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Abstract 

Many risky choices we make affect others in addition to ourselves, and choices made by 

others also affect us. To study the neural mechanisms underlying social responsibility, we 

used the following social decision paradigm. In each trial, participants or their game 

partner chose between a safe and a risky option in a gamble for money. If the risky 

option was chosen, the gamble was played out independently for both players, such that 

both could either win or lose the gamble. Participants reported their momentary 

happiness after experiencing the outcomes of the gambles. Responsibility influenced 

happiness: ratings were lower following negative outcomes resulting from participants’ 

rather than their partner’s choices. The findings of this first behavioural study were 

replicated in a separate participant sample in the second neuroimaging study. Insula 

activation was larger in response to negative social outcomes resulting from participants’ 

rather than their partners’ choices. A computational modelling-based analysis of these 

data revealed a cluster of voxels in left superior temporal sulcus whose activation 

fluctuated with reward prediction errors experienced by the game partner, but to a degree 

that varied depending on who made the choices leading to these prediction errors. These 

results suggest that the anterior insula and the superior temporal sulcus play 

complementary roles in the neural mechanisms of social responsibility.  
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Introduction 

Imagine that it is your turn to choose a restaurant for dining with a friend. You can 

choose between two restaurants: one that you both know well, with very predictable 

food of average quality, and a new restaurant that neither you nor your friend has eaten 

in before. You decide to try the new one. Unfortunately, both your and your friend’s dish 

turn out to be worse than the other restaurant’s dishes. How would you feel as a result of 

your choice? Would you feel different if at least one of you had enjoyed the meal? How 

would you feel if it had been your friend’s run to decide on the restaurant? Many 

decisions we take involve risks, not only for ourselves but also for other people. In the 

same way, decisions of others also affect us. This is the case in dyads as well as in large 

international political contexts, and in decisions ranging from deciding in which 

restaurant to have dinner to whether one should go to war. Surprisingly, the neural 

mechanisms underlying key aspects of making decisions in a social context are still 

unclear. Here, we aimed to study the neural mechanisms underlying responsibility in 

social decisions – i.e., decisions affecting other people as well as oneself. 

Experiencing the outcome of a risky decision is accompanied by emotions that 

themselves influence future choices (Loewenstein et al., 2001). Negative outcomes lead 

to negative emotions, for example regret following choices for which one was 

responsible, or disappointment following choices for which one was not responsible 

(Bell, 1982, 1985; Coricelli & Rustichini, 2010; Frijda et al., 1989; Gilovich & Medvec, 

1994; Giorgetta et al., 2013; Zeelenberg et al., 1998, 2000). Regret usually has a higher 

emotional impact than disappointment (Bault et al., 2016; Camille et al., 2004; Chua et al., 

2009; Mellers et al., 1999), and when combined with a feeling of agency, has been 

thought to lead to the feeling of responsibility ever since Hellenistic philosophers (Frith, 

2014). In social situations, responsibility for negative outcomes for others (interpersonal 
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harm) may even lead to additional negative emotions such as guilt, which are more likely 

to occur following interpersonal harm than harm to self only (Berndsen et al., 2004; 

Wagner et al., 2012; Zeelenberg & Breugelmans, 2008). Empathic responses to another’s 

pain increase with the feeling of responsibility and agency for the pain (Lepron, Causse & 

Farrer, ProcRoySoc 2015). In this way, the feeling of responsibility influences subsequent 

behaviour. 

What neural mechanisms are engaged when experiencing negative outcomes of 

risky choices for oneself and for others? Neuropsychological and neuroimaging data have 

implicated the orbitofrontal cortex, dorsomedial prefrontal cortex, anterior cingulate 

cortex, anterior insula and amygdala in mediating the experience of regret in single-

person decisions (Camille et al., 2004; Chua et al., 2009; Coricelli et al., 2005). One study 

reported a regret-related amygdala response that increased when responsibility was 

higher, and this effect was largest in participants in whom responsibility most increased 

regret (Nicolle et al., 2011). Choosing for others compared to choosing for self is 

associated with higher activation in social brain regions and reduced activation in reward-

related regions (Jung et al., 2013; Ogawa et al., 2018). In this study, activation associated 

with value computations was found in the amygdala for self-related decisions and in 

DMPFC for other-related decisions. In another study, VMPFC activity was modulated 

by activity in the inferior parietal lobule (IPL) when people made product purchase 

decisions for others, whereas no such effect was found when people made the same 

decisions for themselves (Janowski et al., 2013). However, the neural mechanisms 

involved in experiencing responsibility for negative social outcomes are still unclear. 

Here, we built on previous work and used a social decision-making paradigm 

combined with computational reinforcement-learning modelling to study the neural 

mechanisms underlying social responsibility. Participants chose between a risky and a 
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safe monetary option, the outcome of which affected either only themselves or 

themselves and an interaction partner (Figure 1). In a third experimental condition, their 

partner chose for both themselves and the participant. As the relationship between 

partners of social decisions influences the utility of unequal outcomes (Loewenstein, 

Thompson & Bazerman, JPSP, 1989), we induced a non-competitive and sympathetic 

social atmosphere between participants by having them perform an ice-breaker game 

before the decision experiment. This game contributed to the feeling of making decisions 

with a real human being. Participants reported their momentary subjective well-being 

every two trials. Two experiments in separate sets of subjects were performed, the first 

outside the MRI scanner, and the second inside it. 

 

Figure 1: Experimental design. In every trial, participants are presented with pairs of monetary options 

(a safe and a risky option; the risky option is a gamble between two equally probable alternatives). There 

are three conditions: in a non-social condition, the participant’s choice leads to an outcome just for 

themselves (left panel); while in the social conditions (right panel), the decision is taken by the participant 

or by their partner, and leads in both cases to outcomes affecting both players. Importantly, when the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 25, 2020. ; https://doi.org/10.1101/2020.05.25.107300doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.25.107300
http://creativecommons.org/licenses/by-nc-nd/4.0/


risky option is selected in a social condition, the gamble is played out independently for both participants, 

such that both can receive the higher or lower outcome, independently from each other (coloured boxes). 

