1	Assessing the ecological niche and invasion potential of the Asian giant hornet
2	
3	Gengping Zhu ^{a,*} , Javier Gutierrez Illan ^a , Chris Looney ^b , David W. Crowder ^a
4	^a Department of Entomology, Washington State University, Pullman, WA 99164, USA
5	^b Washington State Department of Agriculture, Olympia, WA, 98501, USA
6	* gengping.zhu@wsu.edu
7	
8	Author Contributions
9	All authors designed the study and wrote the manuscript, GZ conducted the analyses
10	
11	Competing Interest Statement: None
12	
13	This file includes:
14	Main Text
15	Figures 1 to 4
16	
17	Word Count: 3484
18	
19	Reference Count: 33
20	

21 Abstract

The Asian giant hornet (Vespa mandarinia) is the world's largest hornet. It is native to East Asia, 22 23but was recently detected in British Columbia, Canada, and Washington State, USA. Vespa mandarinia are an invasion concern due to their potential to negatively affect honey bees and act 24 as a human nuisance pest. Here, we assessed effects of bioclimatic variables on V. mandarinia 2526 and used ensemble forecasts to predict habitat suitability for this pest globally. We also simulated 27 potential dispersal of V. mandarinia in western North America. We show that V. mandarinia are most likely to invade areas with warm to cool annual mean temperature but high precipitation, 28 29 and could be particularly problematic in regions with these conditions and high levels of human activity. We identified regions with suitable habitat on all six continents except Antarctica. The 30 realized niche of introduced populations in the USA and Canada was small compared to native 31 32 populations, implying high potential for invasive spread into new regions. Dispersal simulations showed that without containment, V. mandarinia could rapidly spread into southern Washington 33 and Oregon, USA and northward through British Columbia, Canada. Given its potential negative 34 35 impacts, and the capacity for spread within northwestern North America and worldwide, strong mitigation efforts are needed to prevent further spread of V. mandarinia. 36

37

Key words: ecological niche model, climate suitability, human disturbance, ensemble forecast,
 pest management, dispersal

41 Introduction

The Asian giant hornet (Vespa mandarinia Smith) is the world's largest hornet and is native to 42 43temperate and sub-tropical Eastern Asia (Fig. 1A), where it is a predator of honey bees and other insects (Matsuura & Sakagami 1973; Archer 1995; McGlenaghan et al. 2019). Coordinated 44 attacks by V. mandarinia on beehives involve pheromone marking to recruit other hornets, 45 followed by rapid killing of worker bees until the hive is destroyed (McClenaghan et al. 2019). 46 47 Japanese honey bees (Apis cerana) co-evolved with V. mandarinia and have defensive behaviors to counter these attacks, including recognizing and responding to marking pheromones and "bee 48 ball" attacks on hornet workers (Sugahara et al. 2012; McGlenaghan et al. 2019). Apis mellifera, 49 the European honey bee, however, has no co-evolutionary history with V. mandarinia and lacks 50 effective defensive behaviors, making it highly susceptible to attack (McGlenaghan et al. 2019). 51 52 In September 2019, a nest of V. mandarinia was found on Vancouver Island in Canada, and two workers were found 90 km away in Washington State, USA, later that year (USDA 2019) 53 (Fig. 1B). The introduction of Asian giant hornet into western North America is concerning 54 55 because of the vulnerability of A. *mellifera*, which is widely used for crop pollination, to hornet attacks. Predation by V. mandarinia on A. mellifera in Asia causes major losses (McGlenaghan et 56 al. 2019). Vespa mandarinia is also medically significant, and can deliver painful stings and large 57 58 doses of cytolytic venom. Multiple stings can be fatal even in non-allergic individuals, although 59 recent mortality rates are much lower than the historic reports of more than 30 yearly deaths in Japan (Yanagawa et al. 2007). Currently, V. mandarinia is listed as a quarantine pest of the 60 United States and efforts are underway to prevent establishment and spread (USDA 2019). 61

