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Abstract 20 

Regulation of growth and cell size is crucial for the optimization of bacterial cellular function. So far, 21 

single bacterial cells have been found to grow exponentially, which implies the need for tight 22 

regulation to maintain cell size homeostasis. Here, we characterize the growth behavior of the apically 23 

growing bacterium Corynebacterium glutamicum using a novel broadly applicable inference method 24 

for single-cell growth dynamics. Using this approach, we find that C. glutamicum exhibits 25 

asymptotically linear single-cell growth. To explain this growth mode, we model elongation as being 26 

rate-limited by the apical growth mechanism. Our model accurately reproduces the inferred cell 27 

growth dynamics and is validated with elongation measurements on a transglycosylase deficient ΔrodA 28 

mutant. Finally, with simulations we show that the distribution of cell lengths is narrower for linear 29 

than exponential growth, suggesting that this asymptotically linear growth mode can act as a 30 

substitute for tight division length and division symmetry regulation. 31 

Introduction 32 

Regulated single-cell growth is crucial for the survival of a bacterial population. At the population level, 33 

fundamental laws of growth were revealed by Monod and Schaechter in the middle of the 20th century, 34 

such as the identification of distinct population growth phases (Monod 1949; Schaechter, Maaløe, and 35 

Kjeldgaard 1958). However, at the time growth behavior at the single-cell level remained elusive. This 36 

changed over the last decade, as evolving technologies enabled detailed measurements of single-cell 37 

growth dynamics. Extensive work was done on common model organisms, including Escherichia coli, 38 

Bacillus subtilis, and Caulobacter crescentus, revealing that for these species single cells grow 39 

exponentially (Taheri-Araghi et al. 2015; Mir et al. 2011; Iyer-Biswas et al. 2014; Yu et al. 2017; Godin 40 

et al. 2010).  41 

Such exponential growth is indeed expected if cellular volume production is proportional to the protein 42 

content (Amir 2014), as shown to be the case for E. coli (Belliveau et al. 2020). Importantly however, 43 

such a proportionality will only be present if cellular volume production is rate-limiting for growth. 44 
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Cells with different rate-limiting steps could display distinct growth behavior, but little evidence exists 45 

for such deviations from exponential growth (Santi et al. 2013; Priestman et al. 2017). A promising 46 

candidate for uncovering novel growth modes is the Gram-positive Corynebacterium glutamicum. This 47 

rod-shaped bacterium grows its cell wall exclusively at the cell poles, allowing, in principle, for 48 

deviations from exponential single-cell growth (Figure 1). The dominant growth mode depends on the 49 

rate-limiting step for growth, which is presently unknown for this bacterium. Non-exponential growth 50 

modes may have important implications for growth regulatory mechanisms: while exponential growth 51 

requires checkpoints and regulatory systems to maintain a constant size distribution (Mir et al. 2011), 52 

such tight regulation might not be needed for other growth modes. 53 

Corynebacterium glutamicum is broadly used as a production-organism for amino-acids and vitamins 54 

and also serves as model organism for the taxonomically related human pathogens Corynebacterium 55 

diphteriae and Mycobacterium tuberculosis (Hermann 2003; Antoine, Coene, and Cocito 1988; 56 

Schubert et al. 2017). A common feature of Corynebacteria and Mycobacteria is the existence of a 57 

complex cell envelope. The cell wall of these bacteria is a polymer assembly composed of a classical 58 

bacterial peptidoglycan (PG) sacculus that is covalently bound to an arabinogalactan (AG) layer 59 

(Alderwick et al. 2015). Mycolic acids are fused to the arabinose and form an outer membrane like 60 

bilayer, rendering the cell surface highly hydrophobic (Puech et al. 2001). The mycolic acid membrane 61 

(MM) is an efficient barrier that protects the cells from many conventional antibiotics.  62 

C. glutamicum's growth and division behavior is vastly different to that of classical model species. In 63 

contrast to rod-shaped firmicutes and γ-proteobacteria, where cell-wall synthesis is dependent on the 64 

laterally acting MreB, members of the Corynebacterianeae lack a mreB homologue and elongate 65 

apically. This apical elongation is mediated by the protein DivIVA, which accumulates at the cell poles 66 

and serves as a scaffold for the organization of the elongasome complex (Letek et al. 2008; Hett and 67 

Rubin 2008; Sieger et al. 2013) (Figure 1, 2A, B). Furthermore, a tightly regulated division-site selection 68 

mechanism is absent in this species. Without harboring any known functional homologues of the Min- 69 

and nucleoid occlusion (Noc) system, division typically results in unequally sized daughter cells 70 
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(Donovan et al. 2013; Donovan and Bramkamp 2014). Lastly, the spread in growth times between birth 71 

and division is much wider than in other model organisms, suggesting a weaker regulation of this 72 

growth feature (Donovan et al. 2013). These atypical growth properties suggest that this bacterium is 73 

an interesting candidate to test the universality of previously reported exponential growth laws. To 74 

reveal the underlying growth regulation mechanisms, it is necessary to study the elongation dynamics 75 

of C. glutamicum. 76 

Here, we measure the single-cell elongations within a proliferating population of C. glutamicum cells, 77 

and develop an analysis procedure to infer their growth behavior. We find that C. glutamicum deviates 78 

from the generally assumed single-cell exponential growth law. Instead, these Corynebacteria exhibit 79 

asymptotically linear growth. We develop a mechanistic model, termed the rate-limiting apical growth 80 

