 (0.1) 181.1% (0.8%) 53.0 (0.2) 318.7% (2.4%)

k = 11 52.0 (0.01) 181.1% (0.8%) 53.1 (0.3) 318.6% (2.4%)

k = 12 52.1 (0.1) 181.2% (0.8%) 53.1 (0.3) 318.8% (2.4%)

FFP

l = 6 3.2 (0.02) 98.1% (0.05%) 3.1 (0.3) 98.0% (0.0%)

l = 7 5.2 (0.2) 96.0% (0.05%) 5.1 (0.4) 95.6% (0.0%)

l = 8 11.0 (0.3) 91.6% (0.1%) 10.4 (0.8) 90.3% (0.0%)

l = 9 19.9 (0.7) 84.7% (0.1%) 19.2 (1.6) 80.9% (0.1%)

l = 10 40.7 (1.0) 93.9% (0.1%) 39.1 (3.0) 86.9% (0.1%)

l = 11 76.1 (0.7) 56.4% (0.2%) 74.1 (6.4) 57.0% (0.3%)

l = 12 149.2 (0.8) 18.0% (0.3%) 2.6e-29 143.1 (11.8) 42.8% (0.2%) 1.7e-08

l = 13 274.1 (0.9) 77.3% (0.4%) 250.0 (12.1) 128.7% (0.7%)

l = 14 527.2 (2.1) 120.0% (0.5%) 382.4 (2.5) 199.1% (0.6%)

l = 15 1031.8 (3.5) 147.1% (0.6%) 548.5 (15.4) 274.2% (3.0%)

Table 1: CPU time and MRE results averaged over ten runs for six methods performed on the Greengenes and Zymo
datasets. Standard deviations are shown in bracket. The best result for each method is boldfaced. A p-value was computed
by comparing the MRE result of CSM with the best result of each method.

11

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.05.24.113852doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.24.113852

(a) CSM (b) CNN

(c) kmacs (k=2) (d) k-mer (k=4) (e) FFP (l=12)

Figure 5: Visualization of alignment distances versus estimated distances computed by six methods performed on
Zymo dataset.

To demonstrate that the ability of proposed method is not limited to full-length 16S rRNA sequences, we also per-
formed similar analysis on Qiita and RT988 dataset. The CPU times and MRE in Supplementary Table 2, and the
Figures 6 and Figure 7. We can see that the three data-dependent methods are much better than other methods in
terms of accuracy and are at least as fast as the methods other than k-mer. Among them, CSM and single-layer CNN
performed slightly better than SENSE on both datasets with fewer parameters (CSM and single-layer CNN: 4200,
SENSE: > 30000).

(a) CSM (b) CNN (c) SENSE

Figure 6: Visualization of alignment distances versus estimated distances computed by six methods performed on
Qiita dataset.

12

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.05.24.113852doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.24.113852

(a) kmacs (k=2) (b) k-mer (k=4) (c) FFP (l=12)

Figure 6: Visualization of alignment distances versus estimated distances computed by six methods performed on
Qiita dataset.

Table 2: CPU time (in second) and MSE results averaged over ten runs for six methods performed on the Qiita and RT988
datasets. The numbers in parentheses are standard deviations. The best result is boldfaced for kmacs, k-mer and FFP. A
p-value was computed by comparing the MSE result of CSM with the best results of other methods.

Qiita RT988

Method Parameter CPU time (s) MRE p-value CPU time (s) MRE p-value

CSM default 17.6 (0.6) 4.6% (0.1%) – 23.4 (0.2) 2.6% (0.1%) –

Single-layer CNN default 5.4 (0.1) 4.4% (0.1%) 5.0e-05 9.6 (0.6) 2.7% (0.1%) 1.8e-01

