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Abstract 

Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest cancers.  Dissecting the tumor 

cell proteome, from that of the non-tumor cells in the PDAC tumor bulk, is critical for 

tumorigenesis studies, biomarker discovery, and development of therapeutics. However, 

investigating the tumor cell proteome has proven evasive due to the tumor’s extremely complex 

cellular composition. To circumvent this technical barrier, we have combined bioorthogonal non-

canonical amino acid tagging (BONCAT) and data-independent acquisition mass spectrometry 

(DIA-MS) in an orthotopic PDAC model to specifically identify the tumor cell proteome in vivo.  

Utilizing the tumor cell-specific expression of a mutant tRNA synthetase transgene, this 

approach provides tumor cells with the exclusive ability to incorporate an azide-bearing 

methionine analog into newly synthesized proteins. The azide-tagged tumor cell proteome is 

subsequently enriched and purified via a bioorthogonal reaction, and then identified and 

quantified using DIA-MS.  Applying this workflow to the orthotopic PDAC model, we have 

identified thousands of proteins expressed by the tumor cells.  Furthermore, by comparing the 

tumor cell and tumor bulk proteomes, we showed that the approach can distinctly differentiate 

proteins produced by tumor-cells from non-tumor cells within the tumor microenvironment. Our 

study, for the first time, reveals the tumor cell proteome of pancreatic cancer under physiological 

conditions, providing broad applications for tumorigenesis, therapeutics, and biomarker studies 

in various human cancers. 
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Introduction 

Cancer is not only a mass of proliferating tumors cells, but also consists of a variety of non-

tumor cells, secreted factors, and the extracellular matrix, which are collectively known as the 

tumor microenvironment (TME). The interaction between tumor cells and the surrounding TME 

has profound impacts on all stages of tumor development. Human pancreatic ductal 

adenocarcinoma (PDAC), in particular, has a highly complex TME, imparted by a dense 

desmoplastic stroma and a host of stromal fibroblasts, endothelial, inflammatory, and immune 

cells. The stromal components of human PDAC may account for up to 80% of the total tumor 

volume with tumor cells constituting a minor population.1-3  Dissecting proteins produced by the 

PDAC tumor cells from those of non-tumor cells in TME is critical for tumorigenesis and 

therapeutic studies. However, the heterogeneous and complex cellular composition of the PDAC 

tumor mass, has thus far, precluded precise isolation and identification of the PDAC tumor cell 

proteome in vivo.  

 

Direct investigation of the PDAC tumor cell proteome requires selective purification of proteins 

from the tumor cells and not the non-tumor cells within the tumor bulk. Several recent studies 

have focused on cell-selective metabolic labeling of the proteomes4. These approaches include 

cell-type-specific labeling using amino acid precursors (CTAP),5 bioorthogonal non-canonical 

amino acid tagging (BONCAT),6 and stochastic orthogonal recording of translation (SORT)7. 

BONCAT has been shown to label cell-selective proteomes in the fruit fly,8 as well as mouse 

brain and muscle.9-11  BONCAT works through bioorthogonal chemical reactions that do not 

exist in nature, and thus will not cross-react with any physiological processes in the cells.12,13 

This technique relies on bioorthogonal incorporation of azide-bearing methionine analogs, such 
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as azidonorleucine (ANL) and azidohomoalanine (AHA), into newly synthesized 

polypeptides. Due to the small size of the azide moiety, ANL or AHA incorporation has no 

apparent effect on protein function.9-11 During protein translation, ANL is preferentially 

recognized and charged onto tRNAMet by a mutant methionyl-tRNA synthetase (MetRSL274G), 

and is subsequently incorporated in the elongating polypeptide chains14 (Fig 1A-B). ANL-

tagged proteins may be selectively conjugated and enriched through azide-

alkyne cycloaddition.13 Further identification of the proteome is achieved through mass 

spectrometric (MS) analysis of the ANL-tagged proteins (Fig 1C). Incorporation of the azide-

bearing amino acids is unbiased, non-toxic, biocompatible, and does not affect protein 

stability.6   

 

The PDAC bulk tumor is composed of tumor cells and many types of non-tumor cells.  The 

ectopic expression of MetRSL274G transgene in tumor cells but not the non-tumor cells in the 

tumor bulk, enables the exclusive tagging of the tumor cell proteome using ANL. Notably, the 

absence of the MetRSL274G transgene in various non-tumor cells in the TME precludes ANL 

incorporation into their proteomes. Following ANL labeling, the tumor cell proteome is 

enriched and purified for MS analysis. Thus, applying BONCAT to the animal model of 

PDAC facilitates the identification of tumor cell proteome in a physiological context. 

