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Abstract 
Small proteins play diverse and essential roles in bacterial physiology and virulence. Despite their 

importance, automated genome annotation algorithms still cannot accurately annotate all respective 

small open reading frames (sORFs), as they usually provide insufficient sequence information for 

domain and homology searches, tend to be species specific and only a few experimentally validated 

examples are covered in standard proteomics studies. The accuracy and reliability of genome 

annotations, particularly for sORFs, can be significantly improved by integrating protein evidence from 

experimental approaches that enrich for small proteins. Here we present a highly optimized and flexible 

workflow for bacterial proteogenomics, which covers all steps from (i) creation of protein databases, (ii) 

database searches, (iii) peptide-to-genome mapping to (iv) result interpretation and whose automated 

execution is supported by two open source tools (SALT & Pepper). We used the workflow to identify 

high quality peptide spectrum matches (PSMs) for both annotated and unannotated small proteins (≤ 

100 aa; SP100) in Staphylococcus aureus Newman. Proteins isolated from cells at the exponential and 

stationary growth phase were digested with different endopeptidases (trypsin, Lys-C, AspN), the 

resulting peptides fractionated by gel-based and gel-free methods and measured with highly sensitive 

mass spectrometers. PSMs or sORF predictions from sORFfinder were stringently filtered allowing us 

to detect 185 soluble SP100, 69 of which were missing in the used genome annotation. Most 

interestingly, almost half of the identified SP100 were basic, suggesting a role in binding to more acidic 

molecules such as nucleic acids or phospholipids. In addition, phage-related functions were proposed 

for 30 SP100, based on the localization of their coding sequences in the genome.  
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1. Introduction 

Staphylococcus aureus is a Gram-positive human pathogen with strong clinical significance that causes 

mainly nosocomial infections in immunocompromised patients which are frequently associated with 

difficult to treat multidrug-resistant S. aureus phenotypes (1). With 547 complete genome sequences 

publically available from the National Center of Biotechnology Information (NCBI´s) Reference 

Sequence Database (RefSeq; status 2020-05-17), S. aureus is among the most sequenced bacteria. 

The number of thus far annotated open reading frames ranges from 2600 to 2900 per genome 

sequence. The entire pan-genome of S. aureus has not yet been described, due to the fact that the 

genomic diversity of S. aureus is very high (2,3). However, a preliminary S. aureus pan-genome based 

on the comparison of 64 S. aureus genome sequences is composed of 7,411 genes, of which about 

20% are conserved constituting the core-genome (3). The highest variability has been found among 

genes coding for extracellular and surface-associated proteins (4) which is of particular importance as 

these proteins are essentially involved in direct interactions with the host environment during infection. 

The protein inventory of several S. aureus strains has been described using highly sensitive mass 

spectrometry (MS) techniques combined with liquid chromatography (LC) (5-7). For S. aureus strain 

COL, more than 1700 proteins (about 60 % of the theoretical proteome) have been identified, quantified 

and assigned to various subcellular localizations (5,7,8), which can help to predict functions for co-

localized proteins (9). However, one group of proteins was highly underrepresented in the S. aureus 

proteome: very small proteins not longer than 100 amino acids (aa) (=SP100). Altogether, Becher and 

colleagues (5) detected 82 annotated SP100 of which only four proteins possess 50 aa or less (=SP50).  

The experimental detection of SP100 by shotgun proteomics is difficult and also affected by the fact that 

their encoding short open reading frames (sORFs) are frequently filtered out by conventional genome 

annotation algorithms. There are several reasons hindering automated annotation and prediction of 

sORFs, such as insufficient sequence information for domain and homology searches, a limited number 

of experimentally validated templates, and their tendency to species specificity (10-12). Hence, 

differentiation between sORFs with low and high coding potential is challenging and the number of false 

positives among predicted sORFs is extremely high (13). Given these facts, arbitrary cut-offs for a 

minimal ORF length of 50 or 100 codons were routinely used in genome annotations. In addition, the 

low molecular weight of these proteins complicates experimental isolation and also reduces the number 

of MS-compatible peptides.  

Over the last years, various attempts have been made that address one or both of these issues. This 

includes experimental approaches such as ribosomal profiling and proteogenomics to identify these 

group of proteins as well as bioinformatic approaches for a more reliable prediction and comprehensive 

annotation of sORFs (14-26). For instance, different computational approaches have been developed 

for sORF prediction which have in common that the coding potential of a putative sORF is scored based 

on at least one or more features such as nucleotide composition, synonymous and non-synonymous 

substitution rates, phylogenetic conservation or protein domain detection (13,16).  

Despite these major challenges, there is no doubt that small proteins play a pivotal role in essential 

cellular processes, hence it is extremely important to improve our ability to uncover this pool of hidden 
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proteins (20,27-30). First functional characterizations prove their involvement in various cellular 

processes such as protein folding, regulation of gene expression, membrane transport, protein 

modification and signal transduction in different bacteria (for an overview see (30)). In addition, some 

small proteins have an extracellular function and exhibit toxic or antimicrobial activity. Interestingly, most 

of the small proteins characterized so far are associated with the cell membrane and are poorly 

conserved at the sequence level (29). In S. aureus, the most prominent small proteins are phenol soluble 

modulins with a length of only 20 to 40 aa (31) and delta-hemolysin (26 aa) (32). Phenol soluble modulins 

possess multiple roles in S. aureus pathogenesis by inducing cell lysis of blood cells, stimulating 

inflammatory responses and influencing biofilm formation (for review see (33)). Delta-hemolysin 

interacts with membranes of various blood cells, which concentration dependently results in a 

membrane disturbance and even in cell lysis (for review see (34)). While both phenol soluble modulins 

and delta-hemolysin have been studied in great detail in recent years, data on the identification and 

functional characterization of other small proteins with up to 50 aa in S. aureus are almost completely 

missing.  

High availability of S. aureus genome sequences defines it as a well-suited model bacterium for 

prediction and identification of small proteins and peptides. Currently, the number of annotated coding 

sequences with up to 303 nucleotides is highly variable in the 547 complete S. aureus genome 

sequences and their number ranges from 345 to 632. This is mainly attributed to the fact that various 

algorithms of genome annotation were applied. Among S. aureus reference strains, strain Newman 

plays a pivotal role. First isolated in 1952 from a human infection (35), it is one of the most frequently 

used S. aureus strains in infection models as it is characterized by a relatively stable phenotype. In 

addition, four prophages were identified in the genome of strain Newman, inserted at different sites in 

the chromosome, exceeding the regularly observed number of prophages in S. aureus (36-38). In a 

murine infection model, the loss of all four prophages significantly reduced the virulence potential of the 

strain (39). The existence of these prophages made S. aureus Newman to an excellent model studying 

their impact on virulence and cells physiology. The genome sequence of strain Newman, was predicted 

to encode at least 2,614 proteins, again, the number of annotated proteins with 100 aa or below is rather 

low and amounts to XX proteins (40).  

To more comprehensively identify proteins with up to 100 aa, we used S. aureus as a model system 

and developed an integrative proteogenomics workflow that combines in silico translation of the entire 

genome sequence, various LC-MS/MS workflows, and a bioinformatic pipeline for peptidomics data 

analyses. The workflow is highly optimized and flexible and ready to use in other bacterial species.  