Selecting the safe option leads to equal outcomes for both participants. 

 

Results 

Study 1: Behaviour 

Decisions 

Participants made similar decisions when deciding for self only or for both partners 

(Figure 2A). Participants’ risk attitudes were captured in the form of certainty 

equivalents, obtained by fitting exponential functions to each participant’s proportion of 

“risky” choices as a function of the difference between the expected values of the safe 

and risky option (see Methods). Individual certainty equivalents did not significantly vary 

between the self-only and self-social conditions (t(39)=0.34, p=0.74, Cohen’s d=0.05, 

paired-samples t-test; BF10=0.18). Here and elsewhere, BF10 refers to the Bayes factor 

likelihood of the data under the experimental hypothesis H1 relative to the null 

hypothesis H0, calculated using the software package JASP (https://jasp-stats.org/). 

Happiness 

Participants rated their subjective happiness after the outcome of every second trial. 

First, we evaluated only the ratings participants gave after outcomes of risky choices (see 

Figure 2B). Unsurprisingly and consistent with previous findings (Rutledge et al., 2013 

and 2016), participant reported greater average happiness after positive compared with 

negative outcomes in non-social trials (t(39)=12.0, p=1.057e-14, d = 1.9; BF10=6.532e11).  

Happiness in social conditions (self-social and partner conditions) varied 

depending on the outcome for self, the outcome for the partner and depending on who 
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decided (respective statistical results: F(1,39)=83.6, p=3.0e-11, ηp² = 0.68; F(1,39)=24.1, 

p=1.7e-5, ηp² = 0.38; F(1,39)=10.4, p=0.003, ηp² = 0.21; 3-way repeated-measures 

ANOVA with factors decider, outcome for self and outcome for partner). Furthermore, 

there were significant interactions between outcome for self and outcome for partner, 

and between decider and outcome for partner (F(1,39)=6.6, p=0.014, ηp² = 0.15 and 

F(1,39)=16.5, p=2.27e-4, ηp² = 0.30). A Bayesian repeated-measures ANOVA analysis 

revealed that the best model included the factors decider, outcome for self, outcome for 

partner, interaction between decider and outcome for partner, and interaction between 

outcome for self and for partner (BF10 > 1.7e37 compared to null model). Using post-hoc 

paired-samples t-tests, we then searched for the conditions in which decision-maker (self 

or partner) mattered and found higher happiness ratings after decisions taken by the 

partner when the outcome for the partner was negative (self-win/partner-lost: 

t(39)=3.58, p=9.53e-4, d=0.56, BF10=32; self-lost/partner-lost: t(39)=3.39, p=0.002, 

d=0.54, BF10=19), but not after positive outcomes for the partner (self-win/partner-win: 

t(39)=0.28, p=0.78, d=0.05; self-lose/partner-win: t(39)=0.38, p=0.71, d=0.06; 

BF10<0.2). Participants thus felt worse following negative outcomes for the partner if 

those outcomes were consequences of decisions taken by themselves rather than by the 

partner. 

Participants felt worse after unequal compared to equal outcomes (F(1,39)=6.6, 

p=0.014, ηp² = 0.15, 2-way repeated-measures ANOVA with factors outcome equality 

and decider; the best Bayesian ANOVA model included factors decider and equality, 

BF10=298 compared to null model). Interestingly, inequality reduced happiness only 

when participants won (t(39) > 4.2, p<0.001, d > 0.6; BF > 186); when participants lost 

following their own decision, their happiness was instead further reduced when their 

partner lost as well (t(39) = 3.2, p=0.003, d = 0.5; BF = 13.5). Thus, we only observed 

evidence of advantageous inequality aversion, not disadvantageous inequality aversion.  
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Figure 2: Behavioural results of Study 1. A. Group-aggregate of participants’ decisions for self only 

and for both game partners. B. Happiness ratings following outcomes of risky decisions. Ratings are 

reported in different colours depending on the outcome (e.g. win-lose represents outcomes in which the 

participant won and the partner lost) and reported separately for the different experimental conditions 

(self only = participants decided only for themselves, self for both = participants decided for both 

themselves and their partner, partner for both = partner decided for both the participant and themselves). 

C. Parameters of the different reinforcement-learning models. In panels B and C, dots show data of 

individual participants, bars show the mean and error bars show standard errors of the mean. 

 

Reinforcement learning model of happiness variations 

Next, we evaluated whether we could explain variations of happiness across all trials 

based on predicted and obtained monetary reward values. To this end, following a 

methodology established by Rutledge and colleagues (Rutledge et al., 2013 and 2016), we 
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built reinforcement learning models in which certain rewards (CR), the expected value 

(EV) of chosen gambles, reward prediction errors for the participant (sRPE, where s 

stands for “self”) resulting from those gambles and additional parameters were all 

modelled separately, with influences that decayed exponentially with time (see Methods 

for equations and details). As Rutledge and colleagues (2016) did, we first assessed the fit 

of a basic model (termed “Basic”) containing only the variables CR, EV and sRPE, to 

evaluate whether the variation of these fundamental reward variables explained our 

participants’ variations in subjective well-being. This model explained the data reasonably 

well (goodness-of-fit measures of all models are shown in Table 1). We then evaluated 

additional models that included experimental factors identified in our non-computational 

analyses described above. As inequality reduced happiness, we created an “Inequality” 

model that included one term modeling the difference between the outcomes for the 

participant and their partner. As we only found signs of advantageous but not 

disadvantageous inequality, we created another model with separate terms for 

advantageous and disadvantageous inequality (the “Guilt-envy” model, which best 

explained the social decision data obtained by Rutledge et al., 2016). Because negative 

outcomes for the partner also reduced happiness ratings, we created a “Partner RPE” 

model, in which a new regressor represented the reward prediction errors for the partner 

(pRPE), in addition to the regressor for the participant’s RPE (sRPE). As the outcome 

for the partner influenced happiness especially when these outcomes resulted from 

participant choices, we created a “Responsibility” model in which separate terms 

represented the partner’s reward prediction errors resulting from choices made by the 

participant (self_pRPE) and by the partner (partner_pRPE). As we expected the latter 

regressor (partner_pRPE) to have a relatively small impact on participants’ momentary 

happiness yet increase model complexity, we tested a final model, termed “Responsibility 
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Redux” and identical to the “Responsibility” model except for the omission of the 

partner_pRPE regressor. 