 

Data-independent acquisition mass spectrometry (DIA-MS) is a highly reproducible state-of-

the-art approach for quantitative proteomic analysis.15-19 Traditionally, data-dependent 

acquisition mass spectrometry (DDA-MS) has been used in a variety of label-free and label-

based methods to measure quantitative changes in global protein levels in biological samples. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2020. ; https://doi.org/10.1101/2020.05.25.113670doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.25.113670
http://creativecommons.org/licenses/by-nc-nd/4.0/


However, the stochastic nature of DDA bears a bias toward higher abundance peptides. 

Undersampling of medium and low abundance peptides causes inconsistencies in detection of 

peptides and hampers reproducibility among replicates. In the DIA-MS approach, all precursors 

are fragmented to yield tandem-MS data, providing sequence information from virtually all 

peptides in a sample with minimal loss of information. Due to its high accuracy and 

reproducibility, DIA-MS is a powerful method for comprehensive proteomic studies of complex 

samples, including tumor specimens.20-22 

 

Here we have combined BONCAT bioorthogonal chemistry and DIA-MS proteomics to 

specifically investigate the tumor cell proteome in an orthotopic transplantation model of PDAC.  

We have identified approximately 3,000 proteins expressed in PDAC tumor cells, many of which 

are predominantly, if not exclusively, expressed in the tumor cells. Thus, we have established a 

robust technical platform for in vivo identification of the proteome of the tumor cells 

embedded within the bulk tumor, with broad applications in the studies of tumorigenesis, 

cancer therapeutics, and cancer detection. 
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Results 

Construction and validation of PDAC-BONCAT cells 

The mutant murine methionyl-tRNA synthetase, MetRSL274G, preferentially charges 

noncanonical amino acid azidonorleucine (ANL) to the elongator tRNAMet, which is further 

incorporated into newly synthesized peptides. ANL is utilized by MetRSL274G and not by the 

wild-type translational machinery23. In cells expressing MetRSL274G, the polypeptide 

incorporation of ANL containing the reactive azide moiety enables selective conjugation to 

dyes and functionalized beads for visualization and enrichment.   

 

To label the proteome of PDAC tumor cells, MetRSL274G mutant transgene was cloned into a 

lentiviral vector and delivered to a murine pancreatic cancer cell line via lentiviral infection. 

Single cell clones were derived and the expression of FLAG-tagged MetRSL274G was 

confirmed by Western blot analysis (Fig 2A).  ANL incorporation by MetRSL274G into the 

tumor cell proteome was visualized using the azide-reactive red-fluorescent tetramethyl 

rhodamine dibenzocyclooctyne (TAMRA-DBCO) alkyne probe.  First, metabolic labeling was 

achieved by growing the tumor cells expressing MetRSL274G in media containing ANL (2μM) 

or control media for five hours. Cell lysates were separated by sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE). Next, to perform in-gel fluorescence, 

TAMRA was reacted to the ANL azide moiety in the proteins via a copper-free click reaction. 

Direct in-gel fluorescence detected the newly synthesized proteins labeled by ANL 

incorporation (Fig 2B). The same SDS-PAGE gel was stained with Coomassie blue to 

visualize the total protein load and size distribution.  Highly specific signals were consistently 

detected in cells labeled with ANL, but not methionine (Met) (Fig 2B-C). Notably, ANL 
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incorporation was evenly distributed across the proteome as judged by the similarity of the 

band patterns between TAMRA and Coomassie blue staining of the ANL-labeled samples 

(Fig 2B-C). Thus, with the cell-specific expression of the MetRSL274G transgene, the PDAC-

BONCAT system allows for effective and unbiased incorporation of ANL into the tumor cell 

proteome, facilitating subsequent enrichment and identification via mass-spectrometry.  