(RAG) model, showing that this anomalous elongation dynamics is consistent with the polar cell wall 81 

synthesis being the rate-limiting step for growth. Finally, we demonstrate a connection between mode 82 

of growth and the impact of single-cell variability on the cell size distribution of the population. For an 83 

asymptotically linear grower, these variations have a much smaller impact on this distribution than 84 

they would for an exponential grower, suggesting an evolutionary explanation for the lack of tight 85 

regulation of single-cell growth in C. glutamicum. 86 

87 
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 88 

Figure 1 Growth mode analysis for four possible rate-limiting steps for cellular volume growth in the 89 

apically growing C. glutamicum. Here, 𝑉 is the cellular volume, 𝐴 is the cell wall area, and 𝐶(𝑡) is the 90 

concentration of membrane building blocks in the cytoplasm. A constant cell width is assumed 91 

throughout, implying 
𝑑𝐴

𝑑𝑡
∝

𝑑𝑉

𝑑𝑡
 . A fixed production capacity per unit volume is assumed for the rate-92 

limiting steps 'cell mass production' and 'formation of cell wall building blocks'. For the rate-limiting 93 

step 'assembly of cell wall', a constant insertion area at the cell poles is assumed. For an analysis of the 94 

single-cell growth mode if cell wall building block formation is the rate-limiting step for growth, see 95 

Appendix 1. Cell mass production, specifically ribosome synthesis, has previously been indicated as the 96 

rate-limiting step for growth in E. coli (Belliveau et al. 2020; Scott et al. 2010; Amir 2014). Linear growth 97 

is observed if the rate-limiting step for volume growth is the cell wall assembly (shown here in a 98 

simplified representation). The protein DivIVA serves as a scaffold at the curved membrane of the cell 99 

pole for the recruitment of the Lipid-II flippase MurJ and several mono- and bi-functional trans-100 

peptidases (TP) and -gylcosylases (TG). In the process of elongation, peptidoglycan (PG) precursors are 101 
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integrated into the existing PG sacculus, which serves as a scaffold of the synthesis of the 102 

arabinogalactan-layer (AG) and the mycolic-acid bilayer (MM). 103 

Results 104 

Measuring elongation trajectories using microfluidic experiments 105 

To measure the development of single C. glutamicum cells over time, we established a workflow 106 

combining single-cell epifluorescence microscopy with semi-automatic image processing. Cells were 107 

grown in a microfluidic device. We used wild type cells and cells expressing the scaffold protein DivIVA 108 

as a translational fusion to mCherry. DivIVA is used as a marker for cell cycle progression, since it 109 

localizes to the cell poles and to the newly formed division septum in C. glutamicum (Letek et al. 2008; 110 

Donovan et al. 2013). 111 

For the choice of microfluidic device, we deviate from the commonly used Mother Machine (Long et 112 

al. 2013), which grows bacteria in thin channels roughly equaling the cell width. The Mother Machine 113 

is not ideally suited for C. glutamicum growth, as the characteristic V-snapping at division could lead 114 

to shear forces and stress during cell separation, affecting growth (Bertozzi et al. 2019). Indeed, in 115 

some cases the mother machine has been shown to affect growth properties even in cells not 116 

exhibiting V-snapping at division, due to mechanical stresses inducing cell deformation (Yang et al. 117 

2018). Therefore, we instead used microfluidic chambers that allow the growing colony to expand 118 

without spatial limitations into two dimensions for several generations (Figure 2C, D, Materials and 119 

Methods). Within the highly controlled environment of the microfluidic device, a steady medium feed 120 

and a constant temperature of 30 °C was maintained. We extracted bright-field- and fluorescent-121 

images over three-minute intervals, which were subsequently processed semi-automatically with a 122 

workflow developed in FIJI and R (Schindelin et al. 2012; R Development Core Team 2003). For each 123 

individual cell per time-frame, the data set contains the cell's length, area and estimated volume, the 124 

DivIVA-mCherry intensity profile, and information about generational lineage (Figure 2E-G). We used 125 
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these data sets to further investigate the growth behavior of our bacterium. Thus, using this procedure, 126 

we obtained data sets containing detailed statistics on single-cell growth of C. glutamicum. 127 

For subsequent analysis, the measured cell lengths were used, because of their low noise levels as 128 

compared to other measures (Appendix 2-Figure 1B). Importantly, the increases in cell length are 129 

proportional to the increases in cell area (Appendix 2-Figure 1A), suggesting that cellular length 130 

increase is also proportional to the volume increase. This proportionality is expected since the rod-131 

shaped C. glutamicum cells insert new cell wall material exclusively at the poles, while maintaining a 132 

roughly constant cell width over the cell cycle (Schubert et al. 2017; Daniel and Errington 2003).  133 
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 134 

Figure 2 Experimental procedure and image analysis. (A, left) Phase contrast image of C. glutamicum 135 

in logarithmic growth phase, indicating the variable size of daughter cells. (A, right) HADA labeling of 136 

nascent peptidoglycan (PG), indicating the asymmetric apical growth where the old cell-pole always 137 

shows a larger area covered compared to the new pole. The labeling also reveals the variable septum 138 

positioning; Scale bar: 2 µm (B) Schematic showing the generation dependent sites of PG synthesis in 139 
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C. glutamicum, including the maturation of a new to an old cell-pole. (C) Illustration of the microfluidic 140 

device for microscopic monitoring of a growing colony. (E) Example screen-shot of the developed 141 

method to extract individual cell cycles from a multi-channel time-lapse micrograph. The left panel 142 

shows a merging of the bright-field channel and the mCherry-tagged DivIVA together with an individual 143 

ID# that is assigned to cells right after division. The black dots in the right panel indicate the new cell 144 

pole. (E) Example of an extracted individual cell cycle from birth (left) until prior to division (right), 145 

showing the bright-field (top), the orientation (middle) and the localization of mCherry-tagged DivIVA 146 

(bottom). (F) Example of the developed single cell analysis algorithm, measuring the length according 147 

to the cell’s geometry, as well as the cell’s area and the septum position relative to the new pole. (G) 148 