SENSE default 9.7 (0.3) 6.6% (0.1%) 5.2e-21 18.6 (0.1) 3.9% (0.2%) 8.0e-12

kmacs

k = 1 22.1 (0.6) 21.2% (0.3%) 62.7 (1.5) 27.2% (0.2%)

k = 2 24.2 (0.5) 10.2% (0.1%) 5.8e-27 69.8 (1.2) 16.4% (0.1%) 1.8e-34

k = 3 25.8 (0.2) 14.4% (0.2%) 76.5 (1.6) 21.6% (0.4%)

k = 4 27.6 (0.2) 23.7% (0.2%) 82.5 (1.7) 31.2% (0.5%)

k = 5 29.5 (0.4) 31.2% (0.2%) 88.2 (2.5) 39.0% (0.6%)

k = 6 31.6 (0.4) 37.0% (0.2%) 93.4 (2.7) 45.0% (0.5%)

k = 7 33.1 (0.9) 41.7% (0.2%) 96.5 (1.7) 50.1% (0.5%)

k = 8 34.5 (0.8) 45.7% (0.2%) 100.0 (1.3) 54.1% (0.5%)

k = 9 35.9 (1.0) 49.2% (0.2%) 104.4 (2.2) 57.1% (0.4%)

k = 10 37.0 (0.8) 52.2% (0.2%) 108.1 (2.9) 59.6% (0.4%)

k-mer

k = 3 3.1 (0.1) 14.9% (0.3%) 3.1e-26 3.3 (0.1) 36.8% (0.6%)

k = 4 5.3 (0.2) 65.8% (0.6%) 8.3 (0.3) 62.7% (1.6%) 2.6e-27

k = 5 6.4 (0.3) 129.5% (1.1%) 14.0 (0.1) 147.8% (1.5%)

k = 6 6.7 (0.3) 167.3% (1.4%) 16.9 (0.1) 219.1% (1.8%)

k = 7 6.6 (0.2) 188.4% (1.7%) 17.9 (0.2) 267.6% (2.2%)

k = 8 6.5(0.2) 200.7% (1.9%) 18.0 (0.1) 301.4% (2.7%)

k = 9 6.5 (0.2) 201.2% (2.0%) 18.0 (0.1) 302.1% (2.7%)

k = 10 6.5 (0.2) 201.4% (2.0%) 17.9 (0.1) 301.0% (2.6%)

k = 11 6.5 (0.2) 201.4% (2.0%) 17.9 (0.1) 300.0% (2.6%)

k = 12 6.4 (0.2) 201.4% (2.0%) 17.9 (0.1) 299.0% (2.5%)

FFP

l = 6 2.9 (0.1) 87.9% (0.2%) 2.9 (0.01) 93.0% (0.1%)

l = 7 5.0 (0.1) 90.0% (0.1%) 4.9 (0.05) 85.4% (0.1%)

l = 8 9.8 (0.2) 38.7% (0.3%) 9.9 (0.02) 83.2% (0.1%)

l = 9 17.4 (0.7) 38.5% (0.5%) 4.3e-32 18.0 (0.05) 78.0% (0.2%)

l = 10 33.2 (1.1) 97.4% (1.0%) 35.5 (0.04) 18.4% (0.5%) 3.1e-25

l = 11 61.2 (2.4) 137.5% (1.4%) 64.9(0.05) 95.6% (1.1%)

l = 12 121.6 (4.5) 162.8% (1.8%) 123.7 (0.4) 169.8% (1.7%)

l = 13 233.1 (6.4) 178.9% (2.0%) 219.8 (1.0) 220.1% (2.2%)

l = 14 428.3 (5.9) 189.4% (2.1%) 353.4 (3.4) 251.0% (2.6%)

l = 15 692.5 (12.0) 196.4% (2.2%) 493.4 (7.0) 274.2% (3.0%)

13

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.05.24.113852doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.24.113852

(d) CSM (e) CNN (f) SENSE

(g) kmacs (k=2) (h) k-mer (k=4) (i) FFP (l=12)

Figure 7: Visualization of alignment distances versus estimated distances computed by six methods performed on
RT988 dataset.