These models all explained variations in happiness reasonably well, but their 

explanatory power varied (Table 1): R2 and adjusted R2 differed across models (R2: 

F(1.5,59.3) = 12.71, p < 0.001, ηp² = 0.25; adjusted R2: F(1.5,58.5) = 7.03, p < 0.001, ηp² 

= 0.15; repeated-measures ANOVA with Greenhouse-Geisser correction for non-

sphericity in the data). Post-hoc tests revealed that the Responsibility model yielded 

significantly higher R2 values than the other models (all t>3.6, p<0.007; Bonferroni-

corrected t-tests) except for the Guilt-envy model (t=2.19, p=0.17), and that the adjusted 

R2 of the Partner RPE, Responsibility and Responsibility Redux models were higher than 

that of the Basic model (all t>3.6, p<0.01). Three models – Basic, Partner RPE and 

Responsibility Redux – shared the lowest BIC, and the latter two shared the lowest AIC. 

Overall, the models that included pRPE (Partner RPE, Responsibility and Responsibility 

Redux) explained the data better than those modeling inequality (higher R2 / adjusted R2 

or lower AIC / BIC; see Table 1).  

Across models, we found that weights for CR, EV, sRPE and the forgetting 

factor γ were overall positive across participants [all Z > 5.4, P < 0.0001 (Figure 2D), 

Wilkoxon sign-rank tests were used because data were not normally distributed] with 

higher sRPE than EV weights (all Z > 6.0, P < 0.001) and higher weights for sRPE than 

for pRPE (all Z > 6.0, P < 0.001). The forgetting factor γ was constant across models, 

with medians ranging from 0.39 to 0.44. In the Responsibility model, the weights for the 

self_pRPE regressor (modeling partner RPEs resulting from choices made by the 

participant) were larger than 0 (Z=3.52, p=0.0004), but the weights for the 

partner_pRPE parameter were not (Z=1.44, p=0.15); there was no difference between 

these weights (Z=0.91, p=0.37).  
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Table 1. Model comparison in Study 1 

Model N param Mean R2 Mean R2adj BIC AIC 

Basic 3 0.328 0.305 -999 -1399 

Inequality 4 0.346 0.316 -916 -1416 

Guilt-envy 5 0.354 0.316 -785 -1385 

Partner RPE 4 0.362 0.332 -999 -1499 

Responsibility 5 0.370 0.333 -866 -1466 

Responsibility Redux 4 0.361 0.331 -999 -1499 

BIC, Bayesian Information Criterion. AIC, Akaike’s Information Criterion. BIC and AIC values are 

summed across the 40 subjects. Model fits were performed with z-scored happiness ratings. All models 

contained separate terms for CR, gamble EV and sRPE, with influences that decayed exponentially over 

trials. The Inequality model included an additional parameter for the magnitude of the difference in 

outcomes between the two players. The Guilt–envy model included additional parameters for 

advantageous and disadvantageous inequality. The Responsibility model included additional parameters 

for partner RPE resulting from choices made by the participant (self_pRPE) and by the partner 

(partner_pRPE); the Responsibility Redux model was identical except for the omission of the 

partner_pRPE regressor. Best values of each variable are highlighted in bold font. 

 

Study 2: Behaviour 

We followed the same approach in the analysis of the behavioural data of Study 2 as we 

did in Study 1. 

Decisions 

Participants made similar choices when deciding just for themselves of for both partners 

(Figure 3A), and their individual certainty equivalents did not vary between these 

conditions (t(39)=-1.09, p=0.28, d=-0.17; BF10=0.297). 
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Figure 3: Behavioural results of Study 2. A. Group-aggregate of participants’ choices for self only and 

for both game partners. B. Happiness ratings following outcomes of risky choices. As in Figure 2, 

ratings are reported in different colours depending on the outcome (e.g. win-lose represents outcomes in 

which the participant won and the partner lost) and reported separately for the different experimental 

conditions (self only = participants chose only for themselves, self for both = participants chose for both 

themselves and their partner, partner for both = partner chose for both the participant and themselves). 

C. Parameters of the different reinforcement-learning models. In panels B and C, dots show data of 

individual participants, bars show the mean and error bars show standard errors of the mean. 

 

Happiness 

Happiness ratings in Study 2 were analysed as in study 1 and showed almost identical 

variations. Participants were happier following positive rather than negative outcomes in 

non-social trials (t(39)=11.6, p=3.56e-14, d = 1.8; BF
10

=2.03e11). Happiness in social 

conditions varied depending on the outcome for self, the outcome for the partner and 
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depending on who decided (F(1,39)=110.8, p=5.86e-13, ηp² = 0.74; F(1,39)=26.2, 

p=8.64e-6, ηp² = 0.40; F(1,39)=7.8, p=0.008, ηp² = 0.17). There were significant 

interactions between outcome for self and outcome for partner, and between decider and 

partner outcome (F(1,39)=24.7, p=1.40e-5, ηp² = 0.39 and F(1,39)=6.1, p=0.018, ηp² = 

0.13). The best Bayesian repeated-measures ANOVA model again included the factors 

decider, outcome for self, outcome for partner, interaction between decider and outcome 

for partner, and interaction between outcome for self and for partner (BF10 = 4.3e32 

compared to null model). After negative outcomes for the partner, happiness was higher 

if the partner rather than the participant made the choice (self-win/partner-lost: 

t(39)=2.13, p=0.04, d=0.34, BF10=8.8; self-lost/partner-lost: t(39)=3.05, p=0.004, 

d=0.48, BF10=1.3), but this was not the case after positive outcomes for the partner (self-

win/partner-win: t(39)=1.25, p=0.22, d=0.20, BF10=0.35; self-lose/partner-win: 

t(39)=1.26, p=0.22, d=0.20, BF10=0.36). Thus, participants again felt worse following 

negative outcomes for the partner if those outcomes resulted from their own rather than 

their partner’s choices. 