 

In vivo validation of PDAC-BONCAT system  

To examine whether the PDAC-BONCAT system allows for in vivo tumor cell-specific 

proteome labeling, we set up an orthotropic transplantation model. PDAC tumor cells 

expressing MetRSL274G transgene were surgically implanted in the pancreata of 

immunodeficient NOD-scid IL2Rγ
null (NSG) mice. Tumor-bearing mice were metabolically 

labeled with either ANL (0.2mmol/kg,) or treated with normal saline (Met) via daily 

intraperitoneal injection for 10 days. Labeled tumor samples were collected for hematoxylin 

and eosin (H&E), and α-smooth muscle actin (α-SMA) immunohistochemistry (IHC) staining 

(Fig 2D). Additionally, in situ detection of ANL-incorporated proteins was performed using 

copper-catalyzed azide-alkyne cycloaddition (CuAAC).  

 

H&E staining of the pancreata revealed a highly heterogeneous tumor invading the adjacent 

acinar tissues (Fig 2E). IHC analysis with α-SMA antibody identified abundant stromal 

fibroblasts in the tumor bulk (Supplementary Fig 1). Collectively, these features confirm the 

establishment of a murine PDAC model, capable of recapitulating the heterogeneous cellular 

composition and histological features of human pancreatic cancer. Further in situ detection of 

ANL incorporation via CuAAC click reactions showed highly specific signals in tumor cells 
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but not in the adjacent normal cells and tissues (Fig 2F), confirming that the tumor cells but 

not the non-tumor cells in the tumor bulk can incorporate ANL into their proteome. Contrary 

to the ANL labeling, no signal was detected in pancreatic tumors isolated from the control 

animals treated with Met, where ANL labeling had not taken place (Fig 2F). These in vivo 

observations demonstrate that BONCAT effectively tags the PDAC tumor cell proteome 

within its physiological milieu, and that the proteome labeling is highly specific to the tumor 

cells, distinguishing them from the various non-tumor cells in the TME.  

 

Defining the in vivo tumor proteome through coupling BONCAT and DIA-MS  

For in vivo identification of tumor cell-specific proteins, PDAC-MetRSL274G cells were 

surgically implanted in the pancreata of a large cohort of NSG mice.  Following the 

establishment of tumor growth in the engrafted animals, metabolic labeling of the proteome was 

carried out via intraperitoneal injection of ANL. Throughout the experiment, animals were 

provided with regular diet with no methionine depletion. Labeled tumors were collected, lysed, 

and subjected to BONCAT purification and DIA-MS proteomic analysis.  

 

TAMRA-alkyne cycloaddition reaction detected ANL incorporation in the tumor bulk lysates 

collected from the ANL, and not the Met group (Fig 3A-B).  Of note, the intensities of the 

bands in the Coomassie blue and TAMRA staining of the ANL-labeled samples did not match 

(lane 5-11), pointing to a minimal correlation between protein abundance and size distribution 

in the tumor bulk  (represented by Coomassie blue staining) and the ANL-labeled tumor cells 

(represented by TAMRA staining).  These data suggest that the proteome of bulk tumors, 
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typically identified in preclinical and/or clinical analysis of tumor samples, can not accurately 

represent the tumor cell proteome.   

 

Four tumors from each group were randomly chosen for BONCAT enrichment and 

downstream DIA-MS proteomic analysis. Purification and enrichment of ANL-incorporated 

peptides in tumor lysates were achieved using a DBCO click chemistry reaction. Enriched 

proteins were subjected to DIA-MS analysis.  In addition to the BONCAT enriched samples 

(BONCAT-ANL and BONCAT-Met), DIA-MS analysis was performed on the tumor bulk 

input lysates prior to BONCAT enrichment (Bulk-ANL and Bulk-Met).  The proteomes of the 

four BONCAT-ANL samples were highly correlated among each other (r=0.94-0.97), while 

the BONCAT-ANL and BONCAT-Met samples showed only modest correlation (r=0.74-

0.83) (Supplementary Fig 2A). Principal component analysis (PCA) categorized the samples 

into two distinct groups; BONCAT-ANL and BONCAT-Met samples, pointing to the 

specificity and efficacy of ANL labelling and BONCAT enrichment (Fig 3C).  Interestingly, 

proteomic data among all bulk tumor samples (4 Bulk-ANL and 4 Bulk-Met) were highly 

correlated (r=0.98-0.99) (Supplementary Fig 2B), and PCA did not differentiate Bulk-ANL 

from Bulk-Met samples (Fig 3D), suggesting that the ANL labeling has no detectable 

influence on the bulk tumor proteome. 

