1 Title

2 Generation of human bronchial organoids for SARS-CoV-2 research

- 4 Authors/Affiliations
- 5 Tatsuya Suzuki¹
- 6 Yumi Itoh¹
- 7 Yusuke Sakai²
- 8 Akatsuki Saito³
- 9 Daisuke Okuzaki^{4,5,6}
- 10 Daisuke Motooka⁷
- 11 Shohei Minami⁸
- 12 Takeshi Kobayashi⁸
- 13 Takuya Yamamoto^{9,10,11,12}
- 14 Toru Okamoto^{1*}
- 15 Kazuo Takayama^{12*}
- 16
- 17 ¹ Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases,
- 18 Osaka University, Suita 565-0871, Japan
- ¹⁹ ² Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi
- 20 University, Yamaguchi 753-8511, Japan
- ³ Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki,
- 22 Miyazaki 889-2192, Japan
- ⁴ Genome Information Research Center, Research Institute for Microbial Diseases,
- 24 Osaka University, Suita 565-0871, Japan

- ⁵ Single Cell Genomics, Human Immunology, WPI Immunology Frontier Research
- 26 Center, Osaka University, Suita 565-0871, Japan
- ⁶ Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita
- 28 565-0871, Japan
- ⁷Genome Information Research Center, Research Institute for Microbial Diseases,
- 30 Osaka University, Suita 565-0871, Japan
- ⁸ Laboratory of Viral Replication, International Research Center for Infectious Diseases,
- 32 Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871
- 33 Japan
- ⁹ Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University,
- 35 Kyoto 606-8501 Japan
- ³⁶ ¹⁰ Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced
- 37 Intelligence Project (AIP), Kyoto 606-8507, Japan
- ³⁸ ¹¹ AMED-CREST, Japan Agency for Medical Research and Development (AMED),
- 39 Tokyo 100-0004, Japan
- 40 ¹²Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto
- 41 606-8507, Japan
- 42

43 *Corresponding author

- 44 Dr. Kazuo Takayama
- 45 Center for iPS Cell Research and Application, Kyoto University, Shogoin Kawaharacho
- 46 53, Sakyo-ku, Kyoto 606-8397, Japan
- 47 Phone: +81-75-366-7362, FAX: +81-75-366-7074
- 48 E-mail: <u>kazuo.takayama@cira.kyoto-u.ac.jp</u>

49

- 50 Dr. Toru Okamoto
- 51 Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases,
- 52 Osaka University, Yamadaoka 3-1, Suita 565-0871, Japan

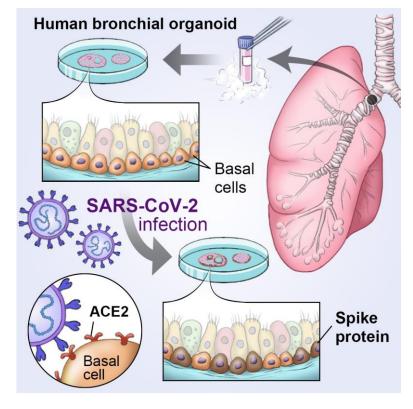
two-dimensional

- 53 Phone: +81-6-6879-8330, FAX: +81-6-6879-8330
- 54 E-mail: toru@biken.osaka-u.ac.jp
- 55

57

56 Abbreviations

2D


- 58 ACE2 angiotensin-converting enzyme 2
- 59 CC10 club cell protein 10
- 60 FGF fibroblast growth factor
- 61 hBEpC human bronchial epithelial cells
- 62 hBO human bronchial organoids
- 63 IFN-I type I interferon
- 64 IHC immunohistochemistry
- 65 KRT5 keratin 5
- 66 LDH lactate dehydrogenase
- 67 PSC pluripotent stem cell
- 68 RdRp RNA-dependent RNA polymerase
- 69 RNA seq RNA sequencing
- 70 SARS-CoV-2 severe acute respiratory syndrome coronavirus 2
- 71 TMPRSS2 transmembrane serine proteinase 2
- 72 WHO World Health Organization