Unequal outcomes reduced happiness compared to equal outcomes 

(F(1,39)=24.7, p=1.40e-5, ηp² = 0.39; best Bayesian ANOVA model included factors 

decider and equality, BF10=28507 compared to null model). As in Study 1, inequality 

reduced happiness only when participants won (t(39) > 3.5, p<0.001, Cohen’s d > 0.5; 

BF > 29); when participants lost following their own choice, their happiness was 

marginally lower when their partner lost as well (t(39) = 2.0, p=0.053, Cohen’s d = 0.3; 

BF = 1.02). Thus, we only observed evidence of advantageous inequality aversion, not 

disadvantageous inequality aversion, just as we observed in Study 1. 

 

Reinforcement learning model of happiness variations 
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We fitted the same reinforcement learning models as in Study 1 to the variation of 

happiness ratings across trials. All models explained variations in happiness reasonably 

well, and their explanatory power varied (see Table 2). R2 and adjusted R2 differed across 

models (R2: F(1.4,53.3) = 16.1, p < 0.001, ηp² = 0.29; adjusted R2: F(1.4,53.8) = 9.43, p < 

0.001, ηp² = 0.19). Post-hoc tests revealed that the Responsibility model yielded 

significantly higher R2 values than all the other models (all t>2.9, p<0.034), and that the 

adjusted R2 of the Partner RPE, Responsibility and Responsibility Redux models were 

higher than that of the Basic model (t>3.7, p<0.01). The Responsibility Redux model 

had the lowest BIC and AIC. Overall, the Responsibility and Responsibility Redux 

models explained the data best (higher R2 / adjusted R2 or lower AIC / BIC; see Table 

2). While these differences highlight the cost of additional parameters for the AIC and 

BIC measures, the results overall demonstrate the impact of responsibility on 

participants’ variations in momentary happiness: taking into account the identity of the 

decision-maker when modelling outcomes for the partner explains our data best. 

Weights for CR, EV, sRPE and the forgetting factor γ were on average positive 

[all Z > 4.94, p < 0.0001 (Figure 3D), Wilkoxon sign-rank tests were used because data 

were not normally distributed] with EV weights lower than sRPE weights [all Z > 3.7, p 

< 0.003]. The forgetting factor γ was constant across models, ranging from 0.42 to 0.46. 

Parameters for the self_pRPE regressor were larger than 0 (Z=3.64, p=0.0003), 

parameters for the partner_pRPE regressor were not (Z=0.85, p=0.40), and parameter 

values for the self_pRPE regressor were not systematically higher than those for the 

partner_pRPE parameter (Z=1.58, p=0.11). 

 

Table 2. Model comparison for Study 2 

Model N param Mean R2 Mean R2adj BIC AIC 
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Basic 3 0.371 0.338 -617 -952 

Inequality 4 0.394 0.350 -563 -981 

Guilt-envy 5 0.405 0.350 -443 -944 

Partner RPE 4 0.415 0.372 -629 -1047 

Responsibility 5 0.435 0.382 -563 -1065 

Responsibility Redux 4 0.422 0.380 -664 -1082 

BIC and AIC values are summed across the 40 subjects. Methods and abbreviations are the same as in 

Table 1. The Responsibility model had the lowest AIC, highest R2 and highest adjusted R2 of all 

models, suggesting that it fitted the data best. Best values of each variable are highlighted in bold font. 

 

In sum, in two studies, we found that participants felt worse following negative 

outcomes for the partner if those outcomes resulted their own rather their partner’s 

choices. This influence of responsibility was confirmed when modelling the fluctuations 

in happiness using reinforcement learning models. On the basis of these findings, we 

investigated the neural correlates of social responsibility. 

 

BOLD signal 

To uncover the neural mechanisms of social responsibility, we investigated brain regions 

engaged during decision-making and at the time of receiving the outcomes of the choice. 

Subsequently, we used the “Responsibility” computational model to identify brain 

regions differentiating between partner reward prediction errors resulting from 

participant versus partner choices. 

 

Brain regions engaged during decision-making 

Bilateral ventral striatum was more active when risky rather than safe options were 

chosen (Right: x = 10, y = 12, z = -2, Z score = 4.56; Left: x = -12, y = 10, z = -8, Z 
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score = 4.37; p<0.05 corrected for multiple comparisons at the cluster level, Figure 4A). 

No brain regions showed significant activation in the reverse contrast. Clusters of voxels 

more active when the partner rather than the participant chose for both players were 

identified in the superior temporal sulcus, lateral and medial prefrontal as well as 

orbitofrontal cortex (Figure 4B, cold colours). Clusters of voxels more active when the 

participant rather than the partner chose for both players were identified in bilateral 

lingual gyrus, cuneus, caudate, superior temporal gyrus and prefrontal cortex (Figure 4B, 

warm colours). 

 

Figure 4: BOLD response during decision-making. A. Regions showing a greater response when 

participants chose the risky rather than the safe option, irrespective of social / non-social conditions. B. 

Regions showing a greater response when participants or their partner chose (social conditions only). 

Colourbar in B shows T values. Results shown survive thresholding at p<0.05 corrected for multiple 

comparisons at the cluster level, based on a voxelwise uncorrected threshold of p<0.001. 

 

Brain regions engaged during receipt of outcomes 

Cluster of voxels more active during either participant’s receipt of the outcomes of risky 

vs. safe choices were identified in the medial prefrontal cortex, bilateral anterior insula, 

bilateral dorsolateral prefrontal cortex, bilateral intraparietal sulcus region, right superior 

temporal sulcus region, and bilateral ventral striatum (Figure 5A). No significant results 
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were found in the opposite contrast. For a crucial test, we probed these clusters to 

identify those differentiating between negative and positive outcomes resulting from 

risky choices (i.e., prediction errors) that were also sensitive to the nature of the decision-

maker. One region showed such a response: the left anterior insula (interaction between 

sign of the prediction error vs. decision-maker: F(1,39) = 4.98, p = 0.03; Figure 5B). This 

region was more active when negative prediction errors resulted from participant rather 

than partner choices. This difference was not found with positive prediction errors. 