62	Invasions from species such as V. mandarinia are governed by arrival, establishment, and
63	spread (Liebhold & Tobin 2008). Ecological niche models, which involve model calibration
64	using climate variables in native ranges, followed by extrapolation to introduced areas, are often
65	used to assess habitat suitability for invasive species (Leibhold & Tobin 2008; Peterson et al.
66	2013). Invasions can be particularly problematic in regions with high human activity, which can
67	also facilitate invasions through transport of introduced species. To assess spread of invasive
68	species, models can also simulate processes (Liebhold & Tobin 2008; Engler et al. 2012). Models
69	thus guide efforts to prevent establishment and spread, which are cost-effective early in invasions
70	(Liebhold & Tobin 2008).
71	It is not yet clear if V. mandarinia is established in North America, and federal and local
72	agencies are implementing trapping and monitoring programs to identify areas of introduction
73	and prevent establishment and spread (USDA 2019). However, several factors that could guide
74	mitigation efforts remain unknown, including the potential habitat suitability for V. mandarinia.
75	Moreover, the potential rate of population dispersal into new areas is poorly understood. In
76	Europe, an invasion by the congener V. velutina has expanded via natural and human-assisted
77	dispersal from 19 to nearly 80 km per year (Bertolino et al. 2016; Robinet et al. 2017). Here, we
78	assess these questions by modeling responses of V. mandarinia to bioclimatic variables in the
79	native range and extrapolating to introduced ranges. We also used dispersal simulations to
80	estimate potential rates of spread throughout western North America. These complementary
81	approaches can guide efforts to prevent the establishment and spread of this invasive species.

83 Material and Methods

84 Environmental factors affecting occurrence of V. mandarinia

85	We first assessed relationships between occurrence of V. mandarinia and environmental
86	factors. Occurrence data were attained with the "spoce" package in R (R Core Team 2020) from
87	the Global Biodiversity Information Facility, Biodiversity Information Serving Our Nation,
88	Integrated Digitized Biocollections, and iNaturalist (Scott et al. 2017) (Fig. 1). Additional data
89	were collected from published studies (Archer 1995; Lee 2010). Occurrence records located
90	within oceans or without geographic coordinates were removed. 422 unique records from V.
91	mandarinia's native range in Asia (Japan, South Korea, Taiwan) were obtained (Fig. 1A). Of
92	these, 200 were filtered out by enforcing a distance of 10 km between records (Fig. 1A); we used
93	this filtering process because ecological niche models are sensitive to sample bias (Warren &
94	Seifert 2011). Our assembled 222 records from east Asia are consistent with published records
95	(Archer 1995; Lee 2010), suggesting we effectively captured the distribution of V. mandarina.
96	Vespine wasps have high endothermic capacity and thermoregulatory efficiency, and can
97	survive broad temperature ranges (Käfer et al. 2012). To determine climate factors that constrain
98	V. mandarinia, we obtained 7 Worldclim variables (Fick & Hijmans 2017): (i) annual mean
99	temperature, (ii) mean diurnal range, (iii) max temperature of warmest month, (iv) minimum
100	temperature of coldest month, (v) annual precipitation, (vi) precipitation of wettest and (viii)
101	driest months (Bio14); we also considered annual mean radiation (Fig. S1A). Although some of
102	these variables were correlated (Fig. S1B), highly correlated variables have little impact on
103	ecological niche models that account for redundant variables (Feng et al. 2019). $_{5}$

104	After selecting variables, we used generalized linear models (GLM) with Bernoulli errors
105	to model the probability of occurrence of <i>V. mandarinia</i> as a function of each bioclimatic factor.
106	This approach was used to minimize the chances of overfitting models, and Hosmer Lemeshow
107	goodness of fit test were used to evaluate GLM model performance (Hosmer et al. 1989). Rather
108	than plotting a single partial response curve (i.e., fitting response curves for specific predictors
109	while keeping the other predictors at their mean value), we adopted inflated response curves to
110	explore species-environment relationships along the entire gradient while keeping the other
111	predictors at their mean, minimum, median, maximum, and quartile values (Zurell et al. 2012).
112	
113	Realized niche modeling of native and introduced populations