(a) Greengenes (b) Zymo

Figure 8: Investigation of the effect of different parameters on the performance of the proposed model. (a, b) Results
of parameter sensitive analysis of gap cost g performed on the Greengenes and Zymo datasets. (c, d) Estimate model
complexity by using the elbow method for Greengenes and Zymo datasets.

3.6 Estimating Model Complexity
The only two parameters of our method are the number and the length of the string parameters. Across all the
experiments, we simply used 200 string parameters of length 20 and obtained good results. Here we further investigate
the effect of these two parameters on the results. As these two parameters determine the complexity of the model, we
expected to observed the elbow phenomenon, that is, when the complexity of the model increases, the error quickly

14

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.05.24.113852doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.24.113852

decreases and then flattens at a certain point. To validate this assumption, we trained several models with different
combination of parameters with number ranging from 10 to 600 and length ranging from 10 to 30. Figure 8(a) and
8(b) report the MRE of different models applied to Greengenes and Zymo datasets. On Greengenes, we can clearly
observed a elbow phenomenon for the number of strings and the models with length ranging from 20 to 30 have similar
results. On Zymo, although the values of MRE are larger, we can observed the same trend. Therefore, we choose 300
and 20 as the default parameters.

4 Conclusion
In this paper, we developed a novel method that is specifically designed to capture the characterizes of biological
sequences. We demonstrated that the proposed method is able to produce a general model for full-length 16S rRNA
amplicon sequences. This model is able to efficiently and accurately predict arbitrary pair of full-length 16S sequences,
whether the sequences are curated or directly from study. In addition, our model also performed good on subregions
of 16S rRNA gene. In the future, we plan to develop a tool for universally comparison of full-length 16S rRNA genes
and further explore the power of the proposed CSM function. One possible direction is to aggregate the CSM function
to form complex multiple-layer structures. It would also be interesting to look into the trained function to identify
what it learned from data, especially for multiple-layer structures.

15

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.05.24.113852doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.24.113852

References
[1] Ames, S. K., Hysom, D. A., Gardner, S. N., Lloyd, G. S., Gokhale, M. B., and Allen, J. E. (2013) Scalable

metagenomic taxonomy classification using a reference genome database. Bioinformatics, 29(18), 2253–2260.

[2] Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T. J., Higgins, D. G., and Thompson, J. D. (2003)
Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Research, 31(13), 3497–3500.

[3] Li, H. (2016) Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinfor-
matics, 32(14), 2103–2110.

[4] Sedlazeck, F. J., Lee, H., Darby, C. A., and Schatz, M. C. (2018) Piercing the dark matter: bioinformatics of
long-range sequencing and mapping. Nature Reviews Genetics, 19(6), 329–346.

[5] Callahan, B. J., Wong, J., Heiner, C., Oh, S., Theriot, C. M., Gulati, A. S., McGill, S. K., and Dougherty,
M. K. (2019) High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide
resolution. Nucleic Acids Research, 47(18), e103.

[6] Stephens, Z. D., Lee, S. Y., Faghri, F., Campbell, R. H., Zhai, C., Efron, M. J., Iyer, R., Schatz, M. C., Sinha, S.,
and Robinson, G. E. (2015) Big data: astronomical or genomical?. PLoS Biology, 13(7), e1002195.

[7] Roberts, R. J., Carneiro, M. O., and Schatz, M. C. (2013) The advantages of SMRT sequencing. Genome Biology,
14(7), 405.

[8] Jain, M., Olsen, H. E., Paten, B., and Akeson, M. (2016) The Oxford Nanopore MinION: delivery of nanopore
sequencing to the genomics community. Genome Biology, 17(1), 239.

[9] van Dijk, E. L., Jaszczyszyn, Y., Naquin, D., and Thermes, C. (2018) The third revolution in sequencing tech-
nology. Trends in Genetics, 34(9), 666–681.