 

Comparison of DIA-MS results from the BONCAT-ANL and BONCAT-Met samples 

confirmed that the majority of the proteins are detected in the BONCAT-ANL samples, with 

some non-specific backgrounds present in the BONCAT-Met samples (Fig 4A). Among the 

highly enriched candidates, many proteins critical for pancreatic tumorigenesis, including 
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KRAS, YAP1, HMGB1, HMGB2, and LEG3 (Galectin-3) were identified (Fig 4A). There 

were 4360 proteins identified in the BONCAT-ANL samples (Supplementary Table 1). Only 

proteins enriched by at least four-fold in BONCAT-ANL compared to BONCAT-Met samples 

at a Student’s t test significance level of p<0.05, were considered as true proteins expressed in 

tumor cells. Subtracting the non-specific background identified in the BONCAT-Met samples, 

a total of 3382 BONCAT-ANL specific proteins were identified (Fig 4C). These proteins 

together represent the tumor cell proteome of the murine pancreatic cancer. Pathway analysis 

of the identified tumor cell proteome revealed general as well as pancreatic cancer-specific 

pathways, such as RAS, Hippo, and MAPK signaling (Supplementary Table 2).    

 

DIA-MS proteomic analysis of the bulk tumor, comprising tumor cells, non-tumor cell types, 

and the extracellular matrix components, identified >5800 proteins from ANL and Met groups 

with negligible differences between the two (Fig 4B, Supplementary Table 3), confirming 

that the ANL labeling process does not interfere with the general protein sysnthesis machinery 

in PDAC tumors. Notably, the protein levels of the candidates critical for pancreatic 

tumorigenesis, such as KRAS, YAP1, HMGB1, HMGB2, and LEG3 (Galectin-3), were not 

different between Bulk-ANL and Bulk-Met samples, further suggesting that the tumors from 

ANL and Met groups are biologically identical (Fig 4B). Thus, coupling BONCAT and DIA-

MS allows for in vivo dissection of the PDAC tumor cell proteome in a physiological context.  

 

Delineating proteins expressed in tumor cells from non-tumor cells within the PDAC tumor 

microenvironment  
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BONCAT-enriched proteins represent the tumor cell proteome, while the proteome of the pre-

enrichment tumor bulk (Bulk-ANL and Bulk-Met) encompasses the entire tumor and non-tumor 

proteins within the TME. Notably, many proteins expressed by the tumor cells, such as 

housekeeping proteins, may also be abundantly produced by other cell types within the tumor 

bulk.  Identifying the proteins preferentially expressed in either tumor cells or non-tumor cells 

within the TME is critical for the study of tumor cell intrinsic carcinogenesis, dynamic 

interaction between tumor cells and their environment, and the discovery of novel therapeutic 

targets and biomarkers. 

 

To identify tumor cell-specific and TME-specific proteins, we compared the BONCAT-enriched 

tumor cell proteome to the pre-enrichment tumor bulk proteome within the ANL labeled group 

(BONCAT-ANL vs Bulk-ANL).  For each protein, the ratio of abundance in BONCAT-enriched 

to tumor bulk indicates the preferential distribution in tumor or non-tumor cells. A high 

BONCAT-ANL/Bulk-ANL ratio points to tumor cell-specific expression, while a low ratio 

implies preferential expression in various non-tumor cells within the TME. Notably, the PDAC 

driver oncogene KRAS (RASK) was detected as a tumor cell-specific candidate with an average 

enrichment ratio of 10.9.  Another tumor cell-specific protein, KI67, was also highly enriched 

with a ratio of 21.26. These data provide evidence to support that our analysis indeed identifies 

tumor cell specific protein expression (Fig 4D). To further validate our analysis, we examined 

signature proteins expressed exclusively in non-tumor cells within the TME. The PDAC TME of 

the NSG host mice contains various cell types, such as stromal fibroblasts, 

monocytes/macrophages, dendritic cells, neutrophils, and endothelial cells. We, therefore, 

searched for the signature proteins of these non-tumor cell types in our BONCAT-ANL and 
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Bulk-ANL data sets.24,25  Among 34 signature proteins present in the bulk tumor lysates, the 

majority of them were either totally absent or highly depleted in the BONCAT-ANL tumor cell 

proteome. In contrast, housekeeping proteins, such as GAPDH and beta-tubulin, were not 

different between the BONCAT-enriched tumor cell proteome and the bulk proteome 

(Supplementary Table 4).  These observations further argues that our BONCAT-DIA-MS 

approach delineates proteins expressed in the tumor cells from non-tumor cells in the TME, 

compartmentalizing tumor and non-tumor proteins within the tumor bulk. 
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Discussion 

