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Abstract 
Complex cognitive functions such as working memory and decision-making require the 
maintenance of information over many timescales, from transient sensory stimuli to long-term 
contextual cues1. However, while theoretical accounts predict that a corresponding hierarchy of 
neuronal timescales likely emerges as a result of graded variations in recurrent synaptic 
excitation2–4, direct evidence in the human cortex is lacking. This limits our ability to study how 
other cytoarchitectural and cell-intrinsic features shape the temporal patterns of cortical activity5–
7, and whether neuronal timescales are dynamic and relevant for human cognition. Here, we 
use a novel computational approach to infer neuronal timescales from intracranial recordings 
and construct a continuous gradient across the human cortex. We find that timescales increase 
along the principal sensorimotor-to-association axis7–9, where higher-order association areas 
have longer neuronal timescales. These measurements reflect transmembrane current 
fluctuations and scale with single-unit spiking timescales across the macaque cortex10. Cortex-
wide transcriptomic analysis11–13 in humans confirms direct alignment between timescales and 
expression of excitation- and inhibition-related genes, but further identifies genes specifically 
related to voltage-gated transmembrane ion transporters. Finally, neuronal timescales are 
functionally dynamic: prefrontal cortex timescales expand during working memory maintenance 
and predict individual performance, while cortex-wide timescales compress with aging. Thus, 
neuronal timescales follow cytoarchitectonic gradients across the human cortex, and are 
relevant for cognition in both short- and long-terms, bridging microcircuit physiology with 
macroscale dynamics and behavior. 
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Human brain regions are broadly specialized for different aspects of behavior and cognition. For 
example, primary sensory neurons are tightly coupled to changes in the environment, firing 
rapidly to the onset and removal of a stimulus, and showing characteristically short intrinsic 
timescales14,15. In contrast, neurons in cortical association (or transmodal) regions, such as the 
prefrontal cortex (PFC), can sustain their activity for many seconds when a person is engaged 
in working memory16, decision-making17, and hierarchical reasoning18. This persistent activity in 
the absence of immediate sensory stimuli reflects longer neuronal timescales, which is thought 
to result from neural attractor states19,20 shaped by NMDA-mediated recurrent excitation and 
fast feedback inhibition21,22, with contributions from other synaptic and cell-intrinsic properties5,6. 
 
Recent studies have shown that variations in many such microarchitectural features follow 
continuous and coinciding gradients along a sensory-to-association axis across the cortex, 
including cortical thickness, cell density, and distribution of excitatory and inhibitory neurons2,7,8. 
In particular, grey matter myelination23, which indexes anatomical hierarchy, varies with the 
expression of numerous genes related to microcircuit function, such as NMDA receptor and 
inhibitory cell-type marker genes12. Functionally, specialization of the human cortex, as well as 
structural and functional connectivity24, also follow similar macroscopic gradients. In addition to 
the broad differentiation between sensory and association cortices, there is evidence for a finer 
hierarchical organization within the frontal cortex18. For example, the anterior-most parts of the 
PFC are responsible for long timescale goal-planning behavior25,26, while healthy aging is 
associated with a shift in these gradients such that older adults become more reliant on higher-
level association regions to compensate for altered lower-level cortical functioning27. 
 
Despite convergent observations of continuous cortical gradients in structural features and 
cognitive specialization, there is no direct evidence for a similar gradient of neuronal timescales 
across the human cortex. Such a gradient of neuronal dynamics is predicted to be a natural 
consequence of macroscopic variations in synaptic connectivity and microarchitectural 
features2,4,8, and would be a primary candidate for how functional specialization emerges as a 
result of hierarchical temporal processing1. Single-unit recordings in rodents and non-human 
primates hint at a hierarchy of timescales that increase, or expand, progressively along a 
posterior-to-anterior axis10,15,28, while intracranial recordings and functional neuroimaging data 
collected during perceptual and cognitive tasks suggest likewise in humans29–32. However, these 
data are either sparsely sampled across the cortex or do not measure neuronal activity at the 
cellular and synaptic level directly, prohibiting the full construction of an electrophysiological 
timescale gradient across the human cortex. As a result, while whole-cortex data of 
transcriptomic and anatomical variations exist, we cannot take advantage of them to dissect the 
contributions of synaptic, cellular, and circuit connectivity in shaping fast neuronal timescales, 
nor ask whether regional timescales are dynamic and relevant for human cognition (Fig. 1a).  
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Fig. 1| Schematic of study and timescale inference technique. a, in this study, we infer 
neuronal timescales from intracranial field potential recordings, which reflect integrated synaptic 
and transmembrane current fluctuations over large neural populations33. Combining multiple 
open-access datasets (see Extended Data Table 1), we link timescales to known human 
anatomical hierarchy, dissect its cellular and physiological basis via transcriptomic analysis, and 
demonstrate its functional modulation during behavior and through aging. b-e, method validation 
via simulation: simulated time series (b) with increasing timescales (defined as the decay time 
constant of the autocorrelation function, ACF, c). d, example macaque ECoG power spectral 
density (PSD) showing that in frequency domain, timescale is equivalent to the frequency of 
aperiodic power drop-off (𝑓!, triangle; insets: time series and ACF). e, accurate extraction of 
timescale parameters from PSDs of simulated time series in b. 
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Inferring neuronal timescale 
To overcome these limitations, we develop a novel computational method for inferring the 
timescale of neuronal transmembrane current fluctuations from human intracranial 
electrocorticography (ECoG) recordings (Fig. 1a, box). Neural time series exhibit variable 
temporal autocorrelation, or timescales, where future values are partially predictable from past 
values, and predictability decreases with increasing time lags. To demonstrate the effect of 
varying autocorrelation, we simulate the aperiodic (non-rhythmic) component of neural field 
potential recordings by convolving Poisson population spikes with exponentially-decaying 
synaptic kernels (Fig. 1b). Consistent with previous studies, “neuronal timescale” here is defined 
as the exponential decay time constant (τ) of the autocorrelation function (ACF)10—the time it 
takes for the ACF to decrease by a factor of e (Fig. 1c). Equivalently, we can estimate neuronal 
timescale from the “characteristic frequency” (fk) of the power spectral density (PSD), especially 
when the presence of variable 1/f (χ) and oscillatory components can bias timescale inference 
from the ACF in time-domain (Fig. 1d). In this study, we apply spectral parameterization34 to 
extract timescales from intracranial recordings, which decomposes neural PSDs into a 
combination of oscillatory and aperiodic components, where timescale is inferred from the latter. 
We validate this approach on PSDs computed from simulated neural time series and show that 
the model-fitted timescales closely match their ground-truth values (Fig. 1e). 
 
Timescales follow anatomical hierarchy 
Applying this technique, we infer a continuous gradient of neuronal timescales across the 
human cortex and examine its relationship with anatomical hierarchy. We analyze a large 
dataset of human intracranial (ECoG) recordings of task-free brain activity from 106 epilepsy 
patients (MNI-iEEG35, see Extended Data Fig. 1 for electrode coverage), and compare the 
ECoG-derived timescale gradient to the average T1w/T2w map from the Human Connectome 
Project, which captures grey matter myelination and indexes the proportion of feedforward vs. 
feedback connections between cortical regions, defining an anatomical hierarchy12,23.  
 
Across the human cortex, timescales of fast electrophysiological dynamics (~10-50 ms) 
predominantly follow a rostrocaudal gradient (Fig. 2a). Consistent with numerous accounts of a 
principal cortical axis spanning from primary sensory to association regions2,7,24, timescales are 
shorter in sensorimotor and early visual areas, and longer in association regions, especially 
posterior parietal, ventral/medial frontal, and medial temporal cortex. Cortical timescales are 
negatively correlated with T1w/T2w (ρ = -0.47, p < 0.001; adjusted for spatial autocorrelation, 
see Methods and Extended Data Fig. 2), such that timescales are shorter in more heavily 
myelinated (lower-level) cortical regions (Fig. 2b). 
 