73

74 Abstract

Coronavirus disease 2019 (COVID-19) is a disease that causes fatal disorders 75including severe pneumonia. To develop a therapeutic drug for COVID-19, a model that 76 can reproduce the viral life cycle and evaluate the drug efficacy of anti-viral drugs is 7778 essential. In this study, we established a method to generate human bronchial organoids 79 (hBO) from commercially available cryopreserved human bronchial epithelial cells and 80 examined whether they could be used as a model for severe acute respiratory syndrome 81 coronavirus 2 (SARS-CoV-2) research. Our hBO contain basal, club, ciliated, and goblet cells. Angiotensin-converting enzyme 2 (ACE2), which is a receptor for 82 SARS-CoV-2, and transmembrane serine proteinase 2 (TMPRSS2), which is an 83 essential serine protease for priming spike (S) protein of SARS-CoV-2, were highly 84 expressed. After SARS-CoV-2 infection, not only the intracellular viral genome, but 85 86 also progeny virus, cytotoxicity, pyknotic cells, and moderate increases of the type I 87 interferon signal could be observed. Treatment with camostat, an inhibitor of TMPRSS2, reduced the viral copy number to 2% of the control group. Furthermore, the gene 88 89 expression profile in SARS-CoV-2-infected hBO was obtained by performing RNA-seq analysis. In conclusion, we succeeded in generating hBO that can be used for 90 91 SARS-CoV-2 research and COVID-19 drug discovery. 92

94 Graphical abstract

95 96

- 97 Key words
- 98 SARS-CoV-2, bronchial organoids, COVID-19, camostat

100

101 Introduction

102	The "2019-new coronavirus disease (COVID-19) was first reported in China in
103	December 2019 ¹ and declared a pandemic by the WHO in March 2020 ² . Severe
104	pneumonia is most frequently observed in COVID-19 patients, and the number of
105	COVID-19 patients and deaths are still increasing. These conditions have made it
106	difficult for research on severe acute respiratory syndrome coronavirus 2
107	(SARS-CoV-2), which is the causative virus of COVID-19, to keep pace. SARS-CoV-2
108	is composed of four proteins: S (spike), E (envelope), M (membrane), and N
109	(nucleocapsid) proteins. It is known that angiotensin-converting enzyme 2 (ACE2) is a
110	SARS-CoV-2 receptor, and transmembrane serine proteinase 2 (TMPRSS2) is essential
111	for priming S protein ³ . Thus, to accelerate SARS-CoV-2 research, a novel lung model
112	that reproduces the viral life cycle with intact expression of these host factors is
113	indispensable.
113 114	indispensable. A number of animal and cell models that can be used for SARS-CoV-2 research
	-
114	A number of animal and cell models that can be used for SARS-CoV-2 research
114 115	A number of animal and cell models that can be used for SARS-CoV-2 research have been reported (Takayama et al., in revision), but an <i>in vitro</i> lung model that can
114 115 116	A number of animal and cell models that can be used for SARS-CoV-2 research have been reported (Takayama et al., in revision), but an <i>in vitro</i> lung model that can evaluate candidate therapeutic agents for COVID-19 is essential for conducting
114 115 116 117	A number of animal and cell models that can be used for SARS-CoV-2 research have been reported (Takayama et al., in revision), but an <i>in vitro</i> lung model that can evaluate candidate therapeutic agents for COVID-19 is essential for conducting large-scale drug screening. Human lung organoids are excellent tools that can faithfully
 114 115 116 117 118 	A number of animal and cell models that can be used for SARS-CoV-2 research have been reported (Takayama et al., in revision), but an <i>in vitro</i> lung model that can evaluate candidate therapeutic agents for COVID-19 is essential for conducting large-scale drug screening. Human lung organoids are excellent tools that can faithfully mimic the lung functions of living organisms ⁴ . The lungs consist of bronchi and alveoli.
 114 115 116 117 118 119 	A number of animal and cell models that can be used for SARS-CoV-2 research have been reported (Takayama et al., in revision), but an <i>in vitro</i> lung model that can evaluate candidate therapeutic agents for COVID-19 is essential for conducting large-scale drug screening. Human lung organoids are excellent tools that can faithfully mimic the lung functions of living organisms ⁴ . The lungs consist of bronchi and alveoli. Lukassen et al. have performed single-cell analysis of alveoli and bronchi and reported
 114 115 116 117 118 119 120 	A number of animal and cell models that can be used for SARS-CoV-2 research have been reported (Takayama et al., in revision), but an <i>in vitro</i> lung model that can evaluate candidate therapeutic agents for COVID-19 is essential for conducting large-scale drug screening. Human lung organoids are excellent tools that can faithfully mimic the lung functions of living organisms ⁴ . The lungs consist of bronchi and alveoli. Lukassen et al. have performed single-cell analysis of alveoli and bronchi and reported that ACE2 is predominantly expressed in the transient secretory cell type, which