 

Figure 5: BOLD response during receipt of the outcome of choices. A. Brain regions more active during 

receipt of the outcomes of risky choices than safe choices. B. Activation in the left anterior insula (circled 

in green in A) showed a larger response to negative outcomes of risky decisions (=negative prediction 

errors) taken by the participant rather than by their partner, and no such difference was observed for 

positive prediction errors. Results shown survive thresholding at p<0.05 corrected for multiple 

comparisons at the cluster level, based on a voxelwise uncorrected threshold of p<0.001. 

 

Neural correlates of responsibility revealed by reinforcement learning model  

Finally, within the brain regions sensitive to outcomes of risky choices, we searched for 

brain regions whose activation could be explained by BOLD responses predicted from 
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the fitted “Responsibility” reinforcement learning model, which we identified as the best 

model to explain the variations in momentary happiness during this experiment (see 

above). Many regions showed responses reflecting the prediction of one or more of these 

predictors (certain reward, expected value, participant reward prediction error, partner 

reward prediction error resulting from participant decisions, and partner reward 

prediction error resulting from partner decisions; Figure 6A). As a crucial test, we 

searched for regions showing a higher response to partner reward prediction errors 

resulting from participant rather than partner choices, and found one cluster in the left 

superior temporal sulcus (MNI: -52, -32, 0; Z = 4.6; Figure 6B). 
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Figure 6: Brain regions sensitive to outcomes of risky choices whose response could be predicted based on 

the fitted reinforcement learning model that best explained the variations in momentary happiness 

(“Responsibility” model). A. Brain regions responding to one or more of the 5 computational regressors 

tested (Effects of interest; F test). B. One cluster in the left superior temporal sulcus region showed a 

higher response to partner reward prediction errors resulting from participant rather than partner choices. 

The response to each of the 5 regressors in this cluster is shown on the right (dots = individual participant 

data; bars = mean; error bars = S.E.M.). All activations shown survive thresholding at p<0.05 

corrected for multiple comparisons at the cluster level, based on a voxelwise uncorrected threshold of 

p<0.001. Dots show data of individual participants, bars show the mean and error bars show standard 

errors of the mean. 

 

Discussion 

This study reports an experimental measurement of social responsibility and its neural 

correlates. Specifically, we found that being responsible for a negative outcome affecting 

an interaction partner makes one feel worse than witnessing a negative outcome resulting 

from the partner’s choice. The left anterior insula reflected this effect: Neural activation 

in this region was higher in response to negative partner outcomes resulting from 

participant choices rather than from partner choices. A computational model could 

explain trial-by-trial variations in momentary happiness well; the model best explaining 

the data differentiated between partner reward prediction errors resulting from 

participant and partner choices, confirming the importance of responsibility for the 

emotional consequences of risky social choices. A cluster of voxels in the left superior 

temporal sulcus region showed activation differentiating between the BOLD responses 

predicted from these computational regressors. Our findings provide an insight into the 
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neural mechanisms underlying responsibility for the outcomes of social decisions under 

risk. 

Our study builds on previous work utilizing individual subjective reports of 

momentary well-being during decision-making tasks to quantify social phenomena. Our 

design is a modification of a study by Rutledge and colleagues that had revealed the 

impact of outcome inequality on momentary well-being during risky decision-making 

(Rutledge et al., 2016). The approach of monitoring emotional responses to experiment 

events allows to assess the emotional impact of responsibility for the game outcomes 

separately from economic strategies involved in decision-making. This is an advantage 

when one’s aim is to identify neural mechanisms underlying social emotions 

independently from decision-making strategies, which is the case in the present study.  

Two effects predicted from previous studies were not found in the present study. 

First, participants made similarly risky choices when deciding for themselves or for both 

themselves and an interaction partner. A recent meta-analysis comparing decisions for 

self and for another person concluded that overall, decisions for someone else were 

somewhat riskier than decisions for oneself, although effects varied strongly across 

studies (Polman & Wu, 2019). In our study, decisions never only affected the partner, 

which most likely “watered down” any differences in risk attitude in decisions for oneself 

vs. for someone else. In any case, the fact that participants made similarly risky decisions 

for themselves or for both does not impact the findings of our study. The second effect 

we did not find in the present study is a sign of disadvantageous inequality – we only 

found evidence of advantageous inequality. While asymmetrical outcomes in a social 

context are related to inequality and generally disliked (Loewenstein et al., 1989), the 

relation between the interacting people plays an important role in evoking those 

emotions. Here, we purposefully created a non-competitive social atmosphere in order to 
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maximize the emotional impact of responsibility for interpersonal outcomes. Our 

participants might have been biased towards being glad for the other's sake rather than 

begrudging their luck. Our findings are compatible with reports indicating that reduced 

anonymity can enhance generosity (Dufwenberg & Muren, 2006) and that affective 

empathy supports altruistic sharing (Edele et al., 2013). Because we have not tested our 

paradigm in a competitive social contest, we cannot ascertain whether our non-

competitive context was the cause for the absence of disadvantageous inequality, but we 

consider this explanation likely. In any case, we do not believe that our findings are 

invalidated by the absence of signs of disadvantageous inequality. 

We have not asked participants to specifically report the emotions they 

experienced during the experiment. As a result, we cannot ascertain whether people 

experienced guilt, regret, disappointment or another specific emotion during the 

experiment. However, the precise naming of emotions was not the aim of our study, nor 

was it to induce guilt or regret. Indeed, previous work on social emotions evoked by 

decisions under risk recommend to “study the experiential phenomenology of emotions 

instead of mere emotion labels” (Zeelenberg & Breugelmans, 2008). Our aim was to 

assess the impact of social responsibility, which we very simply implemented by asking 

either the participant or their interaction partner to make decisions affecting both of 

them. We consider the fact that the identity of the decision-maker had an impact on how 

negative outcomes for the partner affected momentary well-being as sufficient for our 

aim. 