After assessing environmental factors affecting V. mandarinia occurrence, we next assessed 114 realized niches occupied by native and introduced populations. Given that only 4 occurrence 115 points exist in the introduced range of western North America, two of which are within 10 km, 116 we could not use a strict test of whether realized niches shifted during the introduction of V. 117 mandarinia (i.e., niche equivalency and similarity test; Warren et al. 2010). Rather, we used 118 minimum ellipsoid volumes to display and compare the two realized niches; this technique 119 provides a clear vision of niche breadth for two populations and their relative positions in 120 reduced dimensions (Qiao et al. 2016). We generated three environmental dimensions that 121 122summarized 90% of overall variations in the 8 global bioclimatic dimensions using principle component analysis in NicheA version 3.0 (Qiao et al. 2016). 123

124

125 Ecological niche modeling

126	We used classical niche models to assess worldwide habitat suitability for potential spread
127	of V. mandarinia (Peterson et al. 2013). Given that uncertainty exists with any individual model,
128	we used an ensemble approach that averaged predictions of five algorithms: (i) generalized
129	additive models, (ii) general boosted models, (iii) generalized linear models; (iv) random forests,
130	and (v) maximum entropy models. Such ensemble models have been proposed as a consensus
131	approach to more effectively estimate climate suitability, achieve a higher predictive capacity,
132	and reduce uncertainty (Araújo & New 2007; Thuiller et al 2009; Zhu & Peterson 2017). To
133	build models, 50% of observed records were used for model training and 50% for validation
134	(Tsoar et al. 2007). We used a "random" method in <i>biomod2</i> to select 10,000 pseudo-absence
135	records from "accessible" areas of V. mandarinia in Asia, which were delimited by buffering
136	minimum convex polygons of observed points at 400 km (Owen et al. 2013). This selection of
137	pseudo-absence records improves ecological niche model performance (Phillips & Dudík 2008).
138	For evaluation of models, we used Area Under the Curve (AUC) of Receiver Operating
139	Characteristic (ROC) plots as a measure of model fit (Jiménez-Valverde et al. 2012). AUC has
140	been criticized in niche model literature, and inference upon its values should be taken cautiously
141	as we didn't have reliable absence data (Leroy et al. 2012). However, here we simply tested
142	niche model discriminability in native areas and not introduced areas. Final niche models were
143	fitted using overall trimmed occurrence points for combination with footprint and displaying.
144	Habitat modification and disruption has been linked to invasiveness in some Vespidae, and
145	invasions could be particularly problematic in regions with high human activity (Beggs et al. $_7$

146	2011, Robinet et al. 2017). In its native range, V. mandarinia is able to colonize green areas in
147	cities, although at lower abundance than other vespine wasps (Choi et al. 2012). Human-assisted
148	movement has affected expansion of V. velutina in Europe, and may also affect V. mandarinia
149	(Robinet et al 2007). Models that combine climate suitability with measures of human activity
150	may provide more accurate estimates of site vulnerability to colonization, particularly arrival and
151	establishment processes (Liebhold & Tobin 2008). We measured human footprint as an indicator
152	of human-mediated disturbances, a metric that combines population pressure and human
153	infrastructure. We combined human footprint with climate suitability using a bivariate mapping
154	approach (Fig. 2). All variables selected for analyses were used at a resolution of 5 arcmin.
155	
156	Dispersal simulation
157	Vespa mandarinia is a social insect that forms colonies with one queen and many workers,
158	and population dispersal is mediated by the spread of queens. Workers typically fly 1 to 2 km
159	from their nest when foraging, although they can forage up to 8 km (Matsuura & Sakagami
160	1973). Data on queen dispersal appears to be unknown, but V. mandarinia queens are likely to
161	have flight capacity greater than workers. Flight mill simulations with the congener V. velutina
162	suggest that queens can fly 18 km in a single day (Robinet et al 2017), although flight distance
163	under field conditions is likely to be smaller.
164	To simulate potential spread of V. mandarinia based on these dispersal capacities and
165	occurrence points in western North America, we used the "MigClim" package (Engler et al.
166	2012). This approach simulates species expansion using a species' occurrence as well as habitat $\frac{8}{8}$