Dendrogram providing the rationale for identification of single cells in a growing colony. 149 

Population-average test suggests non-exponential growth for C. glutamicum 150 

A standard way of characterizing single-cell bacterial growth, is to determine the average relation 151 

between birth length 𝑙b and division length 𝑙d (Amir 2014). For C. glutamicum, we find an 152 

approximately linear relationship between these birth and division lengths, with a slope of 0.91±0.16 153 

(2XSEM, Figure 3 A). This indicates that on a population level, C. glutamicum behaves close to the adder 154 

model, in which cells on average grow by adding a fixed length before dividing (Jun and Taheri-Araghi 155 

2015; Amir 2014).  156 

To investigate the growth dynamics from birth to division, we first tested if our cells conform to the 157 

generally observed exponential mode of single-cell growth. To this end, we applied a previously 158 

developed analysis on bacterial elongation data (Logsdon et al. 2017), by plotting ln (
𝑙d

𝑙b
) versus the 159 

growth time (Figure 3B). For an exponential grower, with the same exponential growth rate  for all 160 

cells, the averages of ln (
𝑙d

𝑙b
) per growth time bin are expected to lie along a straight line with slope  161 

intersecting the origin. By contrast, there appears to be a systematic deviation from this trend, with 162 

cells with shorter growth times lying above this line and cells with longer growth times lying below it, 163 

suggesting non-exponential elongation behavior. However, the significance and implications of these 164 
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deviations for single-cell growth behavior are not clear from this analysis. There are several quantities 165 

that could be highly variable between cells that are averaged out in this representation, such as 166 

possible variations in exponential growth rate as a function of birth length, or variations in growth 167 

mode over time. Thus, a more detailed analysis of the growth trajectories is needed to rule out 168 

exponential growth, and to quantitatively characterize the growth dynamics. 169 

The variability of key growth parameters is not easily extracted from individual growth trajectories due 170 

to the inherent stochasticity of the elongation dynamics and measurement noise (Figure 3C). In fact, it 171 

has been estimated that to distinguish between exponential and linear growth for an individual 172 

trajectory, the trajectory needs to be determined with an error of ~6% (Cooper 1998). Distinguishing 173 

subtler growth features may require an even higher degree of accuracy, which is presently 174 

experimentally unavailable (Appendix 3). Therefore, an analysis method is needed that is less noise-175 

sensitive than an inspection of the single-cell trajectories, but simultaneously does not average out 176 

potentially relevant growth features such as time-dependence and birth length variability. 177 

 178 

Figure 3 Population-level and single-cell level growth analysis (A) Birth length 𝑙b plotted against 179 

division length 𝑙d for all measured cells, together with a linear fit (blue line), which has a slope of 180 

0.91±0.16. Grey solid line: best fit assuming a pure sizer (slope 0). Grey dashed line: best fit assuming 181 

a pure adder (slope 1). The 95% confidence intervals of the linear fit, obtained via bootstrapping, are 182 

indicated by the blue shaded region. (B) Generation time versus ln (
𝑙d

𝑙b
) for all cells (blue dots) and the 183 

average per generation time (orange squares), with the standard error of the mean shown for all 184 

generation times for which at least 3 data points are available. The orange line represents a linear fit 185 
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through the generation time averages that passes through the origin. For exponential growth, the 186 

averages would lie along this line, and the slope would be equal to the exponential growth rate.  187 

(C) Growth trajectory for a single cell (upper panel), together with its derivative for each measurement 188 

interval (lower panel). Fits to the derivative are shown for linear growth (black dash-dotted line) and 189 

exponential growth (red dashed line).  190 

Growth-inference method yields average elongation rate curves  191 

To obtain quantitative elongation rate curves as a function of time and birth length, despite the high 192 

degree of individual variation, we developed a data analysis procedure that exploits the noise-reducing 193 

properties of multiple-cell conditional averaging. The key idea is to obtain an average dependence of 194 

the cellular length 𝐿(𝑡, 𝑙b ) on the time 𝑡 since birth and birth length 𝑙b, by first obtaining the average 195 

dependence of 𝐿(𝑡, 𝑙b ) on 𝑙b for each discrete value of 𝑡 individually. This yields an average elongation 196 

curve for each birth length 𝑙b, without the need to perform inference on noisy 𝐿(𝑡) single-cell curves.  197 

The analysis procedure is as follows. First, for all cells in our data set, we determine the time since birth 198 

𝑡, the cellular length 𝐿 at time 𝑡, and the birth length 𝑙b.  Subsequently, we relate the length at time 𝑡 199 

to the birth length, yielding a series of scatter plots for each measurement time (Figure 4A). 200 

Importantly, these scatterplots suggest a simple apparently linear relationship between 𝐿 and 𝑙b. For 201 

each such plot, we thus make a linear fit through the data, yielding a family of curves 𝐿𝑡(𝑙b) for each 202 

time since birth 𝑡 (Figure 4B). Higher-order fitting functions result in a negligible improvement of the 203 

goodness-of-fit, while increasing the mean error on inferred elongation rates (Appendix 2-Figure 3). 204 

Note that for both purely linear and purely exponential growth, 𝐿(𝑡, 𝑙b ) would depend linearly on 𝑙b: 205 

for linear growth 𝐿(𝑡, 𝑙b )  =  𝛼𝑡 +  𝑙b , whereas for exponential growth 𝐿(𝑡, 𝑙b )  = 𝑙bexp(𝛼𝑡) 206 

(Appendix 2-Figure 6). From the family of relations 𝐿𝑡(𝑙b), we compute a series of points 207 