[10] Needleman, S. B. and Wunsch, C. D. (1970) A general method applicable to the search for similarities in the
amino acid sequence of two proteins. Journal of Molecular Biology, 48(3), 443–453.

[11] Zielezinski, A., Vinga, S., Almeida, J., and Karlowski, W. M. (2017) Alignment-free sequence comparison:
benefits, applications, and tools. Genome Biology, 18(1), 186.

[12] Kariin, S. and Burge, C. (1995) Dinucleotide relative abundance extremes: a genomic signature. Trends in Ge-
netics, 11(7), 283–290.

[13] Leimeister, C.-A. and Morgenstern, B. (2014) Kmacs: the k-mismatch average common substring approach to
alignment-free sequence comparison. Bioinformatics, 30(14), 2000–2008.

[14] Zheng, W., Yang, L., Genco, R. J., Wactawski-Wende, J., Buck, M., and Sun, Y. (2019) SENSE: Siamese neural
network for sequence embedding and alignment-free comparison. Bioinformatics, 35(11), 1820–1828.

[15] Koide, S., Kawano, K., and Kutsuna, T. (2018) Neural edit operations for biological sequences. In Advances in
Neural Information Processing Systems pp. 4960–4970.

[16] Cai, X., Xu, T., Yi, J., Huang, J., and Rajasekaran, S. (2019) DTWNet: a dynamic time warping network. In
Advances in Neural Information Processing Systems pp. 11636–11646.

[17] Sellers, P. H. (1980) The theory and computation of evolutionary distances: pattern recognition. Journal of
Algorithms, 1(4), 359–373.

[18] Ukkonen, E. (1985) Finding approximate patterns in strings. Journal of Algorithms, 6(1), 132–137.

[19] Nair, V. and Hinton, G. E. (2010) Rectified linear units improve restricted boltzmann machines. In Proceedings
of the 27th International Conference on Machine Learning (ICML-10) pp. 807–814.

[20] Sims, G. E., Jun, S.-R., Wu, G. A., and Kim, S.-H. (2009) Alignment-free genome comparison with feature
frequency profiles (FFP) and optimal resolutions. Proceedings of the National Academy of Sciences, 106(8),
2677–2682.

16

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.05.24.113852doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.24.113852

[21] McDonald, D., Price, M. N., Goodrich, J., Nawrocki, E. P., DeSantis, T. Z., Probst, A., Andersen, G. L., Knight,
R., and Hugenholtz, P. (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolu-
tionary analyses of bacteria and archaea. The ISME Journal, 6(3), 610.

[22] Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., and Holmes, S. P. (2016) DADA2:
high-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581.

[23] Clemente, J. C., Pehrsson, E. C., Blaser, M. J., Sandhu, K., Gao, Z., Wang, B., Magris, M., Hidalgo, G., Contr-
eras, M., Noya-Alarcón, Ó., et al. (2015) The microbiome of uncontacted Amerindians. Science Advances, 1(3),
e1500183.

[24] Döring, A., Weese, D., Rausch, T., and Reinert, K. (2008) SeqAn an efficient, generic C++ library for sequence
analysis. BMC Bioinformatics, 9(1), 11.

[25] Kingma, D. P. and Ba, J. (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,.

[26] Beye, M., Fahsi, N., Raoult, D., and Fournier, P.-E. (2018) Careful use of 16S rRNA gene sequence similarity
values for the identification of Mycobacterium species. New Microbes and New Infections, 22, 24–29.

17

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.05.24.113852doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.24.113852

	Introduction
	Methods
	Alignment Score
	Alignment Distance
	Siamese Network
	Continuous Sequence Matching Function
	Gradient Computation version
	Fast Random Batch
	Related Work

	Experimental Results
	Dataset
	Experimental Setting
	Training and Testing Data
	Hyperparameter Selection

	Average Relative Error as Accuracy Measurement
	Perturbation Experiment
	Benchmark Analysis
	Estimating Model Complexity

	Conclusion