While surface ECoG recordings offer much broader spatial coverage than extracellular single-
unit recordings, they are fundamentally different signals: ECoG and field potentials largely 
reflect integrated synaptic and other transmembrane currents across many neuronal and glial 
cells, rather than putative action potentials from single neurons33 (Fig. 1a, box). Considering 
this, we ask whether timescales measured from ECoG are related to single-unit spiking 
timescales along the cortical hierarchy. To test this, we extract neuronal timescales from task-
free ECoG recordings in macaques and compare them to a separate dataset of single-unit 
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spiking timescales10 (Fig. 2c, inset; see Extended Data Fig. 3 for electrode locations). 
Consistent with spiking timescale estimates10,28, ECoG timescales also increase along the 
macaque cortical hierarchy. While there is a strong correspondence between spiking and ECoG 
timescales (Fig. 2c; ρ = 0.96, p < 0.001)—measured from independent datasets—across the 
macaque cortex, ECoG-derived timescales are 10 times faster than single-unit timescales and 
are conserved across individual sessions (Fig. 2d). This suggests that neuronal spiking and 
transmembrane currents have distinct but related timescales of fluctuations, and that both are 
hierarchically organized along the primate cortex. 

 

 
Fig. 2| Timescale increases along the anatomical hierarchy in humans and macaques. a, 
human cortical timescale gradient (left) falls predominantly along the rostrocaudal axis, similar 
to T1w/T2w ratio (right). b, neuronal timescales are negatively correlated with cortical T1w/T2w, 
thus increasing along the anatomical hierarchy from sensory to association regions (p-value 
adjusted for spatial autocorrelation). c, macaque ECoG timescales track published single-unit 
spiking timescales10 in corresponding regions (mean±s.e.m from n=8 sessions); inset: ECoG 
electrode map of one animal. d, ECoG-derived timescales are consistently correlated to (left), 
and an order of magnitude faster than (right), single-unit timescales across individual sessions. 
Hollow markers: individual sessions; shapes: animals; solid circles: grand average from c. 
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Transcriptomic basis of neuronal dynamics 
Next, we identify cellular and synaptic mechanisms underlying timescale variations across the 
human cortex. Theoretical accounts posit that NMDA-mediated recurrent excitation coupled with 
fast inhibition4,21,22, as well as cell-intrinsic properties5,6,36, are crucial for shaping neuronal 
timescales. While in vitro and in vivo studies in model organisms37,38 can test these hypotheses 
at the single-neuron level, causal manipulation and large-scale recording of neuronal networks 
embedded in the human brain is severely limited. Here, we apply an approach analogous to 
multimodal single-cell profiling39 and examine the transcriptomic basis of neuronal dynamics at 
the macroscale. 
 
Leveraging cortex-wide bulk mRNA expression variations11, we find that the neuronal timescale 
gradient overlaps with the dominant axis of gene expression across the human cortex (ρ = -
0.60, p < 0.001; Fig. 3a and Extended Data Fig. 4). Consistent with theoretical predictions (Fig. 
3b), timescales significantly correlate with the expression of genes encoding for NMDA 
(GRIN2B) and GABA-A (GABRA3) receptor subunits, voltage-gated sodium (SCN1A) and 
potassium (KCNA3) ion channel subunits, as well as inhibitory cell-type markers (parvalbumin, 
PVALB), and genes previously identified to be associated with single-neuron membrane time 
constants (PRR5)39. 
 
More specifically, in vitro electrophysiological studies have shown that, for example, increased 
expression of receptor subunit 2B extends the NMDA current time course40, while 2A 
expression shortens it41. Similarly, the GABA-A receptor time constant lengthens with increasing 
a3:a1 subunit ratio42. We show that these relationships are recapitulated at the macroscale, 
where neuronal timescales positively correlate with GRIN2B and GABRA3 expression, and 
negatively correlate with GRIN2A and GABRA1. These results demonstrate that timescales of 
neural dynamics depend on specific receptor subunit combinations with different (de)activation 
timescales3,6, in addition to broad excitation-inhibition interactions2,20,43. Notably, almost all 
genes related to voltage-gated sodium and potassium ion channel alpha-subunits—the main 
functional subunits—are correlated with timescale, while all inhibitory cell-type markers except 
parvalbumin have strong positive associations with timescale (Fig. 3c, Extended Data Fig. 5). 
 
We further test whether single-cell timescale-transcriptomic associations are captured at the 
macroscale as follows: for a given gene, we can measure how strongly its expression correlates 
with membrane time constant parameters at the single-cell level using patch-clamp and RNA 
sequencing (scRNASeq) data39,44. Analogously, we can measure its macroscopic 
transcriptomic-timescale correlation using the cortical gradients above. Comparing across these 
two levels for all previously-identified timescale-related genes39,44, we find a significant 
correlation between the strength of association at the single-cell and macroscale levels (ρ = 
0.36 and 0.25, p < 0.001 for both studies; Fig. 3d, horizontal lines). Furthermore, genes with 
stronger associations to timescale tend to conserve this relationship across single-cell and 
macroscale levels (Fig. 3d, separated by macroscale correlation magnitude). Thus, the 
association between cellular variations in gene expression and cell-intrinsic temporal dynamics 
is captured at the macroscale, even though scRNAseq and microarray data represent entirely 
different measurements of gene expression. 
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While we have shown associations between cortical timescales and genes suspected to 
influence neuronal dynamics, these data present an opportunity to discover additional novel 
genes that are functionally related to timescales through a data-driven approach. However, 
since transcriptomic variation and anatomical hierarchy overlap along a shared macroscopic 
gradient8,12,24, we cannot specify the role certain genes play based on their level of association 
with timescale alone: gene expression differences across the cortex first result in cell-type and 
connectivity differences, sculpting the hierarchical organization of cortical anatomy. 
Consequently, anatomy and cell-intrinsic properties jointly shape neuronal dynamics through 
connectivity differences4,45 and expression of ion transport proteins with variable activation 
timescales, respectively. Therefore, we ask whether variation in gene expression still accounts 
for variation in timescale beyond the principal structural gradient, and if associated genes have 
known functional roles in biological processes (schematic in Fig. 4e). To do this, we first remove 
the contribution of anatomical hierarchy by regressing out the T1w/T2w gradient from both 
timescale and individual gene expression gradients. We then fit partial least squares (PLS) 
models to simultaneously estimate regression weights for all genes46, submitting those with 
significant associations for gene ontology enrichment analysis (GOEA)47. 

We find that genes highly associated with neuronal timescales are preferentially related to 
transmembrane ion transporter complexes, as well as GABAergic synapses and chloride 
channels (Fig. 4f, Extended Data Table 3). When restricted to positively-associated genes only 
(expression increases with timescales), one functional group related to phosphatidate 
phosphatase activity is uncovered, including the gene PLPPR1, which has been linked to 
neuronal plasticity48. Conversely, genes that are negatively associated with timescale are 
related to numerous groups involved in the construction and functioning of transmembrane 
transporters and voltage-gated ion channels, especially potassium and other inorganic cation 
transporters. The discovery of these gene ontology items suggests that inhibition49—mediated 
by GABA and chloride channels—and voltage-gated potassium channels have prominent roles 
in shaping neuronal timescale dynamics at the macroscale level, beyond what’s expected based 
on the anatomical hierarchy alone. 
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Fig. 3| Timescale gradient is linked to expression of genes related to synaptic receptors 
and transmembrane ion channels across the human cortex. a, timescale gradient follows 
the dominant axis of gene expression variation across the cortex (PC1, arbitrary direction). b-c, 
timescale gradient is significantly correlated with expression of genes known to alter synaptic 
and neuronal membrane time constants, as well as inhibitory cell-type markers, but members 
within a gene family (e.g., NMDA receptor subunits) can be both positively and negatively 
associated with timescales (c). d, macroscale timescale-transcriptomic correlation captures 
association between RNA-sequenced expression of the same genes and single-cell timescale 
properties fit to patch clamp data39,44, and the correspondence improves for genes (separated 
by quintiles) that are more strongly correlated with timescale (horizontal lines: correlation across 
all genes from ref39,44, ρ = 0.36 and 0.25). e, T1w/T2w gradient is regressed out from timescale 
and gene expression gradients, and a partial least squares (PLS) model is fit to the residual 
maps. Genes with significant PLS weights are submitted for gene ontology enrichment analysis. 
f. enriched genes are primarily linked to transmembrane transporters and GABA-ergic 
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synapses; genes specifically with strong negative associations further over-represent 
transmembrane ion exchange mechanisms, especially voltage-gated potassium and cation 
transporters. All spatial correlation p-values in a-c are adjusted for spatial autocorrelation (see 
Methods; asterisks in b,d indicate p < 0.05, 0.01, 0.005, and 0.001 respectively; filled circles in 
c,d indicate p < 0.05). 