{𝐿(𝑡0, 𝑙b ), 𝐿(𝑡1, 𝑙b ), 𝐿(𝑡2, 𝑙b ), . . . }, yielding the average growth trajectory of a cell starting out at 208 

length 𝑙b (Figure 4C). Note, we must remove a bias in the 𝑙b associated with each average trajectory, 209 

arising from measurement noise in the cell lengths at birth (Appendix 4). In summary, this procedure 210 
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allows us to obtain an unbiased interference of the average elongation trajectories as a function of the 211 

cell’s birth length.  212 

213 

Figure 4 Average elongation curve inference procedure. (A) For each cell, the length 𝐿(𝑡) at different 214 

times 𝑡 since birth is plotted as a function of birth length 𝑙𝑏. A linear fit of the resulting “wave front” is 215 

performed for each time 𝑡. This allows us to determine average cell length 𝐿(𝑡, 𝑙𝑏) at time 𝑡 as a 216 

function of birth length 𝑙𝑏. (B) 3D representation of the inference method of average length 217 

trajectories, with the added length 𝐿(𝑡, 𝑙𝑏) − 𝑙𝑏 on the z-axis. Elongation trajectories for individual cells 218 

are indicated in grey, linear fits through all cell lengths at each timestamp are indicated by green lines. 219 

The orange lines represent four sample average length trajectories, obtained by connecting all values 220 

of the green lines associated with one birth length. Dotted lines represent regimes where averages are 221 

biased due to dividing cells. (C) Average elongation trajectories obtained from the fits shown in (A) for 222 

a range of birth lengths, starting at 1.9 m with steps of 0.1 m (solid lines). The dashed lines represent 223 

regions where the inferred elongation curves are biased due to dividing cells, and are excluded from 224 
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subsequent analysis. (D) Cumulative fraction of cells divided as a function of grow time. (E) Elongation 225 

trajectories for cells with birth lengths close to 2.5 m (purple dashed lines) and birth lengths close to 226 

2.1 m (black dashed lines) together with their respective inferred average trajectories (purple solid 227 

line and black solid line). 228 

Elongation rate inference reveals asymptotically linear growth mode 229 

Our inference approach yields the functional dependence of the average added length on growth time 230 

and birth length. We find that the average length steadily increases initially, but levels off and shows 231 

pronounced fluctuations for larger growth times (Figure 4C). This late-time behavior (dashed lines in 232 

Figure 4C) is caused by decreasing cell numbers due to division events (Figure 4D), which also 233 

introduces a bias in the averaging procedure. After the first division event, the average inferred growth 234 

would be conditioned on the cells that have not divided yet. For a given birth length, faster-growing 235 

cells divide earlier than slower-growing cells (Appendix 2-Figure 2) causing this conditional average to 236 

underestimate cellular elongation rates for the whole population after the first division. Because our 237 

aim is to infer elongation curves that characterize the whole population, ranging from slow to fast 238 

growers, for further analysis only the part of each trajectory before the first division event is used 239 

(Figure 4D). Sub-population elongation curves can also be obtained that extend past the first division 240 

event, but only if the entire analysis for these curves is performed only on these slower-dividing cells 241 

(Appendix 2-Figure 4).  242 

We obtain elongation rate curves by taking a numerical derivative of smoothed growth trajectories 243 

(Appendix 5). To determine the associated error margins of the elongation rates, we use a custom 244 

bootstrapping algorithm (Efron 1979). The resulting 2 bounds are shown as semitransparent bands. 245 

Despite the high noise level of individual elongation trajectories, the inferred average elongation rates 246 

have an error margin of around 8%. Thus, our approach robustly infers average elongation trajectories 247 

from single-cell growth data. Elongation rates of cells with larger birth length are consistently higher 248 

than the elongation rates of cells with smaller birth length. Strikingly, the elongation rate curves 249 
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initially increase, but then gradually level off towards a linear growth mode (Figure 5). We note a slight 250 

difference in the cell elongation rates between the strain expressing DivIVA-mCherry (Figure 5A) and 251 

wild type cells (Figure 5B). Importantly, this difference does not qualitatively change the mode of 252 

growth, but does show that a translational fusion to DivIVA tends to lower elongation rates.  253 

To test the performance of our proposed inference method, we simulated a population of growing 254 

cells with a presumed growth mode from which we sample cells lengths as in our experiments, 255 

including measurement noise (Appendix 3). We ran simulations for cells performing linear growth, 256 

exponential growth, and the growth mode inferred here for DivIVA-labelled cells (Figure 5A). We find 257 

that our inference method is able to recover the input growth mode with high precision in all cases 258 

(Appendix 4, Appendix 6), demonstrating the accuracy and internal consistency of our inference 259 

method.  260 

 261 

Figure 5 Inferred average elongation rates. (A) Average elongation rates for four birth lengths (dots), 262 

for the DivIVA labelled cells. The 2 confidence intervals obtained by bootstrapping are indicated by 263 

the shaded areas. Vertical dashed lines: average onset of septum formation per birth length.  264 

(B) Average elongation rate trajectories for the wild-type cells, confidence intervals shown as in (A). 265 

(C) Average elongation rate trajectories for the rodA mutant, confidence intervals shown as in (A).   266 
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Onset of the linear growth regime does not consistently coincide with septum formation 267 

A central feature of the obtained elongation rate curves is a transition from an accelerating to a linear 268 

growth mode after approximately 20-25 minutes (Figure 5). One possibility is that this levelling off is 269 

connected with the onset of division septum formation. Given that the FtsZ-dependent divisome 270 

propagates the invagination of the septum under the consumption of cell wall precursors (e.g. Lipid-271 

II), we hypothesized that the appearance of the additional sink for cell-wall building blocks could lead 272 

to coincidental leveling-off of the elongation rates (Scheffers and Tol 2015). To test this hypothesis, we 273 

used the moment of a sharp increase in the average DivIVA-mCherry signal at the cell center as a proxy 274 

for the moment of onset of septum formation (Appendix 2-Figure 7): the inward growing septum 275 

introduces a negative curvature of the plasma membrane, leading to the accumulation of DivIVA 276 