The left anterior insula and the left superior temporal sulcus (STS) region were 

found to have BOLD responses to negative outcomes for the partner that were larger 

when those outcomes resulted from participant rather partner choices. Those regions 

may thus be part of the neural mechanisms underlying the feeling of, or associated with 
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the negative emotions resulting from, responsibility for the social consequences of one’s 

actions. We identified those regions using different regression models, which assessed 

somewhat different effects. The cluster in STS, a structure of which a part is thought to 

serve as a social brain network hub (Dasgupta et al., 2017; Deen et al., 2015; Lee & 

McCarthy, 2014), showed activation varying with the value of the partner outcome. 

Negative parameter estimates for the regressor coding those variations resulting from 

partner choices (Figure 6B) indicate that STS activation decreased with positive partner 

outcomes and increased with negative partner outcomes. This activation profile is 

compatible with empathic concern for the partner, which is itself congruent with 

previous findings linking the STS with cognitive perspective taking during charitable 

giving (Tusche et al., 2016) or representation of other people’s interests during altruistic 

choice (Hutcherson et al., 2015). These findings concur with other data linking STS to 

mentalizing computations during strategic social choice (Carter et al., 2012; Hampton et 

al., 2008; Hill et al., 2017).  

In contrast to the STS, anterior insula (AI) activation differentiated between 

deciders only for negative outcomes for the partner, with the highest response observed 

when such outcomes resulted from participant’s choices. This is compatible with 

findings associating AI with empathy for negative emotions such as disgust (Wicker et 

al., 2003) or pain (Gu et al., 2012; Lamm et al., 2011), or with affective empathy during 

charitable giving (Tusche et al., 2016). Indeed, a previous study found left AI activation 

that increased with empathic responses to the suffering of others (Bird et al., 2010). AI is 

associated with emotion awareness (Bird et al., 2010; Gu et al., 2013), and AI lesions 

combined with poor emotion awareness (alexithymia) are associated with reduced 

altruistic attitudes (Chau et al., 2018). The involvement of AI in social responsibility may 

be related to affective empathy for the other person’s misfortune resulting from one’s 

own choices. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 25, 2020. ; https://doi.org/10.1101/2020.05.25.107300doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.25.107300
http://creativecommons.org/licenses/by-nc-nd/4.0/


A previous study of responsibility in social decisions relied on the influence of 

responsibility on the feeling of regret (Nicolle et al., 2011). In this study, a participant and 

a variable number of other deciders chose between two lotteries. Consistent with 

previous work, witnessing that the outcome of a non-selected lottery was larger than the 

outcome of the selected lottery lead to the experience of regret (Camille et al., 2004). 

Regret increased with the degree of objective and subjective responsibility, as did regret-

related amygdala responses to outcomes associated with regret (Nicolle et al., 2011). In 

contrast, orbitofrontal and cingulate cortex showed enhanced responses to regret-related 

outcomes when participants were not objectively responsible for their actions. The 

different neural correlates identified in this previous study and in ours may related to the 

dependent measure that was used to assess the impact of responsibility – our present 

approach searched for effects of responsibility on variations of momentary wellbeing. 

Our results presented here fit into the current successful trend of using computational 

models to investigate social cognition (Charpentier & O’Doherty, 2018; Hackel & 

Amodio, 2018; Konovalov et al., 2018). 

 

Methods 

Ethics  

The studies fulfilled all relevant ethical regulations and were approved by the local ethics 

committee of the Medical Faculty of the University of Bonn, Germany. All subjects gave 

written informed consent and the studies were conducted in accordance with the latest 

revision of the Declaration of Helsinki. Subjects were remunerated for their time (10 

Euros/hour) and received game earnings (0-10 Euros). 

Participants 
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40 healthy participants (14 male, mean age 26.1, range 22 to 31) participated in Study 1 

(behaviour only study), and 44 healthy participants (19 male, mean (SD) age = 30.6 (6.5), 

range 23 to 50) participated in Study 2 (fMRI study). Participants were recruited from the 

local population through advertisements on online blackboards at the University of Bonn 

and on local community websites, and through flyers posted in libraries, university 

cafeterias and sports facilities. The number of participants recruited in Study 2 

corresponds to the sample size estimated using G*Power 3.1 software (Faul et al., 2007) 

for a two-way t-test assessing the difference between two means (matched pairs) based 

on the results of Study 1 (Cohen’s d = 0.56), with alpha error = 0.05 and power (1-beta) 

= 0.95, the required sample size was 44. The data from 4 participants in Study 2 were 

excluded from the fMRI data analysis because they moved their head too much for 

reliable motion correction (>3mm or >3º). 

Experimental procedure 

The design of the experiment was inspired by previous studies investigating how risky 

choices and their consequences influence momentary happiness (Rutledge et al., 2014, 

2016). It was implemented in MATLAB (Version R2016b; RRID:SCR_001622; The 

MathWorks, Inc., Natick, MA) using the Psychtoolbox extensions (RRID:SCR_002881; 

http://psychtoolbox.org).  

Confederate partner 

Participants played with a friendly same-sex confederate partner (pairs of participants in 

Study 1, authors TW and MG in study 2), whom they met before the scan for an 

introduction session. In this session lasting about 15 minutes, participants played an ice 

breaker game with their experiment partner, in which both participant and partner took 

turns in drawing one half of a simple picture while being blindfolded and following 

verbal instructions given by their game partner. Encouragements and other positive 
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feedback were given by the confederate throughout the task. This icebreaker game led to 

an agreeable social atmosphere and positive, non-competitive, sympathetic attitude 

between the participants and the confederate.  

Decision task 

Following the icebreaker game, participants in Study 1 performed 3 sessions of a task in 

which they decided on each trial between a safe and a risky monetary option (Fig. 1A 

and B). There were 3 kinds of trials: decisions by the participant only for themselves, 

decisions by the participant for themselves and the partner, and decisions by the partner 

for both themselves and the participant. Importantly, when the risky option in a social 

condition was selected, the gamble was played out independently for the participant and 

the partner, such that both could receive the higher or lower outcome, independently 

from each other. In order to ascertain constant decisions by the partner, the partner’s 

decisions were simulated using a simple algorithm that always selected the option with 

the highest expected value. The amounts earned per task were determined as follows. 