167	suitability and different dispersal scenarios. Short-distance dispersal considers innate dispersal of
168	a species to move through diffusion-based processes, whereas long-distance dispersal considers
169	passive dispersal over long distance, such as dispersal by hitchhiking on human activity (Engler
170	et al. 2012). MigClim uses a dispersal step as a basic time unit to simulate the dispersal, with
171	dispersal steps often equal to one year since most organism dispersal occurs yearly or can be
172	modeled as such, particularly for social insects where queens form colonies only once a year
173	(Engler et al. 2012). We ran a simulation with a total of 20 dispersal steps for V. mandarinia.
174	In our simulations, we created combined suitability using climate suitability from ensemble
175	models and human footprint. We then chose 3 different dispersal scenarios for simulations: (i)
176	short-distance dispersal only, (ii) long-distance dispersal only, and (iii) both short- and
177	long-distance dispersal. These three scenarios seek to capture both biological and
178	human-mediated dispersal potential of V. mandarinia, as MigClim does not account for
179	population demography (Engler et al. 2012). Simulations of short-distance dispersal were based
180	on physical barriers and the dispersal kernel, which is the dispersal probability as a function of
181	distance, whereas long-distance dispersal simulations depend on frequency of movement and
182	distance range. MigClim uses a dispersal step as a basic time unit to simulate the dispersal, with
183	dispersal steps often be equal to one year since most organism dispersal occurs yearly or can be
184	modeled as such, particularly for social insects where queens form colonies only once a year
185	(Engler et al. 2012).

We ran simulations with 20 dispersal steps. In MigClim, the dispersal kernel is the dispersal probability as a function of distance (P_{disp}) and the propagule production potential (P_{prop}). Our

188	raster data had a resolution of 5 arcmin (\approx 5.5 km); we defined short-distance dispersal as less
189	than 6 pixels (~ 33km). Dispersal more than 6 pixels was considered long-distance dispersal,
190	which had a maximum 20 pixels (~110km). We used a dispersal kernel of 1.0, 0.4, 0.16, 0.06,
191	and 0.03 pixel for short-distance dispersal, which is an average of 10 km/dispersal step, with a
192	maximum of 33 km. We set P_{prop} as 1 since V. mandarinia is a social insect and we assumed that
193	the probability of a source cell to produce propagules is 100%. We assumed there were no
194	barriers to either short- or long-distance dispersal.

195

196 **Results and Discussion**

Generalized linear models showed no significant differences between models fit to the 8 197 environmental variables and observed data ($\gamma^2 = 8.2$, df = 8, P = 0.41). We show V. mandarinia is 198most likely to occur in regions with low to warm annual mean temperatures and high annual 199 precipitation (Fig. 2). However, our models show that they can tolerate broad temperature ranges 200 (Fig. 2, S3), and that they are not particularly sensitive to radiation and extremes of precipitation 201 (Fig. S3). The most suitable habitats are predicted to be in regions with maximum temperature of 202 203 39 °C in the warmest month (Fig. S3). Our results thus support the existence of a thermal 204 threshold beyond which V. mandarina would be unable to establish, and this could be crucial for management and policy making in case of a prolonged invasion of the hornet in North America. 205 The minimum ellipsoid volumes show that the realized niche of introduced individuals in 206 western North America were nested within the realized niche of native populations (Fig. 3). As 207 the introduced locations represent a small fraction of the realized niche occupied by native 208