(Lenarcic et al. 2009; Strahl and Hamoen 2012). We observe that onset of septum formation does not 277 

consistently coincide with the moment at which the elongation rate levels off (Figure 5 A): for smaller 278 

cells the onset of septum formation occurs much later. Therefore, it seems implausible that the 279 

observed linear growth regime is due the septum acting as a sink for cell-wall building blocks. 280 

Polar cell wall formation is the rate-limiting step for growth, leading to a linear growth regime 281 

To provide insight into the anomalous single-cell growth behavior, we model single-cell elongation as 282 

being rate-limited by the apical cell wall formation mechanism. To formulate this rate-limiting apical 283 

growth (RAG) model, we first consider the biochemical pathway that leads to cell wall formation in C. 284 

glutamicum, as illustrated in Figure 1. The key process for cell wall formation in C. glutamicum is polar 285 

peptidoglycan (PG) synthesis. PG intermediates are provided by the substrate Lipid-II, and the 286 

integration of new material into the PG-mesh is mediated by transglycosylases (TGs) located at the cell 287 

pole. At the TG sites, Lipid-II is translocated across the plasma membrane by the Lipid-II flippase MurJ 288 

(Sham et al. 2014; Kuk, Mashalidis, and Lee 2017; Butler et al. 2013). After PG building blocks provided 289 

by Lipid-II are incorporated into the existing cell wall by transglycolylation, transpeptidases (TP) 290 

conduct the crosslinking of peptide subunits, which contributes to the rigidity of the cell wall (Scheffers 291 
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and Pinho 2005; Valbuena et al. 2007; Schleifer and Kandler 1972). During growth, the area of the PG 292 

sacculus, and thus the number of TG sites, is extended by RodA and bifunctional penicillin binding 293 

proteins (PBPs), recruited by DivIVA (Letek et al. 2008). 294 

To model this growth mechanism, we assume that the rate of new cell wall formation is proportional 295 

to the number of TG sites 𝑁(𝑡). We describe the interaction between Lipid-II and TG sites by Michaelis-296 

Menten kinetics (Figure 6A). Specifically, if the cell length added per unit time is proportional to the 297 

cell wall area added per unit time, we find 298 

 𝑑𝐿(𝑡)

𝑑𝑡
 =  𝛼

 𝐶(𝑡)𝑁(𝑡)

𝐾𝑚 + 𝐶(𝑡)
 (1) 

with 𝐿(𝑡) the cell length at time 𝑡, 𝐶(𝑡) the concentration of Lipid-II, 𝐾𝑚 the Michaelis constant for 299 

this reaction, and 𝛼 is a proportionality constant.  300 

To gain insight into the cell-cycle-dependence of 𝑁(𝑡) and 𝐶(𝑡), we made use of the cyan fluorescent 301 

D-alanine analogue HADA (see Material and Methods) to stain newly inserted peptidoglycan. 302 

Exponentially growing C. glutamicum cells were labelled with HADA for 5 minutes before imaging. The 303 

HADA stain will mainly appear at sites of nascent PG synthesis. As expected, HADA staining resulted in 304 

a bright cyan fluorescent signal at the cell poles and at the site of septation. Still images were obtained 305 

with fluorescence microscopy and subjected to image analysis (Figure 2A, 6B, Material and Methods).   306 

We first verify that the HADA intensity profile at the cell poles can be used as a measure for the 307 

peptidoglycan insertion rate. To do this, we assume that the HADA intensity profile has two relevant 308 

contributions: fluorescent probe present in the cell plasma, and fluorescent probe attached to newly 309 

inserted peptidoglycan. We use the minimum of the HADA intensity profile, consistently located 310 

around mid-cell, as an estimate of the contribution from the cell plasma in each cell, and subtract this 311 

from the entire cellular profile to obtain the corrected HADA profile (Appendix 2-Figure 8). We then 312 

define the polar regions where we use the corrected HADA intensity to measure newly inserted 313 

peptidoglycan as the portions of the cell within 0.78 m of the cell tips. Our results are, however, not 314 
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strongly dependent on this polar region definition (Appendix 2-Figure 10). Subsequently, we compute 315 

a moving average of the corrected polar HADA intensity as a function of cell length (Figure 6C). These 316 

polar HADA intensities are approximately proportional to the inferred average single-cell elongation 317 

rates (Appendix 7), as shown in the inset of Figure 6C. Since a proportional relationship between 318 

elongation rate and peptidoglycan insertion rate is expected, this supports our interpretation of the 319 

corrected HADA polar intensity as the peptidoglycan insertion rate.  320 

Analyzing the HADA intensity profile for smaller segments within the polar region, we find that the 321 

increase in intensity is unevenly distributed (Figure 6D). Close to the cell tip, the HADA intensity 322 

remains approximately constant across cell lengths, whereas a linear increase over cell lengths is seen 323 

further from the tip.  Considering the implications of these measured intensities for 𝐶(𝑡) and 𝑁(𝑡) 324 

within our model in Eq. (1), we argue for a scenario where either 𝐶(𝑡) is constant or 𝐶(𝑡) ≫ 𝐾𝑚. Our 325 

reasoning is as follows. From Eq. (1), we see that the approximately constant intensity at the cell tip 326 

can be produced in two ways: (1) 𝐶(𝑡) ≫ 𝐾𝑚 or 𝐶(𝑡) is constant across cell lengths, and the number 327 

of transglycosylases at the tip 𝑁tip(𝑡) is constant, or (2) 𝑁tip(𝑡) and 𝐶(𝑡) anticorrelate in such a way 328 

to produce constant insertion. However, we consider constant 𝑁tip(𝑡) as biologically the most 329 

plausible scenario. This is supported by noting that the concentration of Lipid-II is the same directly 330 

before and after division, such that 𝐶(𝑡), and by implication 𝑁tip(𝑡), is similar for the shortest and the 331 

longest cell lengths (Appendix 2-Figure 9). In our subsequent analysis, we will therefore assume that 332 

either 𝐶(𝑡) is constant, or 𝐶(𝑡) ≫ 𝐾𝑚. This implies that 
𝑑𝐿(𝑡)