There were with 20 mixed trials, 20 gain trials, and 20 loss trials per session. In the mixed 

trials, subjects chose between a safe option of 0 € or a gamble (=risky option) consisting 

of a gain and a loss amount. Gain amounts were selected randomly out of the following: 

15, 25, 40, 55 or 75 cents. Loss options were determined by multiplying the gain amount 

with a randomly selected multiplier amount out of the following: -0.2, -0.34, -0.5, -0.64, -

0.77, -0.89, -1, -1.1, -1.35, -2. In gain trials, participants chose between a safe gain (10, 15, 

20, 25, or 30 cents) or a gamble with 0 € and a higher gain amount, calculated by 

multiplying the safe amount with one of a set of multiplier values (1.68, 1.82, 2, 2.22, 

2.48, 2.8, 3.16, 3.6, 4.2, 5). In loss trials, participants chose between a certain loss or a 

gamble with 0 € or a larger loss. Certain loss amounts were -10, -15, -20, -25 or -30 cents, 

and the larger loss amount of the risky option was a multiple of the certain loss amount 
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calculated using one the multipliers above (1.68, 1.82, 2, 2.22, 2.48, 2.8, 3.16, 3.6, 4.2, 5). 

The position of the safe and risky option on the screen (left and right) was determined 

randomly on every trial, and the different trial types (participant chooses for both, 

partner chooses for both, participant chooses for self; gain, loss and mixed trials) were 

presented in randomized order, with the constraint that there could not be more than 2 

conditions of the same kind in a row. Subjects had unlimited time to choose between the 

safe or risky option. Decisions were displayed for 2s and gamble outcomes for 2.5s. 

Trials were separated in time by an inter-stimulus interval (ISI) of 1 to 2s drawn 

randomly from a gamma distribution. 

Momentary happiness 

Every two trials, one ISI after the outcome of the previous trial, participants were asked 

“How happy are you right now?”. They could respond by selecting a value on a scale 

from “very happy” (right) to “very unhappy” (left) by moving a cursor with a button 

press. The start position of the cursor was the midpoint of the scale, and the scale had 

100 selectable options. For analysis, happiness ratings were Z-scored to cancel out 

effects of different rating variabilities across participants. 

Study 2 (fMRI study) 

In Study 2, participants performed 2 sessions of the experiment described above inside 

the fMRI scanner. All parameters were identical except that ISIs varied from 3 to 11s 

(drawn randomly from a gamma distribution). 

Computational modelling 

1) Decisions: Certainty equivalents 

The certainty equivalents of the risky options in the self-only and self-social conditions 

were calculated by fitting an exponential function to each participant’s proportions of 
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risky choices. This function represents the assumption that the likelihood of choosing 

the risky option on a given trial is related to the difference between the expected value of 

the risky option (EV
R
) and the safe option (EV

S
) and is described by the following 

relationship:  

���� � �1 �  	�������������� 

(equation 1) 

where P(R) is the probability of choosing the risky option, EV
R
 and EV

S
 are the expected 

values of the risky and the safe options (respectively), and 
 is indicative of the steepness 

of the decision curve, individually fitted to each participant’s data using the Levenberg-

Marquardt algorithm for solving non-linear least squares problems, implemented in 

Matlab’s lsqcurvefit function and a range of � = [0, 30]. After fitting, certainty 

equivalents were defined as the EV
R
-EV

S
 difference that led to 50% risky choices, and 

certainty equivalents as well as � values were compared between self-only and self-social 

conditions using paired t-tests. 

2) Happiness: Reinforcement learning model 

We then modelled the variations in momentary well-being (happiness ratings) using a 

computational model that has been shown to explain happiness variations in a similar 

task as a function of the combined influence of recent reward expectations, prediction 

errors resulting from those expectations, and differences in rewards obtained by the 

game partners (Rutledge et al., 2014, 2016). We ran 6 models: i) a “Basic” model (the 

winning model in Rutledge et al. 2014, in which there was no social condition; equation 

2) with chosen certain rewards (CR), expected value of chosen gambles (EV), 

participant’s reward prediction errors (sRPE, where s stands for “self”) and a forgetting 

factor that makes events in more recent trials more influential than those in earlier trials 

(gamma), with without reward expectations and reward differences between partners; ii) 
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an “Inequality” model, in which one regressor modelled both disadvantageous and 

advantageous inequality; iii) a “Guilt-envy” model, the winning model in the social task 

in Rutledge et al., 2016, which contains separate additional regressors for 

disadvantageous and advantageous inequality; iv) a “Partner RPE” model in which a 

regressor modelled the interaction partner’s reward prediction errors; v) a 

“Responsibility” model in which reward prediction errors of the partner resulting from 

participant and partner choices were modelled separately; and vi) a “Responsibility 

redux” model identical to the precedent except for the absence of the regressor 

modelling reward prediction errors of the partner resulting from partner choices. The 

Basic, Inequality and Guilt-envy models are identical to those used in Rutledge et al., 

2016.  

The equation for the Basic model was: 

����	����� � �� � ���	��	 �
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(equation 2) 

where t is trial number, � is a forgetting factor (0 ≤ � ≤ 1) that weighs events in more 

recent trials more heavily than events in earlier trials (exponential decay over time), and 

weights w
1
 to w

3
 capture the influence of the following different event types: CRj is the 

certain reward received when the safe option was chosen instead of the gamble on trial j, 

EVj is the average reward for the gamble if chosen on trial j and sRPEj is the participant’s 

reward prediction error on trial j obtained as a result of choosing the gamble. Terms for 

unchosen options were set to zero. No constant term was used as ratings were z-scored, 

resulting in a mean of the data of 0.  