 
Timescales shift in behavior and aging 
Finally, we investigate whether timescales are functionally dynamic and relevant for human 
cognition. While previous studies have shown hierarchical segregation of task-relevant 
information corresponding to intrinsic timescales of different cortical regions15,18,28,29,31,50, as well 
as optimal adaptation of behavioral timescales to match the environment51,52, evidence for 
functionally relevant changes in regional neuronal timescales is lacking. Here, we examine 
whether timescales undergo short- and long-term shifts during working memory maintenance 
and aging, respectively.  
 
We first analyze human ECoG recordings where participants performed a visuospatial working 
memory task that requires a delayed cued response (Fig. 4a)53. Neuronal timescales were 
extracted for pre-stimulus baseline and memory maintenance delay periods (900 ms, both 
stimulus-free). Replicating our previous result, we observe that baseline neuronal timescales 
follow a hierarchical progression across association regions (Fig. 4b). If neuronal timescales 
track the temporal persistence of information in a functional manner, then they should expand 
during delay periods. Consistent with our prediction, timescales in all regions are ~20% longer 
during delay periods (Fig. 4c; p < 0.005 for all regions). Moreover, timescale changes in the 
PFC are significantly correlated with behavior across participants, where longer delay-period 
timescales relative to baseline are associated with better working memory performance (ρ = 
0.75, p = 0.003). No other spectral features in the recorded brain regions experience consistent 
changes from baseline to delay periods while also significantly correlating with individual 
performance, including the 1/f-like spectral exponent, narrowband theta (3-8 Hz), and high-
frequency (high gamma; 70-100 Hz) activity power (Extended Data Fig. 7). 
 
In the long-term, aging is associated with a broad range of functional and structural changes, 
such as working memory impairments54,55, as well as changes in neuronal dynamics54–56 and 
cortical structure57,58, such as the loss of slow-deactivating NMDA receptor subunits58. Since 
neuronal timescales support working memory maintenance, we specifically predict that 
timescales shorten across the lifespan, in agreement with the observed cognitive and structural 
deteriorations. To this end, we leverage the wide age range in the MNI-iEEG dataset (13-62 
years old) and probe cortical timescales for each participant as a function of age. We observe 
that older adults have faster neuronal timescales (ρ = -0.31, p = 0.010; Fig. 3e and Extended 
Data Fig. 7; see Methods), and that timescales shorten with age in most areas across the cortex 
(t = -7.04, p < 0.001). This timescale compression is especially prominent in sensorimotor, 
temporal, and medial frontal regions (Fig. 3f and Extended Data Fig. 7). These results support 
our hypothesis that neuronal timescales, estimated from transmembrane current fluctuations, 
can rapidly shift in a functionally relevant manner, as well as slowly—over decades—in healthy 
aging. 
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Fig. 4| Timescales expand during working memory maintenance while tracking 
performance, and task-free average timescales compress in older adults. a, 14 
participants with overlapping intracranial coverage performed a visuospatial working memory 
task, with baseline (pre-stimulus) and delay period data analyzed (PC: parietal, PFC: prefrontal, 
OFC: orbitofrontal, MTL: medial temporal; n denotes number of subjects). b, baseline 
timescales follow hierarchical organization within association regions (*: p < 0.05; mean±s.e.m. 
across participants). c, all regions show significant timescale increase during delay period 
compared to baseline (***: p < 0.005, ****: p < 0.001, one-sample t-test). d, PFC timescale 
expansion during delay periods predicts working memory accuracy across participants 
(mean±s.e.m. across PFC electrodes); inset: correlation between working memory accuracy 
and timescale change across regions. e, in the MNI-iEEG dataset, participant-average cortical 
timescales decrease (become faster) with age. f, most cortical parcels show a negative 
relationship between timescales and age, with the exception of parts of the visual cortex and the 
temporal poles (one-sample t-test, t = -7.04). 

 
 
Discussion 
Theoretical accounts and converging empirical evidence predict a graded variation of neuronal 
timescales across the human cortex2,4,8, which reflects functional specialization and implements 
hierarchical temporal processing crucial for complex cognition1. This timescale gradient is 
thought to emerge as a consequence of cortical variations in cytoarchitecture and microcircuit 
connectivity, thus linking brain structure to function. In this work, we infer the timescale of non-
rhythmic transmembrane current fluctuations from invasive human intracranial recordings and 
test those predictions explicitly.  
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We find that neuronal timescales vary continuously across the human cortex and coincide with 
the anatomical hierarchy, with timescales increasing from primary sensory and motor to 
association regions. Timescales inferred from macaque ECoG scale with single-unit spiking 
timescales, corroborating the fact that field potential signals mainly reflect fast transmembrane 
and synaptic currents33, whose timescales are related to, but distinct from, single-unit 
timescales measured in previous studies10,14,28. Because field potential fluctuations are driven by 
currents from both locally generated and distal inputs, our results raise questions on how and 
when these timescales interact to shape downstream spiking dynamics. 
 
Furthermore, transcriptomic analysis demonstrates the specific roles that transmembrane ion 
transporters and synaptic receptors play in establishing the cortical gradient of neuronal 
timescales, over and above the degree predicted by the principal structural gradient alone. The 
expression of voltage-gated potassium channel, chloride channel, and GABAergic receptor 
genes, in particular, are strongly associated with the spatial variation of neuronal timescale. 
Remarkably, we find that electrophysiology/transcriptomic relationships discovered at the single-
cell level, through patch-clamp recordings and single-cell RNA sequencing, are recapitulated at 
the macroscale between bulk gene expression and timescales inferred from ECoG. Our findings 
motivate further studies for investigating the precise roles voltage-gated ion channels and 
synaptic inhibition play in shaping functional neuronal timescales through causal manipulations, 
complementary to existing lines of research focusing on NMDA activation and recurrent circuit 
motifs. 
 
Finally, we show that neuronal timescales are not static, but can change both in the short- and 
long-term. Transmembrane current timescales across multiple association regions, including 
parietal, frontal, and medial temporal cortices, increase during the delay period of a working 
memory task, consistent with the emergence of persistent spiking during working memory delay. 
Working memory performance across individuals, however, is predicted by the extent of 
timescale increase in the PFC only. This further suggests that behavior-relevant neural activity 
may be localized despite widespread task-related modulation59, even at the level of neuronal 
membrane fluctuations. In the long-term, we find that neuronal timescale shortens with age in 
most cortical regions, linking age-related synaptic, cellular, and connectivity changes—
particularly those that influence neuronal integration timescale—to the compensatory posterior-
to-anterior shift of functional specialization in healthy aging27.  
 