𝑑𝑡
 in Eq. (1) is directly proportional to 𝑁(𝑡).  333 

To derive an expression for 𝑁(𝑡), we first note that the old and new cell pole in the cell need to be 334 

treated differently. We assume the number of polar TG-sites to saturate within one cellular lifecycle, 335 

such that the new pole initiates with 𝑁(𝑡) below saturation, while the old pole - inherited from the 336 

mother cell - is saturated. Letting the number of TG sites increase proportional to the number of 337 

available sites, we arrive at the following kinetic description for 𝑁(𝑡): 338 
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𝑑𝑁(𝑡)

𝑑𝑡
 =  𝛽 (𝑁max − 𝑁(𝑡))    (2) 

Here, 𝑁max  is the maximum number of sites at the cell poles, and 𝛽 is a rate constant. This result, 339 

together with Eq. (1), defines our RAG model. The predicted elongation rates provide a good fit to the 340 

experiment for all studied genotypes (Figure 6E-G), although the data appear to exhibit a stronger 341 

inflection.  342 

Instead of assuming a constant recruitment of TG enzymes, we can construct a more refined model 343 

that takes TG recruitment dynamics into account. There is evidence that transglycosylase RodA and 344 

PBPs are recruited to the cell pole via the curvature-sensing protein DivIVA (Letek et al. 2008; Sieger 345 

et al. 2013). As shown in (Lenarcic et al. 2009), DivIVA also recruits itself, leading to the exponential 346 

growth of a nucleating DivIVA cluster. Therefore, we let the recruitment rate of TG enzymes be 347 

proportional to the number of DivIVA proteins 𝑁D(𝑡) = 𝑁D(0)𝑒𝛾𝑡 . This results in a modified kinetic 348 

description for 𝑁(𝑡) (Eq. (2)): 349 

 𝑑𝑁(𝑡)

𝑑𝑡
 =  𝛽 𝑒𝛾𝑡(𝑁max − 𝑁(𝑡))     (3) 

This refined model can capture more detailed features of the measured elongation rate curves (Figure 350 

6E-G), including the stronger inflection, with an additional free parameter, 𝛾, encoding the self-351 

recruitment rate of DivIVA.  352 

The central assumption of our RAG model is that the growth of the cell poles, mediated via 353 

accumulation of TG enzymes, is the rate-limiting step for cellular growth. To test this assumption, we 354 

repeated our experiment with a rodA knockout (Sieger et al. 2013). The SEDS-protein RodA is a mono-355 

functional TG (Meeske et al. 2016; Emami et al. 2017; Sjodt et al. 2018), whose deletion results in a 356 

phenotype with a decreased population growth rate in the shaking-flask (Sieger et al. 2013). The cells' 357 

viability is nonetheless backed up by the presence of bifuncional class A PBPs capable of catalyzing 358 

transglycoslyation and transpeptidation reactions. We expect this knockout to lower the efficiency of 359 

polar cell wall formation, thus slowing down the rate-limiting step of growth. Specifically, we expect 360 
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the knockout of rodA to mainly affect the efficiency of Lipid-II integration into the murein sacculus. 361 

Within our RAG model, this translates to a lowering of the cell wall production per transglycosylase 362 

site 𝛼. This would imply elongation rate curves of similar shape for the ΔrodA mutant, only scaled down 363 

by a factor 𝛼WT/𝛼ΔrodA. Indeed, we observe such a scaling down of the elongation rate curves (Figure 364 

5C), lending further credence to our model for C. glutamicum growth. 365 

A striking feature observed across growth conditions and birth lengths, is the onset of a linear growth 366 

regime after approximately 20 minutes (Figure 5A-C). The robustness of this timing can be understood 367 

from the RAG model: the regime of linear growth is reached via an exponential decay of the number 368 

of available TG sites until saturation is reached. This exponential decay makes the moment of onset of 369 

the linear growth regime relatively insensitive to variations in 𝑁(0) and 𝑁max. Specifically, from  370 

Eq. (2), it can be shown that the difference between 𝑁(𝑡) and 𝑁max is halved every ln(2)𝛽 minutes, 371 

which amounts to ~8 minutes given fitted value of 𝛽 (Appendix 8-Table 1).  372 

Finally, our RAG model makes a prediction for the degree of transglycosylase saturation of the cell 373 

poles at birth, relative to the saturation in the linear growth regime. We find that this saturation is 374 

comparable between wild-type and the ΔrodA mutant (~65% on average), but significantly higher for 375 

DivIVA labelled cells (~80% on average) (Appendix 8 Tables 1 and 2). This suggests that the number of 376 

transglycosylase sites at birth is relatively high in the DivIVA labelled cells. 377 
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 378 

Figure 6 Modelling of average elongation rates using HADA staining results. (A) Schematic depicting  379 

cell wall formation via Lipid-II and transgrlycosylases (TG's). The corresponding Michaelis-Menten 380 

equation describes the change of length over time as function of the Lipid-II concentration 𝐶(𝑡) and 381 

the number of the TG sites 𝑁(𝑡). (B) Demograph of C. glutamicum cells stained with HADA. Cell are 382 

ordered by length, with the stronger signal oriented downwards. (C) Average elongation rate as a 383 

function of cell length (red), predicted from obtained average elongation rate curves (Appendix 7), 384 

together with the average HADA staining intensity at the cell pole after background correction (blue). 385 