209	populations, there is widespread potential for the introduced range to expand without mitigation
210	(Fig. 3). However, the contrasting volume sizes occupied by native and introduced populations
211	may simply be due to the limited number of occurrences outside of the native range (4 points)
212	rather than any reduction in the niche space available to introduced populations.
213	Our ecological niche models showed excellent performance in discriminability evaluations
214	(generalized additive model [GAM]: $AUC = 0.89$; general boosted model [GBM]: $AUC = 0.93$;
215	generalized linear model [GLM]: AUC = 0.91; Maxent: AUC = 0.93; Random Forest [RF]: AUC
216	= 0.91). However, the five niche models had variability in habitat suitability across the globe
217	(Fig. S4), and the ensemble model (Fig. 2) had better discriminability and outperformed these
218	individual models (AUC = 0.94). Outside of the native area, our ensemble models captured
219	detection points in North America as occurring in regions with highly suitable habitat (Fig. 2).
220	The ensemble models suggested that suitable habitat for V. mandarinia exists along much of
221	the coastline of western North America as most of the eastern USA and adjacent parts of Canada,
222	much of Europe, northwestern and southeastern South America, central Africa, eastern Australia,
223	and most parts of New Zealand. Each of these regions is also associated with high human activity,
224	although we did identify suitable climatic areas with low human activity (e.g., central South
225	America, Fig. 2). Yet, given that many suitable regions were identified by the ensemble model
226	that had both high climatic suitability and high human activity, it is likely that human activity
227	could facilitate future invasions of V. mandarinia. The model predicts that much of the interior of
228	North America is unsuitable habitat, likely due to inhospitable temperatures and low
229	precipitation. This includes the eastern portions of British Columbia and the Pacific Northwest 11

230	states, and the Central Valley of California, all of which have extensive agricultural production
231	(e.g. tree fruit and tree nuts) that relies almost exclusively on A. mellifera pollination.
232	Our simulations of V. mandarinia dispersal in western North America showed high potential
233	for spread within western North America (Fig. 4). When considering short-distance dispersal,
234	mediated by hornets flying an average of 10 km/yr and a maximum of 33 km/yr , populations of V.
235	mandarinia could rapidly spread along the western coast of North America, reaching Oregon in
236	20 yr. Northward expansion into Canada would likely be limited to the southern coast of British
237	Columbia (Fig. 4). When we accounted for long-distance human-mediated dispersal, the
238	expansion of V. mandarinia extended dramatically toward the north along coastal areas of British
239	Columbia, and showed a faster rate of expansion into southern Washington State and into Oregon,
240	USA (Fig. 4). This suggests dispersal throughout the western USA could occur within 20 or less
241	yr even without human-mediated transport or new introduction events.
242	Ecological impacts are difficult to predict for vespids (Beggs et al. 2011). While many
243	transplanted Vespidae appear to have only minor impacts, others are known to displace
244	congeners through multiple, idiosyncratic mechanisms (Beggs et al 2011). There are no other
245	Vespa, native or introduced, in the region of North America where V. mandarinia has been
246	detected, and no native Vespa where suitable habitat is predicted by this model. However, Asian
247	giant hornets are known to prey on social Hymenoptera other than bees (Matsuura 1984), and
248	thus could affect populations of several vespid genera in the Pacific Northwest. Vespa
249	mandarinia also preys upon many other insects, with chafer beetles comprising a large part of its
250	diet in parts of Japan (Matsuura 1984). It is unknown how it might impact native insects if it 12

becomes established, but the habitat suitability predicted here indicates that negative effects
could be distributed over a fairly expansive area.

253	We also anticipate considerable impacts on beekeepers. Established populations of V .
254	mandarinia would likely prey on readily-available hives late in the season, weakening any that
255	aren't killed outright. In Europe, the congener V. velutina has reportedly caused losses ranging
256	from 18 to 80% of domestic hives, depending on the region (Laurino et al. 2020). The results
257	presented here suggest that large expanses of the Pacific Coast in North America could become
258	challenging for beekeeping operations, especially during the late summer and fall when attacks
259	are greatest. Unchecked, this species of hornet could cause major disruption in the western US
260	and Canada, possibly forcing beekeepers to invest in extensive hornet management or relocate
261	parts of their operations to areas of unsuitable V. mandarinia habitat.

262

263 Acknowledgement

We thank D. Zurell, R. Engler, and E. Ugene for help developing ecological models. The work was funded by USDA Hatch Project 1014754.