 

2. Results 
2.1. Estimating the number of spurious sORFs in S. aureus Newman using single-

nucleotide permutation testing 

A single nucleotide permutation test was used to verify the global confidence and significance of ORFs 

based on their length only. For this purpose, ORFs were detected in the genome sequence of S. aureus 

Newman (NC_009641.1; NCBI translation table 11; longest ORFs preferred). As false-positive estimate, 
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we used the median number of ORFs detected in permuted genome sequences (n=1000), that show 

the same nucleotide composition but in random order and can therefore be assumed to not contain any 

biological information (Fig. 1A). Accordingly, the false discovery rate (FDR) of ORFs detected in the 

biological sequence is 113% for those with a maximum length of 63 bp (coding for 20 aa), 133% for 

those with a length between 66 and 153 bp (21 to 50 aa) and 94% for those with a length between156 

and 303 bp (51 to 100 aa). This highlights the need for additional evidence for the reliable annotation of 

sORFs. In contrast, coding sequences (CDS) with a length of at least 396 bp (≥ 131 aa) did not occur 

by chance in the permuted sequence set. Since start and stop codons tend to be AT-rich, the FDR for 

sORFs increases with an increasing GC content of an organism (Fig. 1B). 

2.2. Creating more comprehensive protein databases for S. aureus Newman using in silico 
translation and sORF prediction 

To identify small proteins not covered in the RefSeq annotation, we generated protein databases using 

two different approaches. First, protein coding sORFs were predicted based on their coding potential 

using sORF finder (41). To train the classifier, all annotated CDS and sequences of stable RNAs were 

used as positive (coding) and negative (non-coding) templates, respectively (used annotation: 

NC_009641.1 as at 07/06/2013). Based on this, a high coding potential was predicted for 3,357 ORFs 

within intergenic regions varying between 33 and 267 bp. These ORFs were translated and combined 

with the annotated protein sequences resulting in a database with a total number of 6,441 sequences. 

In the following this database is referred to as PRedicted Protein DataBase (PRDB).  

With the second approach we aimed to consider the full coding potential of S. aureus Newman by 

translating all six reading frames of the respective genome sequence and creating a separate protein 

entry for each sequence between two stop codons. The resulting TRanslation DataBase (TRDB) 

comprises 177,532 sequences with a minimum length of 9 aa. We established an automated workflow 

for the translation of (circular) bacterial genome sequences (Fig. 2 A). The corresponding python-based 

tool called SALT is publicly available (https://gitlab.com/s.fuchs/pepper). It allows the extraction of all 

potential ORFs from a circular or linear genome sequence and supports both start to stop and stop to 

stop codon extraction (according to NCBI translation table 11). The extracted sequences can be 

automatically translated and, if required, digested in silico into individual peptides using predefined 

digestion patterns of different enzymes. All DNA, protein and peptide sequences are extractable to 

individual FASTA files. The respective sequence header can be fully customized to meet specific 

requirements. Moreover, for each sequence collection, tables can be exported as tabulator delimited 

text files showing different physicochemical properties such as molecular weights, isoelectric points or 

grand average of hydropathy (GRAVY) values. To the best of our knowledge, this is the only freely 

available tool that offers such a variety of functions (further information see 

https://gitlab.com/s.fuchs/pepper). 

 

2.3. Creating a fully automated yet flexible workflow for bacterial proteogenomics  
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To deduce putative ORFs from a list of identified peptides, we created a rule-based expert system called 

Pepper which is fully automated and optimized for bacterial proteogenomics (Fig. 2B). In brief, 

sequences and quality measures of peptide spectrum matches (PSMs) are extracted from evidence files 

provided by the Maxquant software (Max Planck Institute of Biochemistry, Martinsried, Germany, version 

1.5.2.8; http://www.maxquant.org). Different spectrum- and quality-based filter criteria can be then 

applied to restrict the analyses to highly reliable PSMs only (Tab. 1). In the next step, all potential coding 

sites (DNA matches) are identified for each high-quality PSM within the given genome sequence 

considering the degenerated nature of the DNA code. On the basis of the DNA matches found, potential 

ORFs are deduced according to the following rules: first, an ORF must contain all successive DNA 

matches encoded on the same strand and in the same reading frame and should not be separated by 

an interposed stop codon. Secondly, the ORF is extended until the first downstream stop codon encoded 

in the same reading frame. In the final step, predicting the translational start site, the most upstream 

DNA match covered by the potential ORF plays an essential role. Three different cases can be 

distinguished here: (1) The identified peptide encoded by the most upstream DNA match is not of a 

proteolytic (e.g. tryptic) origin. In this case, the codon directly upstream of the DNA match is assumed 

to be the translation start site. Since N-terminal methionine residues are cleaved from a number of 

bacterial proteins during maturation, the translational start is shifted 3 bp upstream if directly preceded 

by a methionine encoding codon. (2) If the identified peptide encoded by the most upstream DNA match 

is of proteolytic origin, the assumed ORF is extended to the first upstream codon that is encoded in the 

same reading frame and directly preceded by a stop codon (primary start). ORF variants then are built 

starting from each (alternative) start codon between primary start and the most upstream DNA match. 

The different ORF variants are evaluated based on different measures and features such as presence 

and location of a ribosomal binding site or product length (Tab. S1). Comprehensive information 

collected on spectrum, peptide, and DNA level (Tab. S2) is stored in different file formats such as CSV 

and Genbank. The latter can be used for intuitive result visualization using third party software (Fig. 2C). 

Pepper is open-source and freely available under https://gitlab.com/s.fuchs/pepper. 

 

2.4. Small protein identification using different MS-based approaches and databases 

To identify small proteins in S. aureus, cytoplasmic proteins prepared from cells grown in complex 

medium to an optical density (OD540) of 1 and 7 (both in three replicates) were each subjected to different 

experimental setups for LC-MS-based protein identification. First, two different techniques for pre-

fractionation of proteins/peptides were applied: a gel-based and gel-free approach. For the gel-based 

approach, proteins were separated by one-dimensional SDS polyacrylamide gel electrophorese (1D 

SDS PAGE) followed by tryptic in-gel digestion (Fig. 3). The gel-free approach was based on tryptic in-

solution digestion of proteins followed by an Oasis® HLB solid phase extraction-cartridge purification 

and strong cationic exchange (SCX)-fractionation (Fig. 3). In both methods, the resulting peptide 

fractions were subsequently analysed by a nanoAQUITY UPLC System coupled to an LTQ Orbitrap 

Velos Pro mass spectrometer. In addition, we tested the applicability of a second LC-MS system for the 
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identification of SP100: the Orbitrap Fusion MS coupled to a Dionex Ultimate 3000 UPLC System 

(Thermo Fisher Scientific Inc., Waltham, Massachusetts, USA). For that purpose, the cytosolic protein 

extracts were pretreated using the gel-based approach (Fig. 3). 

MS- and MS/MS-data of all samples were searched against the new established S. aureus databases 

PRDB and TRDB using Maxquant as an analysis program (Fig. 3). Due to their small size the probability 

to detect more than one unique peptide for proteins with up to 100 aa is relatively low (see also (21,42). 

To filter only high-quality unique peptides for protein identification, we modified our MS/MS parameters 

used by MaxQuant as follows: Andromeda score > 40 for unmodified and modified peptides, delta score 

> 6 for unmodified peptides and >17 for modified peptides, peptide spectrum matching (PSM) FDR 

0.0001. Combining results of all analyses and database searches, 28,153 unique high-quality peptides 

have been identified, which were further analyzed using our proteogenomics workflow Pepper (for 

spectrum and peptide filtering measures). To minimize false positives, an additional filtering of the 

MS/MS spectra was applied by Pepper (Tab. 1) resulting in 22116 unique peptides that fulfilled the 

stringent MS/MS quality criteria. These peptides were subsequently mapped to the genome sequence 

of S. aureus Newman. Peptides, which mapped more than once and were not assigned to protein 

families or to the same protein, were removed from the list manually. This resulted in 21635 unique 

peptides. 21495 of these peptides were allocated to protein sequences derived from already annotated 

open reading frames of S. aureus Newman. Another 17 peptides supported an extended 5´-end of the 

respective ORF. The remaining 123 peptides matched to protein sequences that had not been 

considered in the annotation of the S. aureus Newman genome sequence to date (NC_009641.1; 

07/06/2013).  