Overall, we identify consistent and converging patterns between transcriptomics, anatomy, 
dynamics, and function across multiple datasets of different modalities from different individuals 
and multiple species. As a result, evidence for these relationships can be supplemented by 
more targeted approaches such as imaging of receptor metabolism. Furthermore, the 
introduction and validation of a novel method for inferring timescales from macroscale 
electrophysiological recordings potentially allows for the non-invasive estimation of neuronal 
timescales, using widely accessible tools such as EEG and MEG45. These results open up 
many avenues of research for discovering potential relationships between microscale gene 
expression and anatomy with the dynamics of neuronal population activity at the macroscale in 
humans. 
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Methods 
 
Inferring timescale from autocorrelation and power spectral density 
Consistent with previous studies, we define “neuronal timescale” as the exponential decay time 
constant (τ) of the empirical autocorrelation function (ACF), or lagged correlation10,29. τ can be 
naively estimated to be the time it takes for the ACF to decrease by a factor of e when there are 
no additional long-term, scale-free, or oscillatory processes, or by fitting a function of the form 

𝑓(𝑡) 	= 	 𝑒"
!
" and extracting the parameter τ. Equivalently, the power spectral density (PSD) is the 

Fourier Transform of the ACF via Wiener-Khinchin theorem, and follows a Lorentzian function of 
the form 𝐿(𝑓) 	= #

!$%#
	for approximately exponential-decay processes, with 𝜒 = 2 exactly when 

the ACF is solely composed of an exponential decay term, though it is often variable and in the 
range between 2-6 for neural time series34,54,60,61. Timescale can be computed from the 
parameter k as 𝜏 = 	 &

'(%$
, where 𝑓! 	≈ 	 𝑘&/*	is approximated to be the frequency at which a bend 

or knee in the power spectrum occurs and equality holds when 𝜒 = 2.  
 
Computing power spectral density (PSD) 
PSDs are estimated using a modified Welch’s method, where short-time windowed Fourier 
transforms (STFT) are computed from the time series, but the median is taken across time 
instead of the mean (in conventional Welch’s method) to minimize the effect of high-amplitude 
transients and artifacts62. Custom functions for this can be found in NeuroDSP63, a published 
and open-source digital signal processing toolbox for neural time series 
(neurodsp.spectral.compute_spectrum). For simulated data, Neurotycho macaque ECoG, and 
MNI-iEEG datasets, we use 1-second long Hamming windows with 0.5-s overlap. To estimate 
single-trial PSDs for the working memory ECoG dataset (Johnson-ECoG53,64), we simply apply 
Hamming window to 900-ms long epoched time series and compute the squared magnitude of 
the windowed-Fourier transform. 
 
Spectral parametrization - Fitting Oscillations and 1/f (FOOOF) 
We apply spectral parameterization34 to extract timescales from PSDs. Briefly, we decompose 
log-power spectra into a summation of narrowband periodic components—modeled as 
Gaussians—and an aperiodic component—modeled as a generalized Lorentzian function 
centered at 0 Hz (𝐿(𝑓) above). For inferring decay timescale, this formalism can be practically 
advantageous when a strong oscillatory or variable power-law (χ) component is present, as is 
often the case for neural signals. While oscillatory and power-law components can corrupt naive 
measurements of τ as time for the ACF to reach 1/e, they can be easily accounted for and 
ignored in the frequency domain as narrowband peaks and 1/f-exponent fit. We discard the 
periodic components and infer timescale from the aperiodic component of the PSD. For a 
complete mathematical description of the model, see ref 34. 
 
 
Simulation and validation 
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We simulate the aperiodic background component of neural field potential recordings as 
autocorrelated stochastic processes by convolving Poisson population spikes with 
exponentially-decaying synaptic kernels with predefined decay time constants 
(neurodsp.sim.sim_synaptic_current). PSDs of the simulated data are computed and 
parameterized as described above, and we compare the fitted timescales with their ground-truth 
values. 
 
Macaque ECoG and single unit timescales data 
Macaque single-unit timescales are taken directly from values reported in Fig. 1c of ref10. 
Whole-brain surface ECoG data (1000Hz sampling rate) is taken from the Neurotycho 
repository65,66, with 8 sessions of 128-channel recordings from two animals (George and Chibi, 
4 sessions each). Results reported in Fig. 2 are from ~10 minutes eyes-open resting periods to 
match the pre-stimulus baseline condition of single-unit experiments. Timescales for individual 
ECoG channels are extracted and averaged over regions corresponding to single-unit recording 
areas from10 (overlaid on top of the ECoG grid locations from one animal in Fig. 2c), which are 
selected visually based on the overlapping cortical map and landmark sulci/gyri. Each region 
included between 2-4 electrodes (refer to Extended Data Table 3 for selected ECoG channel 
indices for each region). 
 
Statistical analysis for macaque ECoG and spiking timescale 
For each individual recording session, as well as the grand average, Spearman rank correlation 
was computed between spiking and ECoG timescales. Linear regression models were fit using 
the python package scipy67 (scipy.stats.linregress) and the linear slope was used to compute 
the scaling coefficient between spiking and ECoG timescales.  
 
Variations in neuronal timescale, T1/T2 ratio, and mRNA expression across human cortex 
The following sections describe procedures for generating the average cortical gradient maps 
for neuronal timescale, MR-derived T1w/T2w ratio, and gene expression from the respective 
raw datasets. All maps were projected onto the 180 left hemisphere parcels of Human 
Connectome Project’s Multimodal Parcellation68 (HCP-MMP1.0) for comparison, described in 
the individual sections. All spatial correlations are computed as Spearman rank correlations 
between maps. Procedure for computing statistical significance while accounting for spatial 
autocorrelation is described in detail below under the sections spatial statistics and spatial 
autocorrelation modeling. 
 
Neuronal timescale map 
The MNI Open iEEG dataset consists of 1 minute of resting state data across 1772 channels 
from 106 epilepsy patients (13-62 years old, 58 males and 48 females), recorded using either 
surface strip/grid or stereoEEG electrodes, and cleaned of visible artifacts35,69. Neuronal 
timescales were extracted from PSDs of individual channels, and projected from MNI voxel 
coordinates onto HCP-MMP1.0 surface parcellation as follows: 
 
For each patient, timescale estimated from each electrode was extrapolated to the rest of the 
cortex in MNI coordinates using a Gaussian weighting function (confidence mask), 𝑤(𝑟) 	=
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	𝑒"(,%/-%), where r is the Euclidean distance between the electrode and a voxel, and α is the 
distance scaling constant, chosen here such that a voxel 4mm away has 50% weight (or, 
confidence). Timescale at each voxel is computed as a weighted spatial average of timescales 
from all electrodes (i) of that patient,  

i.e., 𝜏/0123 	= 	
∑& 5(,&) 6&
∑& 5(,&)

.  

Similarly, each voxel is assigned a confidence rating that is the maximum of weights over all 
electrodes (𝑤/0123(𝑟789), of the closest electrode), i.e., a voxel right under an electrode has a 
confidence of 1, while a voxel 4mm away from the closest electrode has a confidence of 0.5, 
etc.  
  
Timescales for each HCP-MMP parcel were then computed as the confidence-weighted 
arithmetic mean across all voxels that fall within the boundaries of that parcel. HCP-MMP 
boundary map is loaded and used for projection using NiBabel70. This results in a 180 parcels-
by-106 patients timescale matrix. A per-parcel confidence matrix of the same dimensions was 
computed by taking the maximum confidence over all voxels for each parcel (Extended Data 
Fig. 1a). The average cortical timescale map (gradient) is computed by taking the confidence-
weighted average at each parcel across all participants. Note that this procedure for locally 
thresholded and weighted average is different from projection procedures used for the mRNA 
and T1w/T2w data due to region-constrained and heterogeneous ECoG electrode sites across 
participants. While coverage is sparse and idiosyncratic in individual participants, it does not 
vary as a function of age, and when pooling across the entire population, 178 of 180 parcels 
have at least one patient with an electrode within 4mm, with the best coverage in later 
sensorimotor, temporal, and frontal regions (Extended Data Fig. 1). 
 