266 **References**

267	Araújo MB.	New M (2007)	Ensemble forecas	ting of	species	distributions.	Trends in	Ecol.	Evol.
		, (_ ~ ~ . ,			~ ~ ~ ~ ~ ~ ~				

268 22, 42–47.

- Archer ME (1995) Taxonomy, distribution and nesting biology of the Vespa mandarinia group
- 270 (HYM. Vespinae). *Entomol. Mon. Mag.* 131, 47–53.
- Beggs JR et al. (2011) Ecological effects and management of invasive alien Vespidae. *Biocontrol*56: 505-526.
- 273 Bertolino S, Lioy S, Laurino D, Manino A, Porporato M (2016) Spread of the invasive yellow-
- legged hornet *Vespa velutina* (Hymenoptera: Vespidae) in Italy. *Appl. Entomol. Zool.*, 51,
 589–597.
- 276 Choi MB, Kim JK, Loo JW (2012) Increase trend of social Hymenoptera (wasps and honeybees)
- in urban areas, inferred from moving-out case by 119 rescue services in Seoul of South
- 278 Korea. *Entomol. Res.* **42**, 308–319.
- 279 Engler R, Hordijk W, Guisan A (2012) The MIGCLIM R package seamless integration of
- dispersal constraints into projections of species distribution models. *Ecography* 35,

872–878.

- Feng X, Park DS, Liang Y, Pandey R, Papeş M (2019) Collinearity in ecological niche modeling:
 Confusions and challenges. *Ecol. Evol.* 9, 10365–10376.
- Fick SE, Hijmans RJ (2017) WorldClim 2: new 1km spatial resolution climate surfaces for global
 land areas. *Int. J. Clim.* 37, 4302-4315.

286	Hosmer DW, Jovanovic B	, Lemeshow S (1989) Best subse	ets logistic regression.	Biometrics 45,
287	1265–1270.			

- Käfer H, Kovac H, Stabentheiner A (2012) Resting metabolism and critical thermal maxima of
- vespine wasps (Vespula sp.) J. Insect Phys. 58, 679–689.
- Laurino D, Lioy S, Carisio L, Manino A, Porporato M (2020) Vespa velutina: An alien driver of
- honey bee colony loss. *Diversity* 12, 5.
- Lee JX (2010) Notes on Vespa analis and Vespa mandarinia (Hymenoptera, Vespidae) in Hong
- Kong, and a key to all *Vespa* species known from the SAR. *Hong Kong Entomol. Bull.* 2,
- 294 **31–36**.
- Leroy B et al. (2018) Without quality presence–absence data, discrimination metrics such as TSS
 can be misleading measures of model performance. *J. Biogeog.* 45, 1994–2002.
- ²⁹⁷ Liebhold AM, Tobin PC (2008) Population ecology of insect invasions and their management.
- 298 Annu. Rev. Entomol. 53, 387–408.
- 299 Matsuura M (1984) Comparative biology of the five Japanese species of the genus Vespa
- 300 (Hymenoptera, Vespidae). Bull Fac. Agric. Mie Univ. 69, 1–131.
- 301 Matsuura M, Sakagami SF (1973) A bionomic sketch of the giant hornet, Vespa mandarinia, a
- serious pest for Japanese apiculture. J. Fac. Sci Hokkaido Univ. (Zoology) 19, 125–162.
- 303 McClenaghan B et al. (2019) Behavioral responses of honey bees, Apis cerana and Apis
- *mellifera*, to *Vespa mandarinia* marking and alarm pheromones. *J. Apic. Res.* 58, 141–148.
- 305 Owens HL et al. (2013) Constraints on interpretation of ecological niche models by limited
- environmental ranges on calibration areas. *Ecol. Model.* 263, 10–18.