To focus on not yet annotated proteins, we relied on ORFs with the highest coding potential based on 

different features and quality measures (Tab. 1, Tab. S1). In this way, 69 ORFs have been newly 

described for S. aureus Newman ranging between 30 and 346 aa. Focusing on small proteins, we 

identified 181 proteins of which 65 were not covered by the used genome annotation. 

 

2.5. Comparing the applied strategies for small protein identification 

To identify which of the applied methods and databases is most powerful for identification of SP100, the 

obtained identification rates were evaluated. Comparing gel-based and gel-free pre-fractionation 

methods showed that both methods support the identification of SP100, but with a slightly better 

identification yield for the gel-free approach (148 versus 135 proteins). The majority of SP100 (n=116) 

have been recovered with both pre-fractionation methods, while only a small number of proteins were 

detected by one method only (Fig. 4, Tab. S3).  

The usage of the two LC-MS instruments namely Orbitrap Velos Pro und Orbitrap Fusion in combination 

with the gel-based approach for protein pre-fractionation led to the identification of 135 and 155 SP100. 

Out of these, 126 SP100 were identified with both instrument combinations (Fig. 4, Tab. S3). These 

results suggest that the identification rate of SP100 is higher for the Dionex Ultimate 3000 UPLC - 

Orbitrap Fusion MS System compared to the LTQ Orbitrap Velos Pro MS based system.  
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Finally, the impact of both protein databases used (PRDB and TRDB) was evaluated based on the 

number of identified SP100. With 171 SP100, a significantly higher number of small proteins have been 

detected using the TRDB, which comprises the entire coding potential of S. aureus Newman. In 

comparison, only 129 SP100 were identified with the PRDB of which only seven were exclusively found 

with this database. The TRDB was in particular more effective in the identification of proteins not 

considered in the used genome annotation: while 61 not annotated SP100 have been identified with the 

TRDB, only 15 were captured using the PRDB (Fig. 4, Tab. S3). This clearly shows, that the ORFfinder 

prediction algorithm has to be significantly improved. However, out of the 48 not annotated SP100 

exclusively found using the TRDB, 29 are encoded by sORFs that overlap with already annotated genes 

without sharing the same reading frame. Since the prediction classifier has been applied to intergenic 

regions only, these ORFs could therefore not be found by this approach.  

 

2.6. Impact of different proteases on small protein identification 

For characterization of the identified SP100, Pepper provides several characteristics for each identified 

protein such as pI and hydrophobicity values (GRAVY). Our data revealed that nearly one third of the 

identified SP100 (= 58 proteins) depict basic proteins with a pI ≥ 9. This percentage is significantly higher 

compared to proteins larger than 100 aa where only 17.5% showed these characteristics and is even 

more impressive when only considering proteins with up to 50 aa (SP50). Here, for almost 50% (n=17) 

of the identified proteins a pI ≥ 9 was determined (Fig. 5B, Tab. S4). The digestion of proteins by trypsin 

results in peptides that end with a basic lysine or arginine. In order to exclude any bias, we studied the 

influence of different endoproteases on the number and pI of the identified SP100. We used the gel-

based approach for protein pre-fractionation and the LTQ Orbitrap Velos Pro MS-based system. Besides 

trypsin, we selected two additional proteases, Lys-C and AspN, for in-gel protein digestion (Fig. 3). 

MS/MS data analyses have been performed as described above. Using described peptide identification 

criteria, trypsin digestion resulted in the largest number of peptide identifications (n=11886), followed by 

AspN (n=6277) and Lys-C (n=3472). The percentage of peptides with a pI ≥ 8 was between 6.5% (for 

AspN) and 17.5% (for Lys-C (Tab. 2). Next, we examined the number of identified proteins with specific 

focus on basic proteins (pI ≥ 8). Accordingly, trypsin resulted in 1689 protein identifications of which 

22% were basic (pI ≥ 8). For Lys-C and AspN, we identified 1256 and 1330 proteins and the percentage 

of identified basic proteins was 17% and 16% (Tab. 2). Accordingly, the impact generated by the use of 

different endoproteases on the overall identification of alkaline proteins was marginal. However, 

considering only identified SP100 and relevant peptides, trypsin and Lys-C clearly supported 

identification of alkaline proteins. With 41 and 37% the percentage is twice as higher than that for all 

identified proteins. Notably, this is not true for the related peptides. Here the proportion is similar to that 

found for all identified proteins suggesting that some of the very alkaline SP100 have been identified by 

acidic or neutral peptides. AspN is the least suited enzyme to identify SP100, although twice as many 

peptides have been detected compared to Lys-C. This correlates with a significantly lower percentage 

of alkaline peptides (6.5%) and may support our hypothesis that SP100 tend to be basic. Using Lys-C 
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and AspN, we additionally expected to increase the average length of the identified peptides and 

therefore enhancing the sequence coverage and the significance of identification results. However, the 

average length of the identified unique peptides following the digestion with the selected endoproteases 

was similar, which is in line with observations made by others testing different proteases for proteomics 

(Tab. 2) (43).  

In total, we identified 141 unique SP100 by using different proteases. As expected, the highest overlap 

was found for trypsin and Lys-C (n=61 proteins) followed by AspN and trypsin (n=44 proteins). 

Compared to our methodology approach, only eight SP100 were exclusively identified with the protease 

approach.  

 

2.7. Sequence and expression-based characterization of identified SP100 

In total, 185 SP100 were detected using different approaches and the identification of more than half of 

these proteins (n=110) was based on more than one unique peptide (Fig. 5A). Out of these, 69 were 

not considered by the used genome annotation of S. aureus Newman of which 29 are 50 aa or less. 

The existence of 154 SP100 (= 83%) was proved by at least two experimental approaches. Among them 

are 52 newly annotated proteins (Tab. S4). In total, 52% of the identified SP100 (= 96 proteins) had a 

length of 75 – 100 aa while 28 (15%) possess no more than 50 aa of which 14 proteins are smaller than 

26 aa (Fig. 6). To explore possible functions for the uncharacterized proteins we ran BLAST® searches 

to identify homologs with annotated functions. In addition, we looked for conserved domains using the 

eggnog database. On the basis of this, we assigned the identified SP100 to functional categories. In 

total, 142 proteins (78%) were successfully assigned to an eggnog orthologues cluster providing 

additional support for their existence by biological significance. Out of these, a particularly large set 

(20%) was linked to translation. This was not very surprising since 16 ribosomal proteins are among the 

SP100. 16% of the identified proteins were associated with phages, however, their precise role remains 

exclusive. Another eleven proteins (6%) are involved in virulence of S. aureus. These are mainly toxins 

such as phenol soluble modulins, and delta-hemolysin. Moreover, we found proteins playing a role in 

transcription, transport and secretion processes. However, there is still a number of proteins (n=31) that 

have not been assigned to any functional category yet (Fig. 7).  

To determine whether some of the identified proteins could be secreted or integrated into the membrane 

we used LocateP (44), which distinguishes seven subcellular localizations of proteins within Gram-

positive bacteria, and TMHMM Server v.2.0 (http://www.cbs.dtu.dk/services/TMHMM/) providing 

information on transmembrane domains. This way, in total of 13 of the identified SP100 were predicted 

be localized outside the cytoplasm. The existence of at least one membrane spanning domain in these 

proteins strongly suggests that they are integrated into the membrane. For five proteins Sec/SP1 

specific-signal sequences were predicted with a probability of 40 to 50% using SignalP 5.0 

(http://www.cbs.dtu.dk/services/SignalP/). 