Coupling BONCAT bioorthogonal chemistry with DIA-MS proteomics in an orthotopic 

pancreatic cancer model, we have developed an innovative technical framework that can 

specifically label, enrich, and identify the tumor cell proteome in vivo. The sensitivity and 

efficiency of this approach is validated through the identification of thousands of proteins 

expressed in pancreatic tumor cells within the tumor bulk. Comparative analysis of the 

BONCAT-enriched and pre-enrichment bulk tumor lysates facilitates the differentiation of 

proteins preferentially expressed in tumor cells from those of non-tumor cells within the TME.   

 

Our approach has broad applications in the studies of tumorigenesis, cancer therapeutics, and 

biomarker discovery.  Our platform may be applied to primary tumors isolated from human 

patients to systematically define their tumor cell proteomes. Patient-derived xenograft (PDX) 

models are increasingly utilized to investigate novel therapeutics and guide clinical cancer 

treatment.26-28 Following well-established protocols, primary PDX tumors can express the 

MetRSL274G enzyme via lentiviral infection to enable tumor cell-specific proteomic labeling and 

characterization.29,30 Our approach, therefore, allows in vivo tumor cell-specific proteomic 

characterization in PDX models, providing an unprecedented ability for systemic interrogation of 

therapeutic responses at the level of individual proteins.  Additionally, this technical framework 

may be implemented to reveal the tumor cell-specific secretome.  ANL labeling of tumor cell 

proteome in PDX models, allows selective purification and enrichment of various proteins 

secreted by tumor cells into the systemic circulation via BONCAT. Subsequent identification of 

the tumor cell-specific secretome using DIA-MS will open new opportunities for the 

development of novel biomarkers for early cancer detection, a particularly persistent challenge in 

pancreatic cancers.   

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2020. ; https://doi.org/10.1101/2020.05.25.113670doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.25.113670
http://creativecommons.org/licenses/by-nc-nd/4.0/


Materials and Methods 

Cell lines, constructs, and chemical reagents 

4292 murine PDAC cell line was a generous gift from Dr. Marina Pasca di Magliano31. KRAS 

expression in this cell line is controlled by the Tet-ON system.   MetRSL274G coding sequence 

was PCR amplified using pMarsL274G construct (Addgene 63177) as a template and inserted 

into BamHI and MluI sites within the pLV-EF1a-IRES-puro vector (Addgene 85132) to 

produce the Lentiviral-MetRSL274G vector.  The FLAG M2 antibody used for the detection of 

MetRSL274G protein was purchase from Sigma. ANL, H-L-Lys(N3)-OH*HCL (HAA1625), was 

purchased from Peptide Solutions (Tuscon, AZ). DBCO agarose beads (1034), and DBCO-

TAMRA (A131), were purchased from Click Chemistry Tools.  Tris [(1-benzyl-1H-1, 2, 3-

triazol-4-yl)methyl] amine was purchased from Fisher Scientific. 

 

Click Chemistry Reactions 

TAMRA reaction:  To examine labeling efficiency 20 µg protein lysate was incubated with 5-30 

µM DBCO-TAMRA (Absorbance/Emission of 548/562 nm)/PBS (pH 7.4) for 1 hour at room 

temperature. Samples were boiled in Laemmli buffer and run on SDS-PAGE gel. 

Electrophoresed samples were visualized using Biorad gel imaging system with Pro-Q Diamond 

filters. The gel was subsequently stained with Imperial stain (Coomassie dye R-250, 

ThermoFisher 24615) according to manufacturer’s recommendation. 