T1w/T2w ratio map 
As a measure of structural cortical hierarchy, we used the ratio between T1- and T2-weighted 
structural MRI, referred to as T1w/T2w map in main text, or the myelin map12,23. Since there is 
little variation in the myelin map across individuals, we used the group average myelin map of 
the WU-Minn HCP S1200 release (N = 1096, March 1, 2017 release) provided in HCP-MMP1.0 
surface space. For correlation with other variables, we computed the median value per parcel, 
identical to the procedure for mRNA expression below. 
 
mRNA expression maps 
We used the Allen Human Brain Atlas (AHBA) gene expression dataset11,71 that comprised 
postmortem samples of 6 donors (1 female, 5 male) that underwent microarray transcriptional 
profiling. Spatial maps of mRNA expression were available in volumetric 2 mm isotropic MNI 
space, following improved nonlinear registration and whole-brain prediction using variogram 
modeling as implemented by ref13. We used whole-brain maps available from ref13 rather than 
the native sample-wise values in the AHBA database to prevent bias that could occur due to 
spatial inhomogeneity of the sampled locations. In total, 18114 genes were included for 
analyses that related to the dominant axis of expression across the genome. 
 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.25.115378doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.25.115378
http://creativecommons.org/licenses/by-nc/4.0/


 

We projected the volumetric mRNA expression data onto the HCP-MMP cortical surface using 
the HCP workbench software (v1.3.1 running on Windows OS 10) with the “enclosing” method, 
and custom MATLAB code (github.com/rudyvdbrink/surface_projection). The enclosing method 
extracts for all vertices on the surface the value from enclosing voxels in the volumetric data. 
Alternative projection methods such as trilinear 3D linear interpolation of surrounding voxels, or 
ribbon mapping that constructs a polyhedron from each vertex's neighbors on the surface to 
compute a weighted mean for the respective vertices, yielded comparable values, but less 
complete cortical coverage. Moreover, the enclosing method ensured that no transformation of 
the data (non-linear or otherwise) occurred during the projection process and thus the original 
values in the volumetric data were preserved. 
 
Next, for each parcel of the left hemisphere in HCP-MMP, we extracted the median vertex-wise 
value. We used the median rather than the mean because it reduced the contribution of outliers 
in expression values within parcels. Vertices that were not enclosed by voxels that contained 
data in volumetric space were not included in the parcel-wise median. This was the case for 539 
vertices (1.81% of total vertices). Linear interpolation across empty vertices prior to computing 
median parcel-wise values yielded near-identical results (r = 0.95 for reconstructed surfaces). 
Lastly, expression values were mean and variance normalized across parcels to facilitate 
visualization. Normalization had no effect on spatial correlation between gene expression and 
other variables since the spatial distribution of gene expression was left unaltered.  
 
Spatial statistics 
All correlations between spatial maps (timescale, T1w/T2w, gene principal component, and 
individual gene expressions) were computed using Spearman rank correlation. As noted in 
ref12,72,73, neural variables vary smoothly and continuously across the cortical surface, violating 
the assumption of independent samples. As a result, when correlating two variables each with 
non-trivial spatial autocorrelation, the naive p-value is artificially lowered since it is compared 
against an inappropriate null hypothesis, i.e., randomly distributed or shuffled values across 
space. Instead, a more appropriate null hypothesis introduces spatial autocorrelation-preserving 
null maps, which destroys any potential correlation between two maps while respecting their 
spatial autocorrelations. For all spatial correlation analyses, we generated N = 1000 null maps 
of one variable (timescale map unless otherwise noted), and the test statistic, Spearman 
correlation (ρ), is computed against the other variable of interest to build the null distribution. 
Two-tailed significance is then computed as the proportion of the null distribution that is less 
extreme than the empirical correlation value. All regression lines were computed by fitting a 
linear regression to log-timescale and the structural feature maps. 
 
 
Spatial autocorrelation modeling 
To generate spatial autocorrelation-preserving null maps, we used Moran’s Spectral 
Randomization (MSR)74 from the python package BrainSpace73. Details of the algorithm can be 
found in the above references. Briefly, MSR performs eigendecomposition on a spatial weight 
matrix of choice, which is taken here to be the inverse average geodesic distance matrix 
between all pairs of parcels in HCP-MMP1.0. The eigenvectors of the weight matrix are then 
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used to generate randomized null feature maps that preserves the autocorrelation of the 
empirical map. We used the singleton procedure for null map generation. All significance values 
reported (Fig. 2b, Fig. 4a-c) were adjusted using the above procedure.  
 
We also compare two other methods of generating null maps: spatial variogram fitting72 and 
spin permutation75. Null maps were generated for timescale using spatial variogram fitting, while 
for spin permutation they were generated for vertex-wise T1w/T2w and gene PC1 maps before 
parcellation, so as to preserve surface locations of the parcellation itself. All methods perform 
similarly, producing comparable spatial autocorrelation in the null maps, assessed using spatial 
variogram, as well as null distribution of spatial correlation coefficients between timescale and 
T1w/T2w (Extended Data Fig. 2). 
 
Principal Component Analysis (PCA) of gene expression 
We used scikit-learn76 PCA (sklearn.decomposition.PCA) to identify the dominant axes of gene 
expression variation across the entire AHBA dataset, as well as for brain-specific genes. PCA 
was computed on the variance-normalized average gene expression maps, X, an N x P matrix 
where N = 18114 (or N = 2429 brain-specific) genes, and P = 180 cortical parcels. Briefly, PCA 
factorizes X such that 𝑋	 = 	𝑈𝑆𝑉:, where U and V are unitary matrices of dimensionality N x N 
and P x P, respectively. S is the same dimensionality as X and contains non-negative 
descending eigenvalues on its main diagonal (Λ). Columns of V are defined as the principal 
components (PCs), and the dominant axis of gene expression is then defined as the first column 
of V, whose proportion of variance explained in the data is the first element of Λ divided by the 
sum over Λ. Results for PC1 and PC2-10 are shown in Fig. 3a and Extended Data Fig. 4, 
respectively. 
 
Selection of brain-specific genes 
Similar to ref12,77,78, N=2429 brain-specific genes were selected based on the criteria that 
expression in brain tissues were 4 times higher than the median expression across all tissue 
types, using Supplementary Dataset 1 of ref78. PC1 result shown in Fig. 3a is computed from 
brain-specific genes, though findings are identical when using all genes (ρ = -0.56 with 
timescale map, Extended Data Fig. 4). 
 
Comparison of timescale-transcriptomic association with single-cell timescale genes 
Single-cell timescale genes were selected based on data from Table S3 and Online Table 1 of 
refs39,44, respectively. Using single-cell RNA sequencing data and patch-clamp recordings from 
transgenic mice cortical neurons, these studies identified genes whose expression significantly 
correlated with electrophysiological features derived from generalized linear integrate and fire 
(GLIF) model fits. We selected genes that were significantly correlated to membrane time 
constant (tau), input resistance (Rin or ri), or capacitance (Cm or cap) in the referenced data 
tables, and extracted the level of association between gene expression and those 
electrophysiological feature (correlation ‘DiscCorr’ in ref44 and linear coefficient “beta_gene” in 
ref39).  
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To compare timescale-gene expression association at the single-cell and macroscale level, we 
correlated the single-cell associations extracted above with the spatial correlation coefficient 
(macroscale ρ) between ECoG timescale and AHBA microarray expression data for those same 
genes, restricting to genes with p < 0.05 for macroscale correlation (results identical for non-
restrictive gene set). Overall association for all genes, as well as split by quintiles of their 
absolute macroscale correlation coefficient, are shown in Fig. 3d. Example “single-cell 
timescale” genes shown in Fig. 3b,c are genes showing the highest correlations with those 
electrophysiology features reported in Table 2 of ref39. 
 
T1w/T2w-removed timescale and gene expression residual maps 
To remove anatomical hierarchy as a potential mediating variable in timescale-gene expression 
relationships, we linearly regress out the T1w/T2w map from the (log) timescale map and 
individual gene expression maps. T1w/T2w was linearly fit to log-timescale, and the error 
between T1w/T2w-predicted timescale and empirical timescale was extracted (residual); this 
identical procedure was applied to every gene expression map to retrieve the gene residuals. 
Spatial autocorrelation-preserving null residual maps were similarly created using MSR. 
 
Partial least squares regression model 
Due to multicollinearity in the high-dimensional gene expression dataset (many more genes 
than parcels), we fit a partial least squares model to the timescale map with one output 
dimension (sklearn.cross_decomposition.PLSRegression) to estimate regression coefficient for 
all genes simultaneously, resulting in N=18114 (or N=2429 brain-specific) PLS weights46,79. To 
determine significantly associated (or, “enriched”) genes, we repeated the above PLS-fitting 
procedure 1000 times but replaced the empirical timescale map (or residual map) with null 
timescale maps (or residual maps) that preserved its spatial autocorrelation. Genes whose 
absolute empirical PLS weight that was greater than 95% of its null weight distribution was 
deemed to be enriched, and submitted for gene ontology enrichment analysis.  
 