A significant drawback of shotgun or bottom-up proteomics is the fact that we can only detect N-terminal 

peptides when: (i) the translational start site of an ORF is correctly predicted (which is unlikely in the 
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TRDB), (ii) the start codon is preceded by a stop codon or (iii) when it is preceded by a specific cleavage 

site for the used endoprotease. Only for 17 of the identified proteins, N-terminal peptides were detected. 

Seven started with methionine while additional three provide evidence that the N-terminal methionine 

residues were cleaved after translation was initiated. In addition, eight peptides were detected for which 

the ORF prediction algorithm identified a stop codon immediately in front of the matched DNA region. 

Notably, although they should therefore represent the N-terminal part of the respective proteins they do 

not start with methionine. For the remaining sORFs, the true start codon had to be inferred using the 

prediction algorithm applied by Pepper. Accordingly, the majority of the new sORFs has been suggested 

to start with ATG (n=47). The remaining sORFs presumably initiate at non-canonical translational start 

sites such as TTG (n=8), ATT (n=3), and GTG (n=2). Interestingly, for eight sORFs, initiation at 

completely unexpected codons was postulated (Fig. 8). To find further support for the predicted sORFs, 

we looked for possible upstream ribosomal binding sites. Hence, 48 of the newly derived SP100 

encoding genes are preceded by a ribosomal binding site within a distance up to 16 nucleotides 

upstream of the putative start codon. Notably, out of these 17 shared the sequence (GGAGG with 5 to 

9 bp spacer) which is described to be ideal for Escherichia coli Shine-Dalgarno sequence (45). 

Furthermore, conservation of these proteins among different S. aureus strains as well as among 

staphylococci was investigated to provide additional evidence for their existence. Accordingly, 40 of the 

non-annotated proteins are conserved to 95% in at least half of the sequenced S. aureus isolates 

included in this analysis (n=533). Twenty-seven of these proteins are additionally conserved in other 

staphylococci (Tab. S4; Fig. 9). 

Based on their genome localization, the 69 newly discovered sORFs can be classified into three main 

categories: (i) located in intergenic regions, (ii) overlapping with other ORFs either with the 5´ or with 

the 3´-end but in a different reading frame, and (iii) located within annotated protein coding sequence 

but in a different reading frame. For the latter two we can additionally distinguish between those located 

at the same strand and those located at the complementary strand. As expected, the majority (n=32) 

belongs to the group (i), but also a considerable number of sORFs was allocated to group (ii) (n=24). 

However, with four exceptions, the overlap to annotated genes was extremely small and did not exceed 

eight nucleotides. Notably, 13 SP100 belong to group (iii) of which four are localized at the same strand 

(Fig. 8).  

A label-free quantification approach was applied to identify SP100 in S. aureus that are differently 

expressed during exponential and stationary growth phase in complex medium. Combining MS/MS data 

from gel-based and from the gel-free approach, 17 SP100 were found to be present at ≥1.5 fold higher 

amounts at OD 7 compared to OD 1 while 28 SP100 were repressed at higher optical densities. In 

addition, 13 proteins were detected exclusively at OD 7 and six at OD 1. As expected, SP100 that are 

significantly down-regulated at higher optical densities do mainly depict ribosomal proteins (n=14) (Tab. 

S5). Among the induced proteins, we found phenol soluble modulins and SpoVG.  

 

2.8. Validation of identified SP100 using ribosomal profiling 
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To corroborate the existence of the identified SP100 we additionally performed ribosomal profiling for 

S. aureus grown under the exact same conditions. Ribosome profiling provides a snapshot of translation 

(46) and the position of the translating ribosomes can be assessed with codon precision (47). The 

sequencing reads, which represent ribosome-protected mRNA fragments (RPF), were mapped to the 

genome and translation profiles were generated. For 139 sORFs we detected RFPs. Thereby 38 were 

newly discovered with the presented workflow. For 15 additional sORFs, the obtained results were not 

significant because of insufficient numbers of reads within the predicted coding region; they would 

require other validation experiments. In case of sORFs embedded within protein coding regions at the 

same strand, we were not able to clearly assign RPFs. 29 sORFs, which were identified by the 

proteogenomics approach, showed no translational activity. Among them are 16 sORFs which are 

localized on three different lysogenic phages. It is interesting to note, that these phages are highly similar 

and since we only used uniquely mapped reads (i.e. mapping to only one position of the genome), it is 

likely that the RPFs were discarded for ambiguity. In sum, we have observed translational activity for 

the majority (75%) of the sORFs detected by our proteogenomics approach, validating the predictive 

power of the used MS data sets and translational databases in combination with the here developed 

proteogenomics tool Pepper for data analyses. (Tab. S4). 

 

3. Discussion 

Prediction and identification of proteins smaller than 100 aa is still very challenging both from 

computational and experimental point of view. To address this, we here developed a highly optimized 

and flexible data analysis pipeline for bacterial proteogenomics, covering all steps from (i) protein 

database generation, (ii) database search, (iii) peptide-to-genome mapping, and (iv) result 

interpretation. The workflow is based on our bacterial proteogenomics pipeline Pepper, extended by 

SALT, a genome translator generating protein and peptide databases using different methods (e.g., 

stop-to-stop or start-to-stop translation).  

To evaluate excellent experimental approaches for identification of SP100, we used a gel-based and a 

gel-free LC-MS/MS approach in combination with three different endopeptidases. Peptide identifications 

were obtained by MaxQuant using two different databases: a six-frame “stop-to-stop” translation of the 

reference genome sequence and the S. aureus Newman protein database additionally containing newly 

predicted proteins using sORF Finder algorithm. Only high-quality peptide identifications were accepted. 

At the current stage, we prefer the Orbitrap Fusion MS because of its higher sensitivity compared to the 

Orbitrap Velos MS. Among the prefractionation methods there is no clear favourite. Interestingly, using 

the 1D gel for protein fractionation, small proteins have been detected in almost all fractions indicating 

strong interactions with larger proteins. In addition, we tested the value of using different endoproteases 

for identification of SP100: trypsin, Lys-C and AspN. It became clear that AspN performing hydrolysis of 

peptide bonds at the amine site of aspartyl residues (48) was less efficient for identification of SP100. 

Peptides generated by AspN are more frequently acidic. Worthwhile emphasizing is the fact that the pI 

of 25% of the identified peptides using AspN was below four as compared to only 9% of the identified 
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peptides using Lys-C and trypsin. There is strong reason to believe that the number of basic peptides 

strongly impact identification of small proteins that tend to be more alkaline. For an improved 

identification of basic proteins it may thus be essential to consider protocols aiming at higher 

percentages of basic peptides. 

Our combined genome-wide proteogenomics approach enabled us to identify a set of putatively coding 

sOFRs of which a considerable number has not yet been described. Altogether, 185 soluble proteins 

with up to 100 aa and 70 of these were not covered by the used gene annotation. 19 of them were 

identified by at least two peptides. More than 80% were supported by at least two experimental 

approaches and 139 were actively translated.  