On the basis of this model, we built 4 other models by adding terms representing 

additional influences on variations in participant happiness. Two models included 
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regressors accounting for inequality, and two models included regressors accounting for 

partner reward prediction errors. The equation for the first of the inequality models, the 

“Inequality” model, was as follows: 
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(equation 3) 

Here, Sj and Pj are the rewards received by the participant and by their experiment 

partner, respectively, and thus w
4
 relates to the influence of inequality of any kind on the 

variation in happiness. The equation of the “Guilt-envy” model was as follows: 
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(equation 4) 

Here, w
4
 relates to advantageous inequality and w

5
 relates to disadvantageous inequality, 

modelled separately. The next two models included terms relating to the partner’s RPE. 

The equation for the “Partner RPE” model was: 
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(equation 5) 
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Here, w
4
 represents the influence of the partner’s RPE (pRPE) on the participants’ 

variation in happiness. The next two models included terms relating to the partner’s 

RPE. The equation for the “Responsibility” model was: 
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(equation 6) 

In this model, the influence of the partner’s RPE resulting from participant choices 

(self_pRPE) is modelled separately from those resulting from the partner’s RPE resulting 

from partner choices (partner_pRPE). The equation for the last model, “Responsibility 

redux”, was: 
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(equation 7) 

 

Statistics 

Statistics on the behavioural data and neural activation data (see below) were performed 

using JASP software (JASP Version 0.9.2; RRID:SCR_015823; JASP Team 2018; jasp-

stats.org). Whole-brain activation statistics were performed with SPM12 software 

(RRID:SCR_007037; Wellcome Trust Centre for Neuroimaging, London, UK; 

http://www.fil.ion.ucl.ac. uk/spm) running in MATLAB with corrections for multiple 
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comparisons (for details, see ‘fMRI data analysis’ below). All statistical tests were two-

tailed. Bayes factors were calculated using default priors and express the probability of 

the data given H1 relative to H0 (BF10, values larger than one are in favour of H1). 

Effect sizes were calculated using standard approaches implemented in JASP software. 

 

fMRI data acquisition and preprocessing 

Imaging data were collected on a 3T Siemens TRIO MRI system (Siemens AG, 

Erlangen, Germany) with a Siemens 32-channel head coil. Functional data were acquired 

using a T2* echo-planar imaging (EPI) BOLD sequence, with a repetition time (TR) of 

2500 ms, an echo time (TE) of 30 ms, 37 slices with voxel sizes of 2 x 2 x 3 mm, a flip 

angle of 90 �, a field of view of 192 mm and PAT two acceleration. To exclude subjects 

with apparent brain pathologies and facilitate normalisation of the functional data, a 

high-resolution T1-weighted structural image was acquired, with a TR of 1660 ms, a TE 

of 2540 ms, 208 slices with voxel sizes of 0.8 x 0.8 x 0.8 mm and a field of view of 256 

mm. Data were then preprocessed and analysed using standard procedures in SPM12. 

The first five volumes of each functional time series were discarded to allow for T1 

signal equilibration. The structural image of each participant was coregistered with the 

mean functional image of that participant. Functional images were corrected for head 

movement between scans by a 6-parameter affine realignment to the first image of the 

time-series and then re-realigned to the mean of all images. The structural scan of each 

participant was spatially normalised to the current Montreal Neurological Institute 

template (MNI305) by segmentation and non-linear warping to reference tissue 

probability maps in MNI space, and the resulting normalisation parameters were applied 

to all functional images which were then resampled at 2 x 2 x 2 mm voxel size, then 
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smoothed using an 8 mm full width at half maximum Gaussian kernel. Time series were 

de-trended by the application of a high-pass filter (cut-off period, 128 s).  

 

fMRI data analysis 

Functional data were analysed using a two-stage approach based on the general linear 

model (GLM) implemented in SPM12: individual participants’ data were modelled with 

fixed effects models, and their summary data were entered in a random effects model for 

group statistics and inferences at the population level. The fixed effects models 

implemented a mass univariate analysis applied to the preprocessed data. The first model 

included the following event types for each session: certain reward (CR, relevant when a 

safe option was chosen), expected value (EV, relevant when a risky decision was chosen) 

and prediction error for the participant (sRPE, determined at the outcome of a risky 

decision), all modelled separately for social trials with participant decisions, social trials 

with partner decisions, and non-social trials; then, another set of event types coding the 

difference between outcome for self and partner, modelled separately for social trials 

with participant decisions and social trials with partner decisions. All event types were 

modelled as stick functions at the time of occurrence and convolved by SPM with its 

canonical hemodynamic function, with monetary values serving as parametric 

modulators. The second model was designed to identify brain regions whose activation 

reflected the variables of the computational model: receipt of certain rewards, expected 

value of the chosen option, participant’s reward prediction error (sRPE), partner RPE 

resulting from decisions made by the participant (self_pRPE) and partner RPE resulting 

from decisions made by the partner (partner_pRPE). Those regressors were applied as 

follows to each experimental session of each participant: 1) fitting of the model to the 

momentary happiness data; 2) creation of a series of stick functions representing the time 
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of occurrence of the modelled events during the scan, with stick magnitude determined 

by the fitted value calculated by the model; 3) convolution of the series of stick functions 

with the canonical BOLD function (as implemented in SPM). The 5 computational 

regressors were entered as covariates into each participant’s model. All models contained 

six motion-correction parameters included as regressors of no-interest to account for 

motion-related artifacts. Regression coefficients (parameter estimates) were estimated for 

each regressor in each voxel of each participant’s brain. Linear contrasts were applied to 

the individual parameter estimates of the response to the experimental conditions, 

resulting in contrast images. These were subjected to a group-wise random effects 

ANOVA in order to identify brain regions showing a greater response when participants 

chose the risky rather than the safe option, regions showing different responses 

depending on who took the decision, regions more active when participants received the 

outcome of risky rather than safe decisions, and regions with BOLD signal reflecting 

variations predicted from the computational model. The results from the computational 

model were constrained to regions that showed a stronger response during risky than 

safe outcomes in the non-computational model, thresholded at p=0.001 uncorrected, 

using the inclusive mask option in SPM. All clusters shown survive a significance 

threshold of p<0.05 with family-wise error correction for multiple comparisons (FWE) 

across the whole brain, based on an uncorrected voxel-wise threshold of p<0.001.  
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