 $\mathbf{6}$

124 SARS-CoV-2 research.

125	Several reports have verified the usefulness of two-dimensional (2D) culturing
126	airway epithelial cells in SARS-CoV2 studies. For example, SARS-CoV-2 infection
127	experiments using human bronchial epithelial cells (hBEpC) showed cytopathic effects
128	96 hr after the infection on the layers of human airway epithelial cells ⁶ . In addition,
129	hBEpC cultured using an air-liquid interface culture system can be used to evaluate
130	viral infection, replication, and the drug efficacy of remdesivir ⁷ . 2D culture systems of
131	hBEpC are relatively easy to use, but they cannot reproduce the cellular
132	microenvironment in the living body and are difficult to use for long-time culture.
133	Recently, it was shown that SARS-CoV-2 can infect and replicate in human pluripotent
134	stem cell (PSC)-derived lung organoids containing bronchial epithelial cells and
135	alveolar epithelial cells ⁸ . However, these organoids exhibit a fetal phenotype rather than
136	an adult type ^{9,10} . Adult-type bronchial organoids are essential because of the severe
137	infection caused by COVID-19 in adults. Human bronchial organoids (hBO) with adult
138	phenotype can be established from intact human lung tissue ¹¹ . However, it is difficult
139	for many researchers to obtain an intact lung biopsy sample, because the process
140	requires the approval of an ethics committee and informed consent from the donor.
141	Therefore, in this study, we developed a method for generating hBO from commercially
142	available cryopreserved adult hBEpC and applied it to SARS-CoV-2 research.
143	
144	Results
145	Generation of human bronchial organoids from cryopreserved adult bronchial
146	epithelial cells

147 We searched for the conditions that could establish hBO from cryopreserved adult

 $\mathbf{7}$

148hBEpC. We found that after embedding the hBEpC in Matrigel and culturing with advanced DMEM/F12 medium containing FGF2, FGF7, FGF10, Noggin, R-spondin 1, 149Y-27632, and SB202190 (expansion medium), hBO could be established (Table S1). 150Furthermore, we could mature the hBO by culturing them with advanced DMEM/F12 151152medium containing FGF2, FGF7, FGF10, Y-27632, and A83-01 (differentiation 153medium) (Table S1). Among the growth factors included in the differentiation medium, FGF2 is important for enhancing the expression levels of ACE2 and TMPRSS2 (Fig. S1). 154Approximately 100 hBO were present in 50 µL of Matrigel, and the diameter of each 155hBO was around 100-200 µm (Fig. 1A). Transmission electron microscopy (TEM) 156157images showed the presence of cilia and goblet cells (Fig. 1B, Fig. S2). The ACE2 and TMPRSS2 expression levels in hBO were higher than in cryopreserved adult hBEpC 158159(Fig. 1C). Immunohistochemical analysis showed that ACE2 was expressed in part of 160 the outer edge of hBO, while TMPRSS2 was expressed in part of the outer edge and 161lumen (Fig. 1D, Fig. S3). Because bronchi are composed of basal, ciliated, goblet, and 162club cells, a gene expression analysis of markers specific to these four cell types was performed. The gene expression levels of basal, ciliated, goblet, and club cell markers in 163164hBO were higher than in cryopreserved adult hBEpC (Figs. 1E-1H). Consistently, hBO were also positive for α -tubulin, CC10, mucin 5AC, and KRT5 (Fig. 1I). The outer edge 165166 and lumen of hBO was positive for KRT5 and acetylated a-tubulin, respectively. These 167results suggest that basal cells are positive for both ACE2 and TMPRSS2, but ciliated 168cells are positive only for TMPRSS2. Based on these observations, we succeeded in generating expandable and functional hBO from cryopreserved adult hBEpC. 169170