The most prominent known small proteins with less than 51 aa in S. aureus are phenol soluble modulins 

with 20 to 40 aa in length (31) and delta-hemolysin with 26 aa (32,49). Interestingly, five of six genes 

coding for phenol soluble modulins and the delta-hemolysin encoding gene are not present in the used 

genome annotation of S. aureus Newman and thus represent an excellent proof of concept for our 

proteogenomics pipeline. By applying our stringent identification criteria, we identified three α-type 

(sORFSaNew0026, sORFSaNew0027, sORFSaNew0028) and two ß-type phenol soluble modulins 

(sORFSaNew0078, a sORFSaNew0079) and delta hemolysin (sORFSaNew0013) (Fig. S1). With the 

exception of Psmα3, their cognate sORFs have been correctly predicted by Pepper on the basis of the 

identified peptides (31,32). For Psmα3 four different ORFs have been derived on the basis of the 

identified peptides. According to the criteria used for ORF ranking, two sORFs were assigned to orf 

class 19, one to class 20 and another one to class 21 (Tab. S1). If more than one predicted ORF belongs 

to the highest-ranked ORF class, Pepper favors the larger ORF. Because of valid experimental data 

regarding the N-terminus of Psmα3 (31), we must unfortunately note that this decision caused a wrongly 

predicted sORF and insistently shows the limits we still have for the correct annotation of the 5´-end of 

sORFs. The same might be true for further eight sORFs (Tab.S6). For most of them, however, the 

predicted ORFs with the same evaluation varied by only a few codons raising the question as to whether 

multiple start sites may be possible. Additional information provided by ribosomal profiling and MS based 

identification of N-terminal peptides are thus meaningful to improve ORF prediction. As we have no 

experimental data for translational start sites, it is certainly the best decision to take the longest ORF. In 

case of the two sORFs coding for Psmß1 and 2, the predicted N-termini of the proteins were supported 

by identifying the N-terminal peptides using MS. According to these data, Psmß2 exists in two forms: 

besides the protein starting with methionine, there is also a processed variant without methionine. We 

made similar observations for additional 14 small proteins. 

Recently, a complete reannotation of the S. aureus Newman genome sequence has been performed 

based on an automated computational analysis using gene prediction method: Protein Homology. As a 

result, the number of annotated sORFs with less than 100 aa increased significantly. Accordingly, 47 of 

the sORFs newly identified in the present approach can now be allocated to annotated ORFs in the S. 

aureus Newman data base available from NCBI (NC_ NC_009641.1; 2017-03-02) and the majority 

overlapped completely with the respective newly annotated genes. However, for 13 newly identified 

sORFs differences have been observed with respect to the length of the ORFs (Tab. S7). The end of 
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these ORFs is clearly defined by one of the three possible stop codons and with only one exception 

there are no deviations. In contrast, start sites may vary when multiple start sites are possible and 

selection of one of these start sites depends on the predicting algorithm used. For selection of the best 

ORF our analysis tool Pepper performs an ORF ranking based on the number of identified peptides, the 

nature of the start codon, the presence of a ribosomal binding site and the spacer between both. As 

aforementioned the length of the ORF is only relevant when there are two ORFs belonging to the highest 

ranked ORF class. Consequently, most of our predicted sORFs are shorter than the corresponding 

newly annotated ORFs. However, 12 ORFs are preceded by a ribosomal binding site. Of note, two of 

the sORFs (sORFSaNew0048, sORFSaNew0049) identified by our approach were assigned to a 

significantly larger gene (NWMN_RS04585), which is a pseudogene with many stop codons within the 

ORF (Fig. S2). Among the differently annotated genes is also hld (sORFSaNew0151). The sORF 

encoding delta-hemolysin predicted by Pepper results in a 26 aa protein which is in accordance to 

previously published data (49,50) (Tab. S7). 

Notably, one of the identified small proteins with 24 aa in length (sORFSaNew0036) was identical to the 

N-terminus of the peptide chain release factor encoded by the prfB gene in some S. aureus isolates. In 

sequenced S. aureus strains the length of the predicted PrfB varies between 291 to 369 aa. In S. aureus 

Newman, the annotated prfB gene codes for a 331-aa long protein. Insertion of thymidine at position 

810821 results in a frame shift and the ORF starting at position 810751 is prematurely terminated at 

position 810825, resulting in the mentioned 24 aa containing small protein. Automatic gene annotation 

identified the ATG codon at position 810866 as an alternative start for prfB. Using trypsinolysis, we 

identified two peptides belonging to the prematurely terminated sORF upstream of the annotated prfB. 

Moreover, we identified one peptide suggesting a 5´extension of the annotated prfB gene (Fig. S3) 

starting at 810803. For both sORFSaNew0036 and the extended prfB gene, translational activity has 

been confirmed with ribosomal profiling. To exclude that sequence errors may account for the divergent 

annotation of prfB in S. aureus Newman, we sequenced the locus and confirmed thymidine insertion at 

position 810821. Our proteogenomics data suggest translation of two independent ORFs coding for a 

small protein representing the N-terminal part of PrfB with 24 aa in length and an extended PrfB with 

352 aa (Fig. S3). At the current stage we cannot fully exclude that S. aureus Newman produces the 

native PrfB starting translation at position 810751 by reading through the nonsense mutation.  
The biochemical roles of most of the identified SP100 are yet to be determined as they still remained 

largely uncharacterized at molecular level. Colocalization of their encoding genes with already 

characterized genes, functional domains and localization of the proteins in the cell may provide first hints 

for the possible role of these proteins in cell´s physiology and virulence. Notably, 16% of the identified 

SP100 are associated with the prophages. 28 are encoded by φNM1, φNM2 or φNM4, which are 

members of the siphoviridae family and highly similar. Another two are encoded by φNM3 widely 

distributed among the human S. aureus isolates. Because of the high sequence similarities of φNM1, 

φNM2 or φNM4, 25 of the identified proteins are orthologues and were associated to 10 protein families. 

Among them are three orthologous proteins (sORFSaNew0014, sORFSaNew0070, sORFSaNew0134) 

with similarities to the transcriptional regulator RinB shown to be involved in int gene expression (51). 
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Moreover, we found orthologous proteins containing conserved domains with so far unknown function 

such as DUF1024 (sORFSaNew0013, sORFSaNew0069, sORFSaNew0135, sORFSaNew0148), 

DUF1108 (sORFSaNew0066, sORFSaNew0138, sORFSaNew0270) and DUF2483 

(sORFSaNew0010, sORFSaNew0137). Functional characterization of these particular proteins is of 

importance as it has been shown that these prophages play an essential role in S. aureus virulence (39) 

(Tab. S4). 

Some sORFs are proximal in sequence space to upstream or downstream genes encoding well 

characterized larger proteins with enzymatic activity such as peptidase, phosphoglyceroldiesterase, 

glycolsyl transferase and hydrolase. Hence, it is reasonable to hypothesize that the physiological activity 

of the newly identified small proteins might be associated with the activity of those larger proteins. 

Moreover, we identified five SP100 similar to cold shock proteins and four proteins belonging to toxin-

antitoxin systems. Most interestingly, almost half of the identified SP100 are basic implying a role in 

binding to more acidic cellular structures such as nucleic acids or phospholipids. Similar observations 

have been reported recently for small proteins identified in a simplified human gut microbiome (19). 

Future work will focus on characterizing these proteins. 

 

Here we present a highly intuitive proteogenomics tool that can be used to identify genes that are hardly 

predictable by automatic annotation algorithms as for instance very small proteins and to improve gene 

annotation of already annotated bacterial genomes. In addition, this tool is highly suitable for protein and 

ORF detection in not annotated bacterial genomes and can support initial genome annotation. 

Additionally, interesting features such as conservation, pI, GRAVY value, and molecular weight are 

provided for the resulting proteins (Fig. 5, Fig. 8, Fig. 9, Tab. S4).  

 

4. Methods 
4.1. Bacterial strains, cultivation conditions and cell lysis 

S. aureus Newman (35) was cultivated in complex medium (TSB) at 37°C and 120 rpm to an optical 

density at 540 nm (OD540) of 1 and 7. Cells were harvested by multiple centrifugation steps and disrupted 

by cell homogenization (FastPrep-24 ™, MP Biomedicals) (for details see (52)). All experiments have 

been performed with three biological replicates. The protein concentration was determined using the 

Roti-Nanoquant assay (Roth, Karlsruhe, Germany) and the protein solution was stored at -20°C. 