307	Peterson AT et al. (2	2011) Ecological	Niches and Geographic	Distributions: A Modeling
	· · · · · · · · · · · · · · · · · · ·	/ 0		0

- 308 *Perspective*. Princeton University Press, Princeton, USA.
- 309 Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and
- a comprehensive evaluation. *Ecography* 31, 161–175.
- 311 Qiao H, Peterson AT, Campbell LP, Soberon J, Ji L, Escobar LE (2016) NicheA: creating virtual
- species and ecological niches in multivariate environmental scenarios. *Ecography* 39,
- **805-813**.
- R Core Team (2020) R: a language and environment for statistical computing (v. 4.0.0). R
- Foundation for Statistical Computing, Vienna, Austria.
- Robinet C, Suppo C, Darrouzet E (2017) Rapid spread of the invasive yellow-legged hornet in
- France: The role of human-mediated dispersal and the effects of control measures. J. Appl.
- 318 Ecol. 54, 205–215.
- 319 Scott A, Ram K, Hart T, Chamberlain MS (2017) spoce: interface to species occurrence data
- sources, R package version 0.4.0. Available: http://CRAN.R-project.org/package=spocc.
- 321 Sugahara M, Nishimura Y, Sakamoto F (2012) Differences in heat sensitivity between Japanese
- honeybees and hornets under high carbon dioxide and humidity conditions inside bee balls.
- 323 Zool. Sci. 29, 30–36.
- Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD–a platform for ensemble
- forecasting of species distributions. *Ecography* 32, 369–373.
- Tsoar, A., Allouche, O., Steinitz, O., Rotem, D. and Kadmon, R., 2007. A comparative evaluation
- of presence only methods for modelling species distribution. *Div. Dist.* 13, 397-405.

328	USDA (2019) New pest response guidelines for Asian giant hornet (Vespa mandarinia). United
329	States Department of Agriculture, Animal and Plant Health Inspection Service, Plant
330	Protection and Quarantine, Riverdale Park, MD, USA.
331	Warren DL, Glor RE, Turelli M (2010) ENMTools: a toolbox for comparative studies of
332	environmental niche models. Ecography 33: 607–611.
333	Warren DL, Seifert SN (2011) Ecological niche modeling in Maxent: the importance of model
334	complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342.
335	Yanagawa Y, Morita K, Sugiura T, Okada Y (2007) Cutaneous hemorrhage or necrosis findings
336	after Vespa mandarinia (wasp) stings may predict the occurrence of multiple organ injury:
337	A case report and review of literature. Clin. Toxicol. 45, 803-807.
338	Zhu GP, Peterson AT (2017) Do consensus models outperform individual models? Transferability
339	evaluations of diverse modeling approaches for an invasive moth. Biol. Invasions 19,
340	2519–2532.
341	Zurell D, Elith J, Schroeder B (2012) Predicting to new environments: tools for visualizing

model behavior and impacts on mapped distributions. *Div. Dist.* 18, 628–634.

- Figure 1. Present distribution of Asian giant hornet in (A) native and (B) introduced regions. In
- 344 (A) points denote trimmed records used to fit models.
- 345

- Figure 2. Ensemble forecast of potential invasion of Vespa mandarinia. Increasing intensities of 347
- yellow represent increasing climate suitability, and increasing blue represent increasing 348
- establishment potential due to human activity, where increasing red mean increasing potential 349
- invasion due to high climate suitability and human activity. Scores of bivariate maps are divided 350
- into 6 equal quantiles in the data ranges of climate suitability and human footprint respectively. 351
- 352

- 354
- 355

- Figure 3. Realized niche occupied by native and introduced populations shown as minimum
- 357 ellipsoid volumes. The pink volume represents the native niche, the blue volume represents the
- introduced niche, and points denote environmental conditions across the globe. The three PCA
- axes were estimated in NicheA and captured 90% of the variation in the 8 bioclimatic variables.
- 360
- 361 362

- Figure 4. Combined suitability (A) and estimated expansion (B-D) of *Vespa mandarinia* over 20
- ³⁶⁴ yr in western North America under three dispersal scenarios: (B) short dispersal distance only
- 365 (SSD), (C) long dispersal distance only (LDD) and (D) combined (LDD & SDD) scenarios. Each
- 366 color represents two dispersal steps (total 20 dispersal steps) in dispersal simulations.