CuAAC:  Copper-assisted click reaction was performed on paraffin-embedded slides. Slides 

were deparaffinized in 2 changes of xylene, 5 minutes per change, and rehydrated sequentially in 

2 changes, 5 minutes each of 100% ethanol and 95% ethanol, and 5 minutes 70% ethanol, and 

changed into water. To quench endogenous peroxidase enzyme slides were immersed in 3% 
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H2O2 for 15 minutes at room temperature. Slides were washed 3 times with PBS/0.1% triton X-

100. Copper-assisted reaction was essentially performed as described32. Briefly, orthogonal 

tagging reaction was assembled in dark. 5 μl of 200 mM TBTA, 5 μl of 500 mM TCEP, 5 μl of 2 

mM biotin-alkyne-tag (Click Chemistry Tools, 1266), and 5 μl of 200 mM CuSO4, were added 

at the specified order to 5 ml of PBS (pH 7.8), and the mixture was vortexed for 10 seconds after 

each addition. The slides were reacted with the mixture overnight at room temperature. Slides 

were subsequently washed three times, 20 minutes each, in PBS (pH 7.8), 0.5 mM EDTA, 1% 

Tween 20, followed by two washes, 10 minutes each, of PBS (pH7.8), 0.1% Tween 20. Slides 

were finally washed twice with PBS (pH 7.4). For signal amplification and HRP conjugation 

samples were incubated with VECTASTAIN Elite ABC reagent for 30 minutes, washed for 15 

minutes in PBS (pH 7.4), and changed into water. Signals were detected using ImmPACT DAB 

Peroxidase (HRP) Substrate (Vector laboratories, SK-4105). 

IHC:  Slides were incubated in three washes of xylene, 100% ethanol, and 95% ethanol for 5 

minutes each. Sections were then washed in water twice, 5 minutes per wash. Antigens were 

unmasked by boiling the slides for 15 minutes in antigen unmasking citrate buffer (Cell 

Signaling Technology 14746), and cooled at room temperature. Staining was performed with 

VECTASTAIN ABC Elite kit according to the accompanying protocol and detected as 

mentioned. α-SMA antibody (19245) was purchased from Cell Signaling Technology. 

 

Animal models, orthotopic transplantation, and ANL labeling 

Animal studies and experimental protocols were approved by Institutional Animal Care and Use 

Committee at Houston Methodist Research Institute. All experimental methods were performed 

in accordance with the relevant national and institutional guidelines and regulations.   6-8 week 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2020. ; https://doi.org/10.1101/2020.05.25.113670doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.25.113670
http://creativecommons.org/licenses/by-nc-nd/4.0/


old NOD-scid IL2Rγ
null (NSG) mice underwent surgical orthotopic injection of the pancreatic 

cancer cells into the pancreas. Carprofen medicated gel (5 mg/kg/day) was used for analgesia 

prior to the surgery, and within 3 days following surgical procedure. Mice were anesthetized 

with isoflurane. The abdominal skin directly above the spleen was incised, pancreas was 

retracted laterally and positioned outside the body. Direct injection of 1 million cells was 

performed using a 28.5 G needle. The needle was inserted through the knot into the pancreas tail 

and passed into the pancreas head to deliver the cells. Following cell injection the spleen and 

pancreas were returned to the peritoneal cavity and the abdominal muscle and the skin layers 

were sequentially sutured.  One day following surgery doxycycline was administered through the 

drinking water, at a concentration of 0.2g/L in a solution of 5% sucrose, and replaced every 3-4 

days. On day 4 post-surgery, experimental and control mice were intraperitoneally injected with 

0.1mg/g per day of the amino acid analog or PBS respectively, for one week33. 

 

BONCAT enrichment 

Tumor nodules were harvested and snap frozen in liquid nitrogen until further use. Frozen tumor 

samples were homogenized for 20-60 seconds in PBS (pH 7.4), 1% SDS, 100 mM 

chloroacetamide, and protease inhibitors. The homogenate was left at room temperature for 20-

30 minutes to allow protein solubilization.  Lysates were boiled for 10 minutes, and centrifuged 

at room temperature at 16,000 g for 10 minutes. The supernatant was separated and aliquoted. 