 

4.2. Fractionation of proteins and peptides and proteolytic cleavage 
4.2.1. Gel-based approach 

40 µg of cytoplasmic proteins were separated by one dimensional SDS polyacrylamide gel 

electrophorese (1D SDS PAGE) according to Laemmli (53) with the following modifications: the loading 

buffer consisted of 3.75% (v/v) glycerol, 1.25% (v/v) ß-mercaptoethanol, 0.6% (w/v) SDS, 0.0014% (w/v) 

bromophenol blue, 16.5 mM Tris-HCl (pH 6.8). The separation gel contained 12% (w/v) acrylamide gel 
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(with 0.32% bisacrylamide), 0.375 M Tris-HCL (pH 8.8), 0.255% (w/v) SDS, 0.062% (w/v) APS, and 

0.062% (v/v) TEMED and the stacking gel 5% (w/v) acrylamide (with 0.13% (w/v) bisacrylamide), 0.125 

M Tris-HCl (pH 6.8) 0.25% (w/v) SDS, 0.075% (w/v) APS, and 0.075% (v/v) TEMED.  

Proteins were fixed with 40% (v/v) ethanol and 10% (v/v) acetic acid for one hour and subsequently 

stained with colloidal coomassie (54) for one hour. In-gel digestion using trypsin and extraction of the 

peptides were carried out as described by Lerch et al. (54) with an additional extraction step using 

acetonitrile. 

For digestion with Lys-C, a buffer containing 25 mM TRIS/HCl and 1 mM EDTA (pH 8.5) was used. The 

applied enzyme concentration was 1/40 of the total protein concentration. Digestion of AspN was 

performed in 10 mM Tris-HCl (pH 8.0) with a final AspN concentration of 1/50 of the total protein 

concentration. 

 

4.2.2. Gel-free approach 

The gel-free approach was performed by applying tryptic in-solution digestion followed by an Oasis® 

HLB-SPE-cartridge purification and SCX-fractionation. In detail, 40 µg of crude protein extract were 

solved in 8 M urea and 2 M thiourea and adjusted to a final concentration of 6 M urea. After addition of 

1.6 µL of 5 mM DTT in 50 mM ammonium bicarbonate solution (pH 7.8), the protein solution was 

incubated for 30 min at room temperature. For alkylation, 1 µL of a freshly prepared 55 mM IAA in 50 

mM ammonium bicarbonate buffer was added to 10 µL of the protein solution and incubated for 20 min 

in the dark at room temperature. Subsequently, the solution was adjusted to a final concentration of 1 

mM CaCl2 and 1 M urea using CaCl2 solved in a 50 mM ammonium bicarbonate buffer. For digestion, 1 

µg trypsin (in 50 mM ammonium bicarbonate and 1 mM CaCl2) was applied for 50 µg protein. Digestion 

was performed for 12 h at 37°C with gentle agitation (50 rpm) and stopped by acidification to a pH value 

of ≤ 2.5 with 10% formic acid. 

For peptide purification, Oasis® HLB-SPE-cartridges (1cc, 10mg, Waters, Milford, MA, USA) were 

initially conditioned with acetonitrile and then with 0.5% formic acid in 60% acetonitrile. Subsequently, 

cartridges were equilibrated with two volumes of 0.5% formic acid. Samples were loaded on the 

cartridges; the flow-through was collected and again loaded on the cartridge. The peptides were washed 

five times with 0.5% formic acid (FA) and eluted twice with 0.85 ml 60% ACN 0.5% FA. Eluates were 

dried in a speedvac and frozen at -20 °C. 

SCX fractionation was done as described by Kummer et al. (55). To reduce the number of fractions to 

eight, peptide-containing fractions were combined. 

 

4.2.3. Peptide desalting 

ZipTips (C18, Merck Millipore, Billerica, MA, USA) were conditioned with 50% acetonitrile twice. 

Subsequently they were equilibrated three times with 0.1% FA in 5% acetonitrile. 10 µL of each peptide 

fraction (resolved in 20 µL 0.1% FA in 5% acetonitrile for 60 min) were loaded on the C18 matrix of the 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 25, 2020. ; https://doi.org/10.1101/2020.05.25.114132doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.25.114132


16 
 
 

tip by aspirating 10 times. Elution was performed three times by aspirating five times with 0.1% FA in 

60% acetonitrile in a new micro test tube. Samples were dried in a speedvac. 

 

4.3. Liquide chromatography coupled mass spectrometry (LC-MS/MS) 

For LC-MS/MS, each peptide fraction of a sample was solved in 16 µL of 0.1% FA in 3% acetonitrile for 

one hour, ultrasonicated in a water bath for 5 min and ultracentrifuged. 

 

4.3.1. Orbitrap Velos Pro MS 

LC-MS/MS runs with the Orbitrap Velos Pro MS (Thermo Fisher Scientific Inc, Waltham, MA USA) were 

done as described by Lerch and coworkers (54). 

 

4.3.2. Orbitrap Fusion MS 

LC-MS system and used columns are described by Bulitta and coworkers (56). A 200 min gradient was 

applied, starting with 3.7% buffer B (80% acetonitrile, 5% DMSO and 0.1% formic acid) and 96.3% buffer 

A (0.1% formic acid, 5% DMSO): 0–5 min 3.7% B; 5–125 min 3.7–31.3% B; 125–165 min 31.3–62.5% 

B; 165–172 min 62.5–90.0% B; 172–177 min 90% B; 177–182 min 90–3.7% B, 182–200 min 3.7% B. 

Primary Scans were performed at the Orbitrap in the profile modus scanning an m/z of 350-1800 with a 

resolution (full width at half maximum at m/z 400) of 120,000 and a lock mass of 445.1200. Using the 

Xcalibur software, the mass spectrometer was controlled and operated in the “top speed” mode, allowing 

the automatic selection of as much as posible twice to fourfold-charged peptides in a three-second time 

window, and the subsequent fragmentation of these peptides. In the non-targeted modus, primary ions 

(±10 ppm) were selected by the quadrupole (isolation window: 1.6 m/z), fragmented in the ion trap using 

a data dependent CID mode (top speed mode, 3 seconds) for the most abundant precursor ions with 

an exclusion time of 13 s and analyzed by the ion trap.  

 

4.4. sORF prediction and protein data base generation 

We applied nucleotide-composition based sORF prediction and used the sORF Finder algorithm in 

combination with different training sets. Our positive training set contained all annotated coding 

sequences from the S. aureus subsp. aureus strain Newman genome sequence (NC_009641.1; 

07/06/2013). In each case the positive training set was combined with sequences from all stable RNAs 

(sRNAs) encoded by the genome of S. aureus Newman or antisense sequences of all coding sequences 

as negative trainings sets. 

 

4.5. MS Data analysis and statistics 
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Analyses of the obtained MS and MS/MS data were performed using MaxQuant (Max Planck Institute 

of Biochemistry, Martinsried, Germany, www.maxquant.org, version 1.5.2.8) and the following 

parameters: peptide tolerance 5 ppm; a tolerance for fragment ions of 0.6 Da; variable modifications: 

methionine oxidation and acetylation at protein N-terminus, fixed modification: carbamidomethylation 

(Cys); a maximum of two missed cleavages and four modifications per peptide was allowed. For the 

identification of SP100, a minimum of one unique peptide per protein and a fixed false discovery rate 

(FDR) of 0.0001 for peptides and 0.01 for proteins was applied. The minimum score was set to 40 for 

unmodified and modified peptides, the minimum delta score was set to 6 for unmodified peptides and 

to 17 for modified peptides. All samples were searched against the S. aureus databases PRDB and 

TRDB with a decoy mode of reverted sequences and common contaminants supplied by MaxQuant. A 

protein was considerably reliable identified when it was detected in at least two biological replicates. 