Gene ontology enrichment analysis (GOEA) 
The Gene Ontology (GO) captures hierarchically structured relationships between GO items 
representing aspects of biological processes (BP), cellular components (CC), or molecular 
functions (MF). For example, "synaptic signaling”, "chemical synaptic transmission", and 
"glutamatergic synaptic transmission" are GO items with increasing specificity, with smaller 
subsets of genes associated with each function. Each GO item is annotated with a list of genes 
that have been linked to that particular process or function. GOEA examines the list of enriched 
genes from above to identify GO items that are more associated with those genes than 
expected by chance. We used GOATOOLS47 to perform GOEA programmatically in python. 
 
The list of unranked genes with significant empirical PLS weights was submitted for GOEA as 
the “study set”, while either the full ABHA list or brain-specific gene list was used as the 
“reference set”. The output of GOEA is a list of GO terms with annotated genes that are 
enriched or purified (i.e., preferentially appearing or missing in the study list, respectively) more 
often than by chance, determined by Fisher’s exact test.  
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Enrichment ratio is defined as follows: given a reference set with N total genes, and n were 
found to be significantly associated with timescale (in the study set), for a single GO item with B 
total genes annotated to it, where b of them overlap with the study set, then 𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡	 = 	 ;/9

</=
. 

Statistical significance is adjusted for multiple comparisons following Benjamini-Hochberg 
procedure (false discovery rate q-value reported in Fig. 3f), and all significant GO items (q < 
0.05) are reported in Fig. 3f, in addition to some example items that did not pass significance 
threshold. For a detailed exposition, see ref80. Fig. 3f shows results using brain-specific genes. 
The GO items that are significantly associated are similar when using the full gene set, but 
typically with larger q-values (Extended Data Tables 3 and 4) due to a mucher larger set of 
(non-brain-specific) genes. 
 
Working memory ECoG data and analysis 
The CRCNS fcx-2 and fcx-3 datasets include 17 intracranial ECoG recordings in total from 
epilepsy patients (10 and 7, respectively) performing the same visuospatial working memory 
task53,64,81,82. Subject 3 (s3) from fcx-2 was discarded due to poor data quality upon examination 
of trial-averaged PSDs (high noise floor near 20 Hz), while s5 and s7 from fcx-3 correspond to 
s5 and s8 in fcx-2 and were thus combined. Together, data from 14 unique participants (22-50 
years old, 5 female) were analyzed, with variable and overlapping coverage in parietal cortex 
(PC, n=14), prefrontal cortex (PFC, n=13), orbitofrontal cortex (OFC, n=8), and medial temporal 
lobe (MTL, n=9). Each channel was annotated as belonging to one of the above macro regions.  
 
Experimental setup is described in ref53,64,81,82 in detail. Briefly, following a 1-second pre-trial 
fixation period (baseline), subjects were instructed to focus on one of two stimulus contexts 
(“identity” or “relation” information). Then two shapes were presented in sequence for 200 ms 
each. After a 900 or 1150 ms jittered precue delay (delay1), the test cue appeared for 800 ms, 
followed by another post-cue delay period of the same length (delay2). Finally, the response 
period required participants to perform a 2-alternative forced choice test based on the test cue, 
which varied based on trial condition. For our analysis, we collapsed across the stimulus context 
conditions and compared neuronal timescales during the last 900 ms of baseline and delay 
periods from the epoched data, which were free of visual stimuli, in order to avoid stimulus-
related event-related potential effects. Behavioral accuracy for each experimental condition was 
reported for each participant, and we average across both stimulus context conditions to 
produce a single working memory accuracy per participant. 
 
Single-trial power spectra were computed for each channel as the squared magnitude of the 
Hamming-windowed Fourier Transform. We used 900 ms of data in all 3 periods (pre-trial, 
delay1, and delay2). Timescales were estimated by applying spectral parameterization as 
above, and the two delay-period estimates were averaged to produce a single delay period 
value. For comparison, we computed single-trial theta (3-8 Hz) and high-frequency activity (high 
gamma83, 70-100 Hz) powers as the mean log-power within those frequency bins, as well as 
spectral exponent (χ). Single-trial timescale difference between delay and baseline was 
calculated as the difference of the log timescales due to the non-normal distribution of single-
trial timescale estimates. All other neural features were computed by subtracting baseline from 
the delay period.  
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All neural features were then averaged across channels within the same regions, then trials, for 
each participant, to produce per-participant region-wise estimates, and finally averaged across 
all participants for the regional average in Fig. 4b,c. one-sample two-sided t-tests were used to 
determine the statistical significance of timescale change in each region (Fig. 4c), where the null 
hypothesis was no change between baseline and delay periods (i.e., delay is 100% of baseline). 
Spearman rank correlation was used to determine the relationship between neural activity 
(timescale; theta; high-frequency; χ) change and working memory accuracy across participants 
(Fig. 4d, Extended Data Fig. 6). 
 
Per-subject average cortical timescale across age 
Since electrode coverage in the MNI-iEEG dataset is sparse and non-uniform across 
participants (Extended Data Fig. 1), simply averaging across parcels within individuals to 
estimate an average cortical timescale per participant confounds the effect of age with the 
spatial effect of cortical hierarchy. Therefore, we instead first normalize each parcel by its max 
value across all participants before averaging within participants, excluding those with fewer 
than 10 valid parcels (71 of 106 subjects remaining; results hold for a range of threshold values; 
Extended Data Fig. 7b). Spearman rank correlation was used to compute the association 
between age and average cortical timescale. 
 
Age-timescale association for individual parcels 
Each cortical parcel had a variable number of participants with valid timescale estimates above 
the consistency threshold, so we compute Spearman correlation between age and timescale for 
each parcel, but including only those with at least 5 participants (114 of 180 parcels, result holds 
for a range of threshold values; Extended Data Fig. 7c). Spatial effect of age-timescale variation 
is plotted in Fig. 4f, where parcels that did not meet the threshold criteria are greyed out. Mean 
age-timescale correlation from individual parcels was significantly negative under one-sample t-
test. 
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Extended Data Figures and Tables. 

 
Extended Data Fig. 1| MNI-iEEG dataset coverage. a, per-parcel Gaussian-weighted mask 
values showing how close the nearest electrode was to a given HCP-MMP1.0 parcel for each 
participant. Brighter means closer, 0.5 corresponds to the nearest electrode being 4 mm away. 
b, maximum weight for each parcel across all participants. Most parcels have electrodes very 
close by across the entire participant pool. c, the number of HCP-MMP parcels each participant 
has above the confidence threshold of 0.5 is uncorrelated with age. d, number of participants 
with confidence above threshold at each parcel. Sensorimotor, frontal, and lateral temporal 
regions have the highest coverage. e, average age of participants with confidence above 
threshold at each parcel. f, age distribution of participants with confidence above threshold at 
each parcel. Average age per parcel (red line) is relatively stable while age distribution varies 
from parcel to parcel. 
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Extended Data Fig. 2| Comparison of spatial autocorrelation-preserving null map 
generation methods. a, distributions of Spearman correlation values between empirical 
T1w/T2w map and 1000 spatial-autocorrelation preserving null timescale maps generated using 
Moran Spectral Randomization (MSR), spatial variogram fitting (VF), and spin permutation. Red 
dashed line denotes correlation between empirical timescale and T1w/T2w maps, p-values 
indicate two-tailed significance, i.e., proportion of distribution with values more extreme than 
empirical correlation. b, spatial variogram for empirical timescale map (black) and 10 null maps 
(blue) generated using MSR and VF. Inset shows distribution of distances between pairs of 
HCP-MMP parcels. c, distribution of Spearman correlations between empirical and 1000 null 
timescale maps generated using MSR (green) and VF (red), showing similar levels of 
correlation between empirical and null maps for both methods. 
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Extended Data Fig. 3| Macaque ECoG and single-unit coverage. a, locations of 180-
electrode ECoG grid from 2 animals in the Neurotycho dataset, colors correspond to locations 
used for comparison with single-unit timescales. b, single-unit recording locations from Fig. 1a 
of Murray et al., 2014 (ref10). c. electrode indices of the sampled areas from the two animals, 
corresponding to those colored in a. 
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Extended Data Fig. 4| Transcriptomic PCA results. a, proportion of variance explained by the 
top 10 principal components (PCs) of brain-specific genes (top) and all AHBA genes (bottom). 
b, absolute Spearman correlation between timescale map and top 10 PCs from brain-specific or 
full gene dataset. Asterisks indicate resampled significance while accounting for spatial 
autocorrelation, **** indicate p < 0.001. 
 