Protein concentration was determined using BCA protein assay. The supernatants were used for 

the identification of tumor bulk (Bulk-ANL and Bulk Met) and tumor cell proteomes following 

BONCAT enrichment (BONCAT-ANL and BONCAT-Met).  Approximately 1.5 mg protein was 

diluted with 8 M urea/0.15 M NaCl/PBS (pH 7.4) to a total volume of 1 ml. 50 µl of DBCO-
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agarose bead slurry was washed 3 times with 0.8% SDS in PBS (pH 7.4). Diluted protein sample 

was added to the washed resin, and shaken at 12,000 rpm at room temperature for more than 12 

hours. Unreacted DBCO was quenched by the addition of 2 mM ANL for 30 minutes. Resins 

were washed with 1 ml water and reduced with 1mM DTT for 15 minutes at 70°C on a shaking 

platform. Free thiols were subsequently blocked with 40 mM iodoacetamide in PBS/ 0.8 SDS for 

30 minutes in the dark at 12,000 rpm. Resins were then subjected to the following washes: 40 ml 

0.8% SDS in PBS, 40 ml 8 M urea, and 40 ml 20% acetonitrile. Beads were then washed with 

10% acetonitrile in 50 mM ammonium bicarbonate. The beads were spun at 2,000 g to remove 

the liquid, and resuspended in 100 µl 10% acetonitrile in 50 mM ammonium bicarbonate and 

100 ng trypsin (Thermo Scientific Pierce, 90057). Beads were digested at 37 °C on a shaking 

platform overnight, and subsequently removed using centrifuge columns, and digested peptides 

were dried at room temperature using speed vacuum. Digested peptides were subsequently 

subjected to DIA-MS analysis.  

 

Lysis and digestion of tumor bulk 

Tumor bulk cells were lysed in a buffer containing 5% SDS/50 mM triethylammonium 

bicarbonate (TEAB) in the presence of protease and phosphatase inhibitors (Halt; Thermo 

Scientific) and nuclease (Pierce™ Universal Nuclease for Cell Lysis; Thermo Scientific). 

Aliquots corresponding to 100 µg protein (EZQ™ Protein Quantitation Kit; Thermo Scientific) 

were reduced with tris (2-carboxyethyl) phosphine hydrochloride (TCEP), alkylated in the dark 

with iodoacetamide and applied to S-Traps (mini; Protifi) for tryptic digestion (sequencing 

grade; Promega) in 50 mM TEAB. Peptides were eluted from the S-Traps with 0.2% formic acid 
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in 50% aqueous acetonitrile, quantified using Pierce™ Quantitative Fluorometric Peptide Assay 

(Thermo Scientific) and diluted as needed to achieve a concentration of 0.4 µl/µl. 

 

DIA-MS proteomic analyses 

Experimental samples were randomized for sample preparation and analysis. DIA-MS analyses 

were conducted on an Orbitrap Fusion Lumos mass spectrometer (Thermo Scientific). On-line 

HPLC separation was accomplished with an RSLC NANO HPLC system (Thermo 

Scientific/Dionex): column, PicoFrit™ (New Objective; 75 μm i.d.) packed to 15 cm with C18 

adsorbent (Vydac; 218MS 5 μm, 300 Å); mobile phase A, 0.5% acetic acid (HAc)/0.005% 

trifluoroacetic acid (TFA) in water; mobile phase B, 90% acetonitrile/0.5% HAc/0.005% 

TFA/9.5% water; gradient 3 to 42% B in 120 min; flow rate, 0.4 μl/min. Separate pools were 

made of all of the samples in each experiment (equal volumes from the BONCAT-

ANL/BONCAT-Met digests; equal quantities for the tumor bulk lysate digests). For the tumor 

bulk lysates, injections of 2µg peptides of the pooled samples were used for chromatogram 

library generation. For the BONCAT-ANL and BONCAT-Met samples, aliquots of the pool of 

equal volumes of the digests were injected. To create the DIA chromatogram library34 for each 

sample type, the indicated peptide quantities were analyzed using gas-phase fractionation and 4-

m/z windows (staggered; 30k resolution for precursor and product ion scans, all in the orbitrap) 

and the MS files processed in Scaffold DIA (v2.1.0; Proteome Software) and searched against a 

predicted spectral library generated from the UniProt_mouse (2019_01) protein database by 

Prosit.35 Injections of 2 µg of peptides were employed for DIA-MS analysis of the individual 

bulk tumor lysate digests while injections corresponding to equal volumes were used for the 

BONCAT-ANL and BONCAT-Met samples. MS data for all individual digests were acquired in 
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the orbitrap using 12-m/z windows (staggered; 30k resolution for precursor and product ion 

scans) and searched against the chromatogram library. Scaffold DIA (v2.1.0; Proteome 

Software) was used for processing the DIA data from the experimental samples. Only peptides 

that were exclusively assigned to a protein were used for relative quantification, with 2 minimum 

peptides required for each protein and a protein-level FDR of 1%. 