For identification of non-annotated open reading frames based on identified peptides a proteogenomics 

tool has been developed that describes any identified peptide in the degenerated DNA code sequence. 

By this, exact matches within the reference genome can be found and, subsequently, filtered based on 

existing annotation and location. 

For protein quantification, labelfree quantification mode was selected using MaxQuant LFQ-intensities 

(57). 

Statistical analysis was performed with the Perseus software (Max Planck Institute of Biochemistry, 

Martinsried, Germany Version 1.5.2.6, www.maxquant.org). LFQ intensities were transformed into log2 

values and standardized using Z-score. To evaluate whether the amount of a given protein changed 

during growth in TSB medium (OD540=7 versus OD540=1), a permutation-based students t-test (p-value 

≤ 0.05) was applied. 

A protein was classified to be present exclusively in protein extracts of one of the two growth phases, if 

it was detected in at least two of three replicates, the raw intensities exceeded the detection limit four 

times and the raw intensities were below detection limit in all replicates of the respective growth phase. 

 

4.6. Phylogenetic and functional analyses 

For phylogenetic analyses we downloaded all complete genome sequences for S. aureus (n= 533) and 

staphylococci (n=695) from NCBI RefSeq (state of 03rd March 2020). All SP100 sequences were 

searched against the downloaded genome sequences using tblastn. Based on the best hit alignment to 

every genome, the identity related to the full query length was calculated. Only alignments sharing 95% 

identity with the full query sequence were considered. Based on this, relative species and genus 

conservation rates have been calculated. 

For functional analyses we searched all SP100 sequences against the eggnog database v5.0 using 

eggnog-mapper 2.0 (default parameter). The taxonomic scope was automatically adjusted to each query 

to ensure correct classification of phage proteins. Only functions from one-to-one orthology were 

transferred. 
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4.7. Ribosomal profiling 
4.7.1. Library preparation 

S. aureus cells from 30 ml culture grown in TSB medium to OD550=1 were harvested by rapid 

centrifugation and resuspended in 390 µl ice cold 20 mM Tris lysis buffer pH 8.8, containing 10 mM 

MgCl2 x 6 H2O, 100 mM NH4Cl, 20 mM Tris (pH 8.0), 0.4 % Triton-X-100, 4 U DNase, 0.4 µl Superase-

In (Ambion), 1mM chloramphenicol. Cells were disrupted by cell homogenization (FastPrep-24 ™, MP 

Biomedicals) with 0.5 ml glass beads (diameter 0.1 mm) for 30 s at 6.5 m/s followed by incubation on 

ice for 5 min. These steps were repeated twice. To remove cell debris, cell lysates were centrifuged and 

subsequently stored at -80°C and 100 A260 units of ribosome-bound mRNA fraction were subjected to 

nucleolytic digestion with 10 units/μl micrococcal nuclease (Thermofisher) in buffer with pH 9.2 (10 mM 

Tris pH 11 containing 50 mM NH4Cl, 10 mM MgCl2, 0.2% triton X-100, 100 μg/ml chloramphenicol and 

20 mM CaCl2). The rRNA fragments were depleted using the S. aureus riboPOOL rRNA oligo set 

(siTOOLs, Germany) and the library preparation was performed as previously described (58).  

 

4.7.2. Bioinformatic analyses of ribosomal profiling RNAs 

Raw sequencing reads were trimmed using FASTX Toolkit (quality threshold: 20) and adapters were 

cut using cutadapt (minimal overlap of 1 nt) and mapped to the genome version NC_009641.1 (NCBI, 

January 2020). Following extraction of reads mapping to rRNAs, the remaining reads were uniquely 

mapped to the reference genome using Bowtie, parameter settings: -l 16 -n 1 -e 50 -m 1 --strata –best 

y. Non-uniquely mapped reads were non-considered. 

 

5. Data Access 
The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium 

(http://proteomecentral.proteomexchange.org) via the PRIDE partner repository (59) with the dataset 

identifier PXD017932.  

Ribosome profiling data have been deposited within Gene Expression Omnibus (GEO) under accession 

number GSE150601. 
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9. Legends to the Figures 

Figure 1. Potential sORF frequencies in biological and permuted genome sequences. (A) 
Estimation of the proportion of false-positive sORFs in predictions based solely on start and 
stop codons: All potential ORF sequences (NCBI translation table 11; longest ORF variants preferred) 

were extracted from the genome sequence of S. aureus Newman and 1,000 permuted sequence 

derivatives showing the same nucleotide composition but in random order and can therefore be 

assumed to no longer contain any biological information. Resulting ORFs were binned based on their 

length. Bin sizes are shown for the genuine reference sequence (orange) and the permuted sequences 

(grey; as median) up to a maximum ORF length of 303bp (= 100aa). Especially small ORFs tend to 

occur randomly. (B) Impact of GC content on the number of spurious ORF: According to (A), bin 

sizes are given for genome sequences and their permuted sequence derivatives (n= 1,000; as median) 

with varying GC content. The real sequences are from xxx. 

Figure 2. Bacterial proteogenomics workflow provided by Salt and Pepper. (A) Creation of 
protein and peptide databases using Salt: Based on a FASTA file as input, Salt extracts all potential 

ORFs from a given (circular) genome sequence using different methods (stop to stop codon, start to 

stop codon). The resulting ORF sequences are then translated in silico into protein sequences that can 

be further digested using different in silico proteases (Tryspin, Chymotrypsin, Asp-N, Lys-C and 

Proteinase K). For each level (ORFs, proteins, peptides) individual FASTA files and tables (tab-

separated values, TSV) are created, listing various sequence-derived properties such as molecular 

weight or isoelectric points. (B) Proteogenomics analyses using Pepper:  Peptide to spectrum 

matches (PSMs) obtained from different samples are directly extracted from Maxquant evidence files 

(MQ). Different spectrum quality and replication criteria can be defined to restrict the analysis to highly-

reliable PSMs only. Respective coding sites are determined in a given (circular) genome sequence 

provided as FASTA file. The resulting DNA matches, that can be filtered e.g. by exclusivity,  are used to 

predict the putative open reading frames. Additional information such as potential ribosomal binding 

sites, gene synteny based on the reference genome annotation, and conservation in given sequence 

collections (provided as FASTA files) are collected. Different files are created to archive all analysis 

parameters (log file), results on peptide, DNA match, and ORF level (TSV), and an updated reference 

genome annotation integrating the identified DNA matches and ORFs (Genbank file; GB). (C) Results 
visualization: GB files created by Pepper can be used for results visualization using third-party software 

(here: Geneious Prime, Biomatters Ltd.). The genome sequence (black line) with coordinates is shown 

on top. Existing annotations are highlighted in yellow and green. ORFs with the highest coding potential 

regarding Pepper and potential ribosomal binding sites (rbs) are highlighted in red. DNA matches are 

show in light-red, if the respective peptide is not encoded elsewhere in the genome (exclusive match), 

or light-blue, if multiple coding sites exist for the respective peptide. 

Figure 3. Mass spectrometry (MS) based identification of small proteins in S. aureus Newman. 
The different experimental strategies that have been applied for identification of small proteins (SP100) 
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in S. aureus Newman are depicted. Cytoplasmic protein extracts of S. aureus Newman grown in TSB 

medium to an optical density of 1 and 7 were prepared from three biological replicates and aliquots of 

each replicate were used for the different experimental workflows.  