171 RNA-seq analysis of human bronchial organoids

172	RNA-seq analysis was performed to further characterize hBO. A heat map,
173	principal component analysis (PCA), and scatter plot of gene expression profiles all
174	show hBO is closer to hBEpC than to A549 cells (Figs. 2A-2C). A second heat map of
175	bronchial epithelial markers showed that hBO expressed bronchial epithelial markers
176	more strongly than did hBEpC or A549 cells (Fig. 2D). These results suggest that hBO
177	have higher bronchial functions than A549 cells or hBEpC.
178	
179	SARS-CoV-2 infection experiments using human bronchial organoids
180	Next, we investigated whether hBO can be applied to SARS-CoV-2 research.
181	HBO were infected with SARS-CoV-2 and then cultured in differentiation medium for
182	5 days (Fig. 3A). We observed a significant accumulation of LDH in the culture
183	medium of infected hBO (Fig. 3B), suggesting that cytotoxicity was caused by the
184	infection. At day 5 after the infection, viral gene expression in infected hBO was clearly
185	detected (Fig. 3C). IHC analysis showed that S protein-positive cells were observed in
186	part of the outer edge of hBO (Fig. 3D). In addition, S protein co-localized with KRT5
187	(Fig. 3E), but not with CC10 (Fig. S4), suggesting that SARS-CoV-2 infected and
188	replicated in basal cells. Overall, these results indicate that SARS-CoV-2 can infect and
189	replicate in hBO.
190	Currently, clinical trials using camostat, favipiravir, nafamostat, chloroquine,
191	ritonavir/lopinavir, and remdesivir are underway around the world to develop
192	therapeutic agents for COVID-19. However, the evaluation of these drugs using in vitro
193	lung models is rare. Therefore, in this study, the effect of camostat, an inhibitor of
194	TMPRSS2, was examined using our hBO because camostat was demonstrated as a
195	promising candidate in cell culture models ³ . Upon camostat treatment, the amount of

196	SARS-CoV-2 viral genome was reduced to 2% of untreated infected hBO (Fig. 3C). In
197	addition, LDH release from infected hBO was significantly reduced after camostat
198	treatment (Fig. 3B). Finally, we examined the culture supernatants of infected hBO. We
199	found that infectious virus was significantly observed in infected hBO, but the
200	production of infectious virus was impaired by treatment with camostat (Fig. 3F).
201	Collectively, our data indicated that hBO can secrete infectious virus into the culture
202	medium, suggesting that our hBO system can investigate the entire life cycle of
203	SARS-CoV-2.
204	Next, we examined the pathological effects of the SARS-CoV-2 infection. We
205	observed that the number of pyknotic cells seemed to increase with the infection (Fig.
206	3G). In addition, the expression levels of type I IFN (IFN-I) and IFN-stimulated genes
207	were moderately increased after SARS-CoV-2 infection (Fig. S5A). Furthermore,
208	SARS-CoV-2 infection did not change the gene expression levels of ACE2 or TMPRSS2
209	(Fig. S5B). From the above, these results suggest that hBO can be used to reproduce
210	SARS-CoV-2-induced pulmonary disorder and to evaluate the effect of therapeutic
211	agents.
212	
213	RNA-seq analysis of SARS-CoV-2-infected human bronchial organoids
214	RNA-seq analysis was performed to investigate the effects of SARS-CoV-2
215	infection and camostat treatment in detail. A heat map shows that the gene expression
216	profile of SARS-CoV-2-infected hBO is closer to SASR-CoV-2-infected hBO treated
217	with camostat than uninfected hBO (Fig. 4A). A PCA and scatter plot of the gene
218	expressions agree with this finding (Figs. 4B, C). Additionally, SARS-CoV-2 infection
219	increased the expression levels of IFN-I signaling-related genes in hBO (Fig. 4D).