The cell pole is defined here as the region within 0.77 µm (60 pixels) of the cell tip. The shaded regions 386 

indicate the 2XSEM bounds. For both curves, a moving average over cells within 0.7 µm of each x-387 

coordinate is applied over the underlying data. Inset: predicted average elongation rate versus average 388 
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HADA staining intensity (blue dots). A linear fit through the result (red line) is consistent with a 389 

proportional relationship. (D) Average HADA intensity as a function of cell length, shown for four 390 

regions close to the cell tip. A moving average over cells within 0.7 µm of each x-coordinate is applied 391 

over the underlying data. (E-G) Dots: average elongation rate curves as shown in Figure 5A. Solid lines: 392 

best fit of elongation model from Eq. (2), which assumes constant transglycosylase recruitment. 393 

Dashed lines: best fit of elongation model from Eq. (3), which assumes an exponential increase of 394 

transglycosylase recruitment. 395 

Birth length distribution of linear growers is more robust to single-cell growth variability 396 

After obtaining average single-cell growth trajectories, we next asked how this growth behavior at the 397 

single cell level affects the growth of the colony. It was shown that asymmetric division and noise in 398 

individual growth times results in a dramatic widening of the cell-size distribution for a purely 399 

exponential grower (Marantan and Amir 2016). For an asymptotically linear grower, however, we 400 

would expect single-cell variations to have a much weaker impact.  401 

To quantify the difference between asymptotically linear growth and hypothetical exponential growth 402 

for C. glutamicum, we performed population growth simulations for both cases. For the asymptotically 403 

linear growth, we assumed the elongation rate curves obtained from our model. For exponential 404 

growth, we assumed the final cell size to be given by 𝑙d  =  𝑙𝑏 exp(𝛼 (𝑡t + Δ𝑡)) + ∆𝑙, with 𝛼 the 405 

exponential elongation rate, 𝑡t the target growth time, Δ𝑡 a time-additive noise term and ∆𝑙 a size-406 

additive noise term. All growth parameters necessary for the simulation were obtained directly from 407 

the experimental data (Appendix 9). From this simulation, the distribution of initial cell lengths was 408 

determined for each scenario.  409 

The resulting distribution of birth lengths for the asymptotically linear growth case closely matches the 410 

experimentally determined distribution (Figure 7). By contrast, the distribution for exponential growth 411 

is much wider, and exhibits a broad tail for longer cell lengths. This suggests a strong connection 412 

between growth mode and the effect of individual growth variations on population statistics.  413 
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C. glutamicum has a high degree of variation of division symmetry (Appendix 9-Figure 1C) and single-414 

cell growth times, but due to the asymptotically linear growth mode, the population-level variations 415 

in cell size are still relatively small. 416 

 417 

Figure 7 Simulation of population growth for asymptotically linear and exponential growth. Left: 418 

birth length distribution for simulated asymptotically linear growth (blue dash-dotted line), and for 419 

simulated exponential growth (orange dashed line). For both simulations, all relevant growth 420 

parameters and distributions are obtained directly from the experimental data. Black dots: 421 

experimental birth length distribution. Right: sample of 11 cells from the exponential and 422 

asymptotically linear growth simulations, color coded according to length.  423 

Discussion 424 

By developing a novel growth trajectory inference and analysis method, we showed that C. glutamicum 425 

exhibits asymptotically linear growth, rather than the exponential growth generally assumed for most 426 

species. The obtained elongation rate curves are shown to be consistent with a model of apical cell 427 

wall formation being the rate-limiting step for growth. The RAG model is further validated by 428 

experiments with a ΔrodA mutant, in which the elongation rate curves look functionally similar, but 429 

with a downward shift compared to wild type (Figure 5B, C), as expected based on our model. For  430 
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C. glutamicum, apical cell wall formation is a plausible candidate for the rate-limiting step of growth, 431 

because synthesis of the highly complex cell wall and lipids for the mycolic acid membrane is cost 432 

intensive and a major sink for energy and carbon in Corynebacteria and Mycobacteria (Brennan 2003).  433 

An analysis of elongation rates as a function of time and birth length has previously been done in  434 

B. subtilis by binning cells based on birth length (Nordholt, van Heerden, and Bruggeman 2020). 435 

Applying this method to our data set yields elongation rates averaged over cells within a binning 436 

interval (Appendix 2-Figure 5). Averaging our inferred elongation rates over the same bins, we find the 437 

two methods to yield consistent results. The binning method however involves a tradeoff: a smaller 438 

bin width results in a larger error on the inferred elongation rates, whereas a larger bin width averages 439 

out all variation within a larger birth length interval. Our method does not suffer from this binning-440 

related tradeoff, and it provides detailed  elongation rate curves at any given birth length. 441 

Our proposed growth model shares some similar features to recent experimental observations on 442 

polar growth in Mycobacteria (Hannebelle et al. 2020). Polar growth was shown to follow 'new end 443 

take off' (NETO) dynamics (Hannebelle et al. 2020), in which the new cell pole makes a sudden 444 

transition from slow to fast growth, leading to a bilinear polar growth mode. In our proposed growth 445 

model for C. glutamicum however, the new pole gradually increases its average elongation rate before 446 

saturating to a constant maximum. The deviation of C. glutamicum from NETO dynamics can also be 447 

seen by comparing each of the pole intensities in the HADA staining experiment, which does not show 448 

any signatures of NETO-like growth (Appendix 2-Figure 11). It remains unclear which molecular 449 

mechanisms produce the differences in growth between such closely related species. However, the 450 

mode of growth described here for C. glutamicum might well be an adaption to enable higher growth 451 

rates.  452 

To investigate the implications of our inferred single-cell growth mode for cell-size homeostasis 453 