Figure 4. Comparison of the applied experimental strategies for small protein identification. 
Overlaps of identified SP100 are shown. (A) The impact of different prefractionation protocols (gelbased 

and gelfree), LC-MS instruments (Orbitrap Velos and Orbitrap Fusion MS) and databases (PRDB and 

TRDB) was analysed. To test the impact of protein/peptide prefraction methods, protein extracts were 

separated on a one-dimensional SDS gels followed by tryptic in-gel digestion of the proteins within the 

gel fragments for the gel-based approach. For the gel-free approach tryptic in-solution digestion of 

proteins followed by an Oasis® HLB-SPE-cartridge purification and SCX-fractionation has been 

performed. The resulting peptide fractions were subsequently analysed by a nanoAQUITY UPLC 

System coupled to an LTQ Orbitrap Velos Pro MS. To evaluate the impact of different LC-MS systems, 

an Orbitrap Fusion MS coupled to a Dionex Ultimate 3000 UPLC System and an LTQ Orbitrap Velos 

Pro coupled to a nanoAQUITY UPLC System have been used to analyse protein extracts pretreated by 

the gelbased approach. For MS data analyses, the two S. aureus Newman protein databases TRDB 

and PRDB have been used for each experimental strategy. Finally, considering all experimental 

strategies, SP100 identified using the TRDB were compared with those using the PRDB. (B) To study 

the impact of different proteases on small protein identification, protein extracts were pretreated by the 

gelbased approach. In gel digestion has been performed using trypsin, AspN and LysC and the resulting 

peptides analysed by a nanoAQUITY UPLC System coupled to an LTQ Orbitrap Velos Pro MS. For 

peptide identification TRDB and PRDB have been used. 

Figure 5. Characteristics of the identified SP100. 185 SP100 have been identified in S. aureus 

Newman using the different approaches. For each protein, the number of identified unique peptides (A), 

the isolelectric point (B), the molecular weight (C) and the hydrophobicity index Gravy (D) was 

determined. The number of proteins with the respective characteristic shown on the x axis are depicted 

in violin diagrams.  

Figure 6. Lengths of identified SP100. The violin plot shows the length distribtuion of annotated and 

novel SP100 experimentally validated in this study. The respective median is highlighted as dotted line. 

Figure 7. Functional classification of the identified SP100. Conserved protein domains were 

identified using the eggnog database. On the basis of this, 142 SP100 (78%) were successfully assigned 

to an eggnog orthologues cluster providing additional support for their existence by biological 

significance. 

Figure 8. Characteristics of not yet annotated SP100. (A) 69 SP100 were identified in S. aureus 

Newman, which were not covered by the used gene annotation. The encoding sORFs were derived by 

Pepper on the basis of the identified peptides and specific criteria concerning the translational start 

codon, the Shine Dalgarno sequence and the length of the spacer between both. (A) Distribution of 

different translational start codons between the newly predicted sORFs. (B) Characteristics of the 
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genome localization of the newly predicted sORFs: (i) intergenic regions, (ii) partly overlapping with 

another ORF at the same strand or at the complementary strand, and (iii) completely overlapping with 

another ORF at the same strand or at the complementary strand. 

Figure 9. Phylogenetic conservation of the identified SP100 at species and genus level. SP100 

were searched against the downloaded genome sequences using tblastn. Based on the best hit 

alignment to every genome, the identity related to the full query length was calculated. Only alignments 

sharing 95% identity with the full query sequence were considered. On the basis of these results, relative 

species and genus conservation rates have been calculated. 

Figure S1. psmα, psmß and hld loci in S. aureus Newman. Schematic presentation of the psmα, 

psmß and hld loci based on the annotation of the S. aureus Newman genome sequence (Access: 

NC_009641.1, BioProject: PRJNA58839, Publication date: 2013-07-06). Annotated genes are shown in 

light green and the derived coding sequence (CDS) in yellow. Matched unique peptides identified by 

MS/MS are depicted in dark green and the best ORF derived by Pepper on the basis of the identified 

unique peptides and additional features is depicted in dark red. In addition, orf types specified by Pepper 

are presented in orange and blue. Pepper analyses for digestion with AspN, LysC and trypsin are 

presented separately.  

Figure S2. The NWMN_RS04585 locus in S. aureus Newman. (A) Schematic presentation of the 

NWMN_RS04585 locus based on the annotation of the S. aureus Newman genome sequence (Access: 

NC_009641.1, BioProject: PRJNA58839, Publication date: 2017-03-02). Annotated genes are shown in 

light green and the derived coding sequence (CDS) in yellow. Matched unique peptides identified by 

MS/MS are depicted in dark green and the best ORF derived by Pepper on the basis of the identified 

unique peptides and additional features is depicted in dark red. In addition, orf types specified by Pepper 

are presented in orange. Pepper analyses for digestion with trypsin are presented. (B) Protein 

sequences of the identified proteins sORFSaNew0048 and sORFSaNew0049. Parts of the proteins 

identical to the original CDS of the pseudogene are marked in green. (C) Translational products of 

NWMN_RS04585 using all three forward reading frames from stop to stop codon. The coding sequence 

is interrupted by several stop codons. Translational products corresponding to the identified small 

proteins sORFSaNew0048 and sORFSaNew0049 are highlighted in red and blue. 

Figure S3. The prfB locus of S. aureus Newman. Schematic representation of the prfB locus based 

on the annotation of the S. aureus Newman genome sequence (Access: NC_009641.1, BioProject: 

PRJNA58839, Publication date: 2013-07-06). The derived coding sequence (CDS) is shown in yellow. 

Matched unique peptides identified by MS/MS are depicted in dark green and the best ORF derived by 

Pepper on the basis of the identified unique peptides and additional features is depicted in dark red. In 

addition, orf types specified by Pepper are presented in light red and blue. Pepper analyses for digestion 

with trypsin are presented.  
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Table 1. Filter and ranking options provided by Pepper. 
 
option description this 

study1 
 
PSM filter 
 --minsample <n> only PSMs identified in <n> or more samples or replicates will 

be considered 
2 

 --perrp  <n> only PSMs with a posterior error smaller than <n> are 
considered 

0.1 

 --score <n> only PSMs with a Andromeda score smaller than <n> are 
considered 

40 

 --no_msms PSMs without MS/MS data are not excluded - 
 --msms <f> only high-quality PSMs are considered based on MS/MS ions 

provided in file <f>2 
+ 

 --minintcov <n> only PSMs with a MS/MS intensity coverage of at least <n> 
are considered 

0.1 

 --seqfilter <f> only PSMs referring to a sequence listed in file <f> are 
considered 

- 

 
Coding site filter 
 --uniq_only multiple coding sites for the same PSM are excluded - 
 --uniq_only_smart multiple coding sites for the same PSM are excluded if they 

do not refer to a gene family3 
- 

1 filter <value> used in this study; + indicates that the respective option was used without any value;  -
indicates that the respective option was not used 

2 high-quality PSMs need to be supported by at least one MS/MS spectra meeting one of the following 
criteria: 

• at least 5 consecutive y- or b-ions 
• at least 4 y- and at least 4 y-ions 
• at least 4 b- and at least 4 b-ions 
• at least 4 b- and at least 4 y-ions 

3 a gene family is defined by 100% sequence identity including sequences of different lengths (gene 
truncations) 
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Table 2 Identified proteins and peptides using different endoproteases

protease
absolute 
number

average length 
(aa)

alkaline1 

(%)
absolute 
number

alkaline1 

(%)
absolute 
number alkaline1 (%)

absolute 
number

alkaline1 

(%)

Trypsin 11886 13 15.5 1696 22 233 19 116 41

LysC 3472 12 17.5 1256 17 106 14 76 37
AspN 6277 13 6.5 1330 16 107 3 56 21
1 pI ≥ 8

identifed proteins unique peptides SP100 identified SP100unique peptides
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