 

 
Extended Data Fig. 5| Individual gene correlations from Fig. 3c with gene symbols 
labeled, and grouped into functional families.  
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Extended Data Fig. 6| Spectral correlates of working memory performance. a, difference 
between delay and baseline periods for 1/f-exponent, timescale (same as main Fig. 4c but 
absolute units on y-axis, instead of percentage), theta power, and high-frequency power. b, 
Spearman correlation between spectral feature difference and working memory accuracy across 
participants, same features as in a. * p < 0.05, ** p < 0.01, *** p < 0.005 in a and b. c, scatter 
plot of other significantly correlated spectral features from b. 
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Extended Data Fig. 7| Parameter sensitivity for timescale-aging analysis. a, cortex-
averaged timescale is independent of parcel coverage across participants. b, sensitivity analysis 
for the number of valid parcels a participant must have in order to be included in analysis for 
main Fig. 4e (red). As threshold increases (more stringent), fewer participants satisfy the criteria 
(right) but correlation between participant age and timescale remains robust (left). c,. sensitivity 
analysis for the number of valid participants a parcel must have in order to be included in 
analysis for main Fig. 4f. As threshold increases (more stringent), fewer parcels satisfy the 
criteria (right) but average correlation across all parcels remains robust (left, error bars denote 
s.e.m of distribution as in Fig. 4f).
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Extended Data Table 1. Summary of open-access datasets used 

Data Ref. Specific Source/ Format Used Relevant Figures  

MNI Open iEEG Atlas 35,69  Fig. 2a,b,  
Fig. 3,  
Fig. 4e-f 

Tw1/T2w map 
Human Connectome Project 

23,68 Release S1200, March 1, 2017 Fig. 2a,b,  
Fig. 3d-f 

Neurotycho macaque ECoG 65,66 Anesthesia datasets, propofol and 
ketamine (Chibi and Geroge) 

Fig. 2c,d 

Macaque single-unit timescales 10 Fig. 1 of reference Fig. 2c,d 

Whole-cortex interpolated Allen 
Brain Atlas human gene 
expression  

11,13 Interpolated maps downloadable 
from 
http://www.meduniwien.ac.at/neur
oimaging/mRNA.html 

Fig. 3 

Single-cell timescale-related 
genes 

39,44 Table S3 from 44, Online Table 1 
from 39 

Fig. 3c,d 

Human working memory ECoG 53,64,81,8

2 
CRCNS fcx-2 and fcx-3 Fig. 4a-d 
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Extended Data Table 2. Reproducing figures from code repository 

All IPython notebooks: https://github.com/rdgao/field-echos/tree/master/notebooks  

Notebook Results 

2a_sim_method_schematic.ipynb simulations: Fig. 1b-e, Extended Data Fig. 3 

2b_viz_NeuroTycho-SU.ipynb macaque timescales: Fig. 2c,d 

3_viz_human_structural.ipynb human timescales vs. T1w/T2w and gene expression:  
Fig. 2a,b; Fig. 3, Extended Data Fig. 1,4,5 
Extended Data Table. 3 

4a_viz_human_aging.ipynb human working memory: Fig. 4e,f, Extended Data Fig. 6 

4b_viz_human_wm.ipynb human aging: Fig. 4a-d, Extended Data Fig. 7 

supp_spatialautocorr.ipynb spatial autocorrelation-preserving nulls:  
Extended Data Fig. 2 

Projection of T1w/T2w and gene expression maps from MNI volumetric coordinates to HCP-
MMP1.0 can be found: https://github.com/rudyvdbrink/Surface_projection 
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Extended Data Table 3. Significant items from brain-specific GOEA (Fig. 3f) 
gene 

association ID e/p ontology name 
enrichment 

ratio 
p-value 

(FDR-adjusted) 

all GO:0034702 e CC ion channel complex 1.959 0.008 

all GO:1902495 e CC transmembrane transporter complex 1.91 0.008 

all GO:1990351 e CC transporter complex 1.91 0.008 

all GO:0098982 e CC GABA-ergic synapse 2.497 0.038 

all GO:1902711 e CC GABA-A receptor complex 4.541 0.038 

all GO:0034707 e CC chloride channel complex 3.385 0.038 

pos GO:0008195 e MF phosphatidate phosphatase activity 13.864 0.007 

neg GO:0098660 e BP inorganic ion transmembrane transport 2.515 0.002 

neg GO:0098662 e BP 
inorganic cation transmembrane 
transport 2.529 0.007 

neg GO:0098655 e BP cation transmembrane transport 2.439 0.007 

neg GO:0034220 e BP ion transmembrane transport 2.057 0.03 

neg GO:0030001 e BP metal ion transport 2.239 0.036 

neg GO:0071805 e BP potassium ion transmembrane transport 3.122 0.036 

neg GO:0006813 e BP potassium ion transport 3.081 0.037 

neg GO:1902495 e CC transmembrane transporter complex 2.334 0.009 

neg GO:1990351 e CC transporter complex 2.334 0.009 

neg GO:0034702 e CC ion channel complex 2.36 0.009 

neg GO:0098796 e CC membrane protein complex 2.063 0.009 

neg GO:0034703 e CC cation channel complex 2.379 0.03 

neg GO:0005244 e MF voltage-gated ion channel activity 3.081 0.002 

neg GO:0022832 e MF voltage-gated channel activity 3.081 0.002 

neg GO:0046873 e MF 
metal ion transmembrane transporter 
activity 2.453 0.002 

neg GO:0022890 e MF 
inorganic cation transmembrane 
transporter activity 2.24 0.005 

neg GO:0005216 e MF ion channel activity 2.289 0.006 

neg GO:0008324 e MF 
cation transmembrane transporter 
activity 2.173 0.006 

neg GO:0015318 e MF 
inorganic molecular entity 
transmembrane transporter activity 2.04 0.006 

neg GO:0015077 e MF 
monovalent inorganic cation 
transmembrane transporter activity 2.535 0.006 

neg GO:0015075 e MF ion transmembrane transporter activity 2.024 0.006 
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neg GO:0015079 e MF 
potassium ion transmembrane 
transporter activity 3.041 0.006 

neg GO:0005215 e MF transporter activity 1.883 0.006 

neg GO:0022857 e MF transmembrane transporter activity 1.906 0.006 

neg GO:0022836 e MF gated channel activity 2.301 0.006 

neg GO:0015267 e MF channel activity 2.191 0.006 

neg GO:0022803 e MF 
passive transmembrane transporter 
activity 2.191 0.006 

neg GO:0005249 e MF 
voltage-gated potassium channel 
activity 3.658 0.006 

neg GO:0005261 e MF cation channel activity 2.353 0.009 

neg GO:0005267 e MF potassium channel activity 3.058 0.011 

neg GO:0022843 e MF voltage-gated cation channel activity 2.744 0.022 

e/p: enriched or purified; BP: biological process; CC: cellular components; MF: molecular 
function  
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Extended Data Table 4. Significant items from all-gene GOEA 
gene 

association ID e/p ontology name 
enrichment 

ratio 
p-value 

(FDR-adjusted) 