throughout a population of cells, we performed simulations of cellular growth and division over many 454 

generations. We found that our asymptotically linear growth model accurately reproduces the 455 

experimental distribution of cell birth lengths. By contrast, a model of exponential growth predicts a 456 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 5, 2021. ; https://doi.org/10.1101/2020.05.25.115055doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.25.115055
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

much broader distribution with a long tail for larger birth lengths. This indicates a possible connection 457 

between mode of growth and permissible growth-related noise levels for the cell. Indeed, if single-cell 458 

growth variability is reduced by a factor 3, the distributions corresponding to both growth modes show 459 

a similarly narrow width (Appendix 9-Figure 2). However, an asymptotically linear grower is able to 460 

maintain a narrow distribution of cell sizes even for higher noise levels, whereas for an exponential 461 

grower this distribution widens dramatically (Figure 7).  462 

The enhanced robustness of the length distribution of linear growers is interesting from an 463 

evolutionary point of view. Most rod shaped bacteria use sophisticated systems, such as the Min 464 

system, to ensure cytokinesis precisely at midcell (Bramkamp and van Baarle 2009; Lutkenhaus 2007). 465 

Bacteria encoding a Min system grow by lateral cell wall insertion. In contrast, rod-shaped bacteria in 466 

the Actinobacteria phylum such as Mycobacterium or Corynebacterium species, grow apically and do 467 

not contain a Min system, nor any other known division site selection system (Donovan and Bramkamp 468 

2014). C. glutamicum rather couples division site selection to nucleoid positioning after chromosome 469 

segregation via the ParAB partitioning system (Donovan et al. 2013), and has a broader distribution of 470 

division symmetries. We speculate that due to C. glutamicum's distinct growth mechanism, a more 471 

precise division site selection mechanism is not necessary to maintain a narrow cell size distribution. 472 

The elongation rates reported in this work reflect the increase in cellular volume over time. However, 473 

the increase in cell mass is not necessarily proportional to cellular volume. In exponentially growing  474 

E. coli, the cellular density was recently reported to systematically vary during the cell cycle, while the 475 

surface-to-mass ratio was reported to remain constant (Oldewurtel et al. 2019). It is unknown how 476 

single-cell mass increases in C. glutamicum, but it would follow exponential growth if mass production 477 

is proportional to protein content. This raises the question how linear volume growth and exponential 478 

mass growth are coordinated. The presence of a regulatory mechanism for cell mass production that 479 

couples to cell volume is implied by the elongation rate curves obtained for the ΔrodA mutant. As the 480 

elongation rate is lower in this mutant, average mass production needs to be lowered compared to 481 

the WT in order to prevent the cellular density from increasing indefinitely.  482 
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Our growth trajectory inference method is not cell-type specific, and can be used to obtain detailed 483 

growth dynamics in a wide range of organisms. The inferred asymptotically linear growth of  484 

C. glutamicum is a stark deviation from the generally observed exponential single-cell bacterial growth, 485 

and suggests the presence of novel growth regulatory mechanisms.  486 
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Experimental Procedures 487 

Culture and live-cell time-lapse imaging 488 

Exponentially growing cells of C. glutamicum divIVA::divIVA-mCherry and C. glutamicum 489 

divIVA::divIVA-mCherry ΔrodA respectively, grown in BHI–medium (Oxoid) at 30°C and 200 rpm 490 

shaking, were diluted to an OD600 of 0.01. According to the manufacturer’s manual cells were loaded 491 

into a CellASIC- microfluidic plate type B04A (Merck Milipore) and mounted on a Delta Vision Elite 492 

microscope (GE Healthcare, Applied Precision) with a standard four-color InSightSSI module and an 493 

environmental chamber heated to 30°C. Images were taken in a three-minute interval for 10 h with a 494 

100×/1.4 oil PSF U-Plan S-Apo objective and a DS-red-specific filter set (32% transmission, 0.025 s 495 

exposure). 496 

Staining of newly inserted peptidoglycan and visualization in demographs 497 

For the staining of nascent PG, 1 ml of exponentially growing C. glutamicum ATCC 13032 cells, 498 

cultivated in BHI–medium (Oxoid) at 30°C and 200 rpm, were harvested, washed with PBS and 499 

resuspended in 25 µl PBS, together with 0.25 µl of 5 mM HADA dissolved in DMSO. The cells were 500 

incubated at 30 °C in the dark for 5 minutes, followed by a two-time washing step with 1 ml PBS and 501 

finally resuspended in 100 µl PBS. To obtain still- phase-contrast and fluorescent micrographs, 2 µl of 502 

the cell suspension were immobilized on an agarose pad. For microscopy, an Axio Imager (Zeiss) 503 

equipped with EC Plan-Neofluar 100x/1.3 Oil Ph3 objective and a Axiocam camera (Zeiss) was used 504 

together with the appropriate filter sets (ex: 405 nm; em: 450 nm). For single-cell analysis and the 505 

visualization in demographs, custom algorithms, developed in FIJI and R (Schindelin et al. 2012)(R 506 

Development Core Team 2003), were used. The code is available upon request. 507 

Image analysis 508 

For image analysis a custom made algorithm was developed using the open-source programs FIJI and 509 

R (Schindelin et al. 2012)(R Development Core Team 2003). During the workflow unique identifiers to 510 
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single cell cycles are assigned. The cell outlines are determined manually. Individual cells per timeframe 511 

are extracted then from the raw image and further processed automatically. The parameters length, 512 

area and relative septum position are extracted and stored together with the genealogic information 513 

and the timepoint within the respective cell cycle. The combination of image analysis and cell cycle 514 

dependent data structuring yields a list that serves as a base for further analysis. The documented code 515 

is available at: https://github.com/Morpholyzer/MorpholyzerGenerationTracker 516 
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