220	PGSEA applied on GO biological process gene sets shows that the expression levels of
221	genes involved in positive regulation of immune effector process, regulation of
222	inflammatory response, interferon-gamma production, and positive regulation of acute
223	inflammatory response were increased by SARS-CoV-2 infection and that this increase
224	was suppressed by camostat treatment (Fig. 4E). These results indicated that
225	SARS-CoV-2 infection induces IFN-I signaling-related genes and that camostat
226	treatment reversed this phenotype.

227

228 Discussion

In this study, we succeeded in generating hBO from cryopreserved adult hBEpC 229and applied it to SARS-CoV-2 research. We confirmed that SARS-CoV-2 could infect 230231and replicate in these cells and that camostat could suppress the replication. If small 232airway organoids and alveolar organoids can be produced from cryopreserved adult 233human small airway epithelial cells and alveolar epithelial cells, respectively, the 234infection and replication of SARS-CoV-2 in each part of the lung can be evaluated. Recently, it was shown that SARS-CoV-2 infection and replication can be observed in 235kidney ¹², liver ductal ¹³, and gut organoids ¹⁴. By comparing the infection and 236replication ability of SARS-CoV-2 in these organoids, the sensitivity of SARS-CoV-2 237238in each organ could be compared.

The incorporation of mechanical stress into our organoid system could improve the accuracy of SARS-CoV-2 research. The human airway is always exposed to shear stress due to air flow. It has been reported that a functional *in vitro* lung model can be generated using a device capable of medium perfusion and expansion/contraction (organ-on-a-chip)¹⁵. Recently, it was reported that the infection and replication of

244	SARS-CoV-2 can be observed by culturing primary human lung airway epithelial basal
245	stem cells and pulmonary microvascular endothelial cells on a chip device ¹⁶ . By
246	applying our hBO to a similar device, we may be able to construct an <i>in vitro</i> bronchi
247	model that more closely mimics the living body.
248	Nevertheless, even in its current condition, we used our hBO to evaluate the
249	efficacy of a COVID-19 therapeutic agent and observe the cytotoxicity and innate
250	immune responses caused by the SARS-CoV-2. Moreover, we could clarify the
251	localization of SARS-CoV-2 in the hBO. These results could be obtained because hBO
252	reproduce the cell populations and functions of the bronchi. Our data of RNA-seq
253	analysis would give us a change to understand the virus affects cellular and bronchial
254	functions.
255	Finally, we showed that camostat has a positive effect against COVID-19
256	infection in hBO, demonstrating its usefulness for COVID-19 drug discovery. Similar
257	studies on experimental COVID-19 drugs including those currently undergoing clinical
258	trials should be considered. Furthermore, because hBO can be generated from
259	commercially available cryopreserved hBEpC quickly (10 days) and at large scale, we
260	expect hBO will shorten the search for effective COVID-19 agents.
261	