 

Correlations among different BONCAT-enriched samples and total lysate samples were analyzed 

by Pearson correlation. Differentially abundant proteins were analyzed by a two-sided Student’s 

t-test. For BONCAT-ANL and BONCAT-Met comparison, proteins with a missing value in any 

of the four BONCAT-ANL samples were excluded from the analysis. For the analysis of 

proteins from tumor cells versus non-tumor cells, BONCAT-ANL and Bulk-ANL data were first 

normalized by the total intensity in each sample and then compared by a two-sided t-test.  

Perseus (version 1.6.7.0)36 was used to generate the volcano plots for the three paired 

comparisons displayed in figure 4 (FDR = 0.01, S0 = 0.1).  Proteins with missing values in any 

of the samples were excluded from the plots. Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathway were analyzed using DAVID37. 
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Figure Legends 

Figure 1. Construction of the PDAC-BONCAT cells 

(A-B) Diagram showing the cell selective labeling of proteome by BONCAT. 

(C) Diagram showing selective coupling of ANL labeled peptides using DBCO-alkyne beads. 

 

Figure 2. in vitro and in vivo validation of the PDAC-BONCAT system 

(A) Western blot analysis of single cell clones ectopically expressing the MetRSL274G transgene. 

The MetRSL274G protein is indicated by the arrow.  n.s. indicates the non-specific bands 

recognized by the FLAG antibody. 

(B-C) Detection of ANL and Met labeling by TAMRA-DBCO and SDS-PAGE in vitro. 10, 20, 

and 30, indicate micrograms of protein lysate loaded per lane. 

(D) Overview of the in vivo ANL labeling. 

(E) H&E staining showing the tumor infiltration in the adjacent normal acinar tissues. Tumor 

nodule is indicated by a red asterisk. 

(F) IHC analysis of ANL incorporation by CuAAC. Met samples serve as the negative control. 

Tumor nodules are indicated by red asterisks. 

 

Figure 3. Quality analysis of BONCAT-enriched samples for DIA-MS 

(A-B) TAMRA-alkyne and SDS-PAGE analysis of eleven in vivo tumor samples labeled with 

ANL or Met. 

(C) PCA of DIA-MS data for BONCAT-ANL and BONCAT-Met samples 

(D) PCA of DIA-MS data for Bulk-ANL and Bulk-Met samples 
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Figure 4. Tumor cell and tumor bulk proteomes 

(A) Comparison of the BONCAT-ANL and BONCAT-Met samples (FDR = 0.01, S0 = 0.1). 

Some genes critical for pancreatic tumorigenesis were labeled.  

(B) Comparison of the bulk proteomes from ANL and Met total tumor lysates. 

(C) Venn diagram of the number of proteins identified by BONCAT enrichment in the ANL 

labeled samples. 

(D) Comparison of BONCAT-ANL proteome and the corresponding Bulk-ANL proteome 

differentiates tumor cell specific proteins from those of non-tumor cells within the TME.  

 

 

Supplementary Figure Legends 

Supplementary Fig S1.  α-SMA antibody identifies stromal fibroblasts in the tumor bulk.  

Supplementary Fig S2.  Pearson correlation of DIA-MS data from the BONCAT (S2A), and 

the Bulk samples (S2B). The correlation coefficients are labeled above the dot plots.   

 

 

Supplementary Tables 

Supplementary Table 1. List of tumor cell proteins identified in BONCAT samples by DIA-

MS. 

Supplementary Table 2. Pathway analysis of the PDAC tumor cell proteome. 

Supplementary Table 3. List of proteins identified in the tumor bulk lysates by DIA-MS. 

Supplementary Table 4. Protein levels of marker genes from tumor and non-tumor cells within 

the tumor microenvironment. 
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