all GO:0034702 e CC ion channel complex 1.83 0.008 

all GO:1990351 e CC transporter complex 1.774 0.008 

all GO:1902495 e CC transmembrane transporter complex 1.79 0.008 

all GO:0034703 e CC cation channel complex 1.952 0.009 

all GO:0098982 e CC GABA-ergic synapse 2.468 0.048 

all GO:1902711 e CC GABA-A receptor complex 5.035 0.048 

pos GO:0050866 e BP negative regulation of cell activation 3.596 0 

pos GO:0002376 e BP immune system process 1.629 0 

pos GO:0006955 e BP immune response 1.992 0 

pos GO:0002695 e BP 
negative regulation of leukocyte 
activation 3.343 0.001 

pos GO:0045087 e BP innate immune response 2.297 0.005 

pos GO:0050865 e BP regulation of cell activation 2.099 0.005 

pos GO:0045321 e BP leukocyte activation 1.834 0.006 

pos GO:0007165 e BP signal transduction 1.301 0.006 

pos GO:0051250 e BP 
negative regulation of lymphocyte 
activation 3.305 0.007 

pos GO:0070663 e BP regulation of leukocyte proliferation 2.82 0.007 

pos GO:0002252 e BP immune effector process 1.778 0.009 

pos GO:0050670 e BP regulation of lymphocyte proliferation 2.823 0.009 

pos GO:0032944 e BP 
regulation of mononuclear cell 
proliferation 2.807 0.009 

pos GO:0050776 e BP regulation of immune response 1.787 0.011 

pos GO:0002682 e BP regulation of immune system process 1.571 0.015 

pos GO:0046634 e BP regulation of alpha-beta T cell activation 3.772 0.016 

pos GO:0001775 e BP cell activation 1.709 0.016 

pos GO:0032956 e BP 
regulation of actin cytoskeleton 
organization 2.229 0.016 

pos GO:0003150 e BP muscular septum morphogenesis 17.672 0.016 

pos GO:0032945 e BP 
negative regulation of mononuclear cell 
proliferation 4.208 0.016 

pos GO:0050672 e BP 
negative regulation of lymphocyte 
proliferation 4.208 0.016 

pos GO:0006952 e BP defense response 1.686 0.016 
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pos GO:0002694 e BP regulation of leukocyte activation 2.013 0.016 

pos GO:0002253 e BP activation of immune response 2.183 0.016 

pos GO:0030833 e BP 
regulation of actin filament 
polymerization 2.832 0.016 

pos GO:0032970 e BP 
regulation of actin filament-based 
process 2.136 0.017 

pos GO:0002684 e BP 
positive regulation of immune system 
process 1.708 0.017 

pos GO:0046640 e BP 
regulation of alpha-beta T cell 
proliferation 6.094 0.017 

pos GO:0050868 e BP negative regulation of T cell activation 3.381 0.017 

pos GO:0002274 e BP myeloid leukocyte activation 1.926 0.017 

pos GO:0008064 e BP 
regulation of actin polymerization or 
depolymerization 2.697 0.017 

pos GO:0030832 e BP regulation of actin filament length 2.681 0.017 

pos GO:0006334 e BP nucleosome assembly 3.053 0.018 

pos GO:0070664 e BP 
negative regulation of leukocyte 
proliferation 3.956 0.018 

pos GO:0038096 e BP 
Fc-gamma receptor signaling pathway 
involved in phagocytosis 3.787 0.026 

pos GO:0002433 e BP 

immune response-regulating cell 
surface receptor signaling pathway 
involved in phagocytosis 3.787 0.026 

pos GO:0098883 e BP synapse pruning 10.041 0.027 

pos GO:0038094 e BP Fc-gamma receptor signaling pathway 3.734 0.029 

pos GO:0051249 e BP regulation of lymphocyte activation 2.035 0.029 

pos GO:0002431 e BP 
Fc receptor mediated stimulatory 
signaling pathway 3.682 0.03 

pos GO:0042116 e BP macrophage activation 4.734 0.03 

pos GO:0110053 e BP regulation of actin filament organization 2.279 0.03 

pos GO:0150064 e BP vertebrate eye-specific patterning 22.09 0.03 

pos GO:0002683 e BP 
negative regulation of immune system 
process 2.008 0.03 

pos GO:0051049 e BP regulation of transport 1.428 0.03 

pos GO:0098542 e BP defense response to other organism 1.811 0.033 

pos GO:0150146 e BP cell junction disassembly 9.204 0.033 

pos GO:0016322 e BP neuron remodeling 9.204 0.033 

pos GO:1903038 e BP 
negative regulation of leukocyte cell-cell 
adhesion 3.04 0.033 
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pos GO:0007166 e BP cell surface receptor signaling pathway 1.391 0.034 

pos GO:0034728 e BP nucleosome organization 2.591 0.037 

pos GO:0036336 e BP dendritic cell migration 6.976 0.037 

pos GO:0048584 e BP 
positive regulation of response to 
stimulus 1.379 0.039 

pos GO:0001774 e BP microglial cell activation 5.727 0.039 

pos GO:0002269 e BP 
leukocyte activation involved in 
inflammatory response 5.727 0.039 

pos GO:0050778 e BP positive regulation of immune response 1.82 0.039 

pos GO:2000112 p BP 
regulation of cellular macromolecule 
biosynthetic process 0.718 0.017 

pos GO:0051252 p BP regulation of RNA metabolic process 0.718 0.019 

pos GO:0044271 p BP 
cellular nitrogen compound biosynthetic 
process 0.554 0.029 

pos GO:0019219 p BP 
regulation of nucleobase-containing 
compound metabolic process 0.737 0.029 

pos GO:0090304 p BP nucleic acid metabolic process 0.654 0.037 

pos GO:0032993 e CC protein-DNA complex 2.829 0.016 

pos GO:0000786 e CC nucleosome 3.488 0.016 

pos GO:0005887 e CC 
integral component of plasma 
membrane 1.555 0.016 

pos GO:0031226 e CC 
intrinsic component of plasma 
membrane 1.536 0.016 

pos GO:0044815 e CC DNA packaging complex 3.217 0.023 

pos GO:0030666 e CC endocytic vesicle membrane 2.705 0.034 

pos GO:0031514 e CC motile cilium 2.897 0.034 

pos GO:0043235 e CC receptor complex 1.981 0.04 

pos GO:0000839 e CC Hrd1p ubiquitin ligase ERAD-L complex 11.045 0.047 

pos GO:0016021 e CC integral component of membrane 1.232 0.047 

pos GO:0005634 p CC nucleus 0.79 0.04 

pos GO:0003676 p MF nucleic acid binding 0.694 0.012 

neg GO:0006813 e BP potassium ion transport 2.911 0.004 

neg GO:0071805 e BP potassium ion transmembrane transport 2.868 0.008 

neg GO:0015079 e MF 
potassium ion transmembrane 
transporter activity 2.888 0.001 

neg GO:0015075 e MF ion transmembrane transporter activity 1.726 0.001 

neg GO:0022857 e MF transmembrane transporter activity 1.649 0.001 
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neg GO:0046873 e MF 
metal ion transmembrane transporter 
activity 2.068 0.001 

neg GO:0005215 e MF transporter activity 1.587 0.002 

neg GO:0022832 e MF voltage-gated channel activity 2.468 0.006 

neg GO:0005244 e MF voltage-gated ion channel activity 2.468 0.006 

neg GO:0015318 e MF 
inorganic molecular entity 
transmembrane transporter activity 1.662 0.008 

neg GO:0001227 e MF 
DNA-binding transcription repressor 
activity, RNA polymerase II-specific 2.227 0.011 

neg GO:0001217 e MF 
DNA-binding transcription repressor 
activity 2.218 0.011 

neg GO:0022836 e MF gated channel activity 2.007 0.015 

neg GO:0005249 e MF 
voltage-gated potassium channel 
activity 3.126 0.015 

neg GO:0015077 e MF 
monovalent inorganic cation 
transmembrane transporter activity 1.916 0.022 

neg GO:0005267 e MF potassium channel activity 2.703 0.022 

neg GO:0022890 e MF 
inorganic cation transmembrane 
transporter activity 1.701 0.033 

e/p: enriched or purified; BP: biological process; CC: cellular components; MF: molecular 
function 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.25.115378doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.25.115378
http://creativecommons.org/licenses/by-nc/4.0/