262 Materials and Methods

263

264 Human bronchial organoid culture

Normal human bronchial epithelial cells (hBEpC, Lonza) were suspended in 10 265266mg/ml cold Matrigel growth factor reduced (GFR) basement membrane matrix. 50 µL 267drops of cell suspension were solidified on pre-warmed Nunc cell-culture treated 268multidishes (24-well plate) at 37°C for 10 min, and then 500 µL of expansion medium (composition is shown in **Table S1**) was added to each well. The expansion medium 269270was changed every 2 days. HBO were passaged every 10-12 days. For passaging, the hBO were suspended in 1 mL of 0.5 mM EDTA/PBS (Nacalai tesque) and mechanically 271272sheared using a P1000 pipette tip. Then, 2 mL TrypLE Select (Thermo Fisher Scientific) was added to the suspension. After incubating for 5 min at room temperature, the hBO 273274were again mechanically sheared using a P1000 pipette tip. 7 mL of expansion medium 275was added, and the organoid suspension tubes were centrifuged at 400 rpm. Organoid 276fragments were re-suspended in cold expansion medium and seeded as above. HBO were passaged every 10 days. To mature the hBO, the expanded hBO were cultured 277278with differentiation medium (composition is shown in Table S1) for 5 days. HBO can be cryopreserved by using STEM-CELLBANKER GMP grade (TaKaRa Bio). 279280

281 A549 culture

- A549 cells were cultured with Ham's F12 medium (Thermo Fisher Scientific)
- 283 containing 10% FBS, 1×GlutaMAX (Thermo Fisher Scientific), and
- 284 penicillin-streptomycin. A549 cells were passaged every 4 days.

285

286 SARS-CoV-2 preparation

287	The SARS-CoV-2 strain used in this study (SARS-CoV-2/Hu/DP/Kng/19-020)
288	was obtained from the Kanagawa Prefectural Institute of Public Health. SARS-CoV-2
289	was isolated from a COVID-19 patient in Japan (GenBank: LC528232.1). The isolation
290	and analysis of the virus will be described elsewhere (manuscript in preparation). The
291	virus was plaque-purified and propagated in Vero E6 cells. SARS-CoV-2 was stored at
292	-80°C. All experiments including virus infections were done in the biosafety level
293	facility at Osaka University strictly following regulations.
294	
295	SARS-CoV-2 infection and drug treatment
296	Approximately 100 organoids were infected with 5.0×10^4 PFU of SARS-CoV-2
297	in a 24-well plate containing 500 uL differentiation medium. One-half of the
298	differentiation medium containing SARS-CoV-2 was replaced with fresh differentiation
299	medium every day. At 5 days after the infection, the hBO and their supernatant were
300	collected. In the drug treatment experiments, the infected hBO were cultured with
301	differentiation medium containing 10 μ M camostat (Sigma-Aldrich) for 5 days.
302	
303	SARS-CoV-2 virus plaque assays
304	VeroE6/TMPRSS2 cells (JCRB1819, JCRB Cell Bank) ¹⁷ were seeded on 12 well
305	plates ($1.7x10^5$ cells/well) and incubated for 24 hr. The culture supernatants serially
306	diluted by medium were inoculated and incubated for 2 hr. Culture medium was
307	removed, fresh medium containing 1% methylcellulose (1.5mL) was added, and the
308	culture was further incubated for 3 days. The cells were fixed with 4%
309	Paraformaldehyde Phosphate Buffer Solution (Nacalai Tesque) and plaques were

310 visualized by using a Crystal violet.

311

312 Quantitative PCR

- 313 Total RNA was isolated from hBO using ISOGENE II (NIPPON GENE). cDNA
- 314 was synthesized using 500 ng of total RNA with a Superscript VILO cDNA synthesis
- kit (Thermo Fisher Scientific). Real-time RT-PCR was performed with the SYBR Green
- 316 PCR Master Mix (Applied Biosystems) using a StepOnePlus real-time PCR system
- 317 (Applied Biosystems). The relative quantitation of target mRNA levels was performed
- by using the 2- $\Delta\Delta$ CT method. The values were normalized by those of the
- 319 housekeeping gene, glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The PCR
- 320 primer sequences are shown in **Table S2**.
- 321 The SARS-CoV-2 primer and probe sets were obtained from Integrated DNA
- 322 Technologies (IDT, 10006606).
- 323

324 Ultrathin section transmission electron microscopy (TEM)

HBO fixed in phosphate buffered 2% glutaraldehyde, and subsequently post-fixed in 2% osmium tetra-oxide for 2 hr at 4°C. After fixation, they were dehydrated in a graded series of ethanol and embedded in the epoxy resin. Ultrathin sections were cut and then stained with uranyl acetate and lead staining solution and were examined using

an electron microscope (HITACHI H-7600) at 100 kV.

330

331 Histopathology and immunofluorescence

Fixed bronchial organoid samples were processed and embedded in paraffin.
Then they were cut into 2 μm-thick sections. The sections were deparaffinized,

rehydrated, and stained with hematoxylin and eosin (HE). The sections were then examined using a microscope (BX53 microscope with DP73 camera, Olympus Corporation).

For the immunohistochemical stain assay, the formalin-fixed and 337 338 paraffin-embedded bronchial organoid samples were treated with pH 6.0 citrate buffer 339 for 30 sec at 125°C in a pressure cooker (Dako Japan) as antigen retrieval. Sections 340 were incubated with each antibody (Table S3), followed by Histofine Simple Stain 341MAX-PO (Nichirei Biosciences). The sections were visualized using Peroxidase Stain 342 DAB Kit (Nacalai Tesque) before counterstaining with Meyer's hematoxylin. 343 For the double immunofluorescence staining assay, the sections were deparaffinized and subjected to antigen retrieval by treating them with 0.5% trypsin for 344 34530 min. Then the sections were blocked by 5% skim milk with albumin obtained from Bovine Serum Cohn Fraction V, pH 7.0 (Wako Pure Chemical Industries), in PBS for 30 346 min at room temperature to avoid non-specific reactions. The sections were then 347348 incubated with primary antibody (Table S3) overnight at 4°C, washed, and incubated with secondary antibody (Table S3) for 1 h at room temperature. After washing with 349 350 PBS, the specimens were mounted with glycerol. All observations were performed 351using the BX53 fluorescence microscope with a DP73 camera equipped with a suitable 352filter set (red filter with excitation range 530-550 nm and emission range 575 nm, and 353green filter with excitation range 470-495 nm and emission range of 510 nm). 354**RNA-seq** 355

Total RNA was prepared using the RNeasy Mini Kit (Qiagen). RNA integrity was
 assessed with a 2100 Bioanalyzer (Agilent Technologies). Library preparation was

358	performed using a NEBNext Ultra II Directional RNA Library Prep Kit for Illumina
359	(NEB) or a TruSeq stranded mRNA sample prep kit (Illumina) according to the
360	manufacturer's instructions. Sequencing was performed on an Illumina NextSeq500 or
361	NovaSeq6000 platform in 152- or 101-base single-end mode, respectively. Fastq files
362	were generated using bcl2fastq2. Adapter sequences were trimmed from the raw reads
363	by cutadapt ver 2.7. The trimmed reads were mapped to the human reference genome
364	sequences (hg19) using HISAT2 ver 2.1.0. The raw counts were calculated using
365	featureCounts ver 2.0.0 and used for heatmap visualization with integrated differential
366	expression and pathway analysis (iDEP, (<u>http://ge-lab.org/idep/)</u>) ¹⁸ . Access to raw data
367	concerning this study was submitted under Gene Expression Omnibus (GEO) accession
368	number GSE150819.
369	
370	LDH assay
371	After the SARS-CoV-2 infection, the release of LDH was monitored from an
372	aliquot of 250 μ L supernatant using the LDH-Glo cytotoxicity assay (Promega)
373	according to the manufacturer's instructions. The absorbance was determined with a
374	Bio-Rad microplate reader (Bio-Rad, US) at wavelength 490 nm. The release of LDH in
375	uninfected cells was used as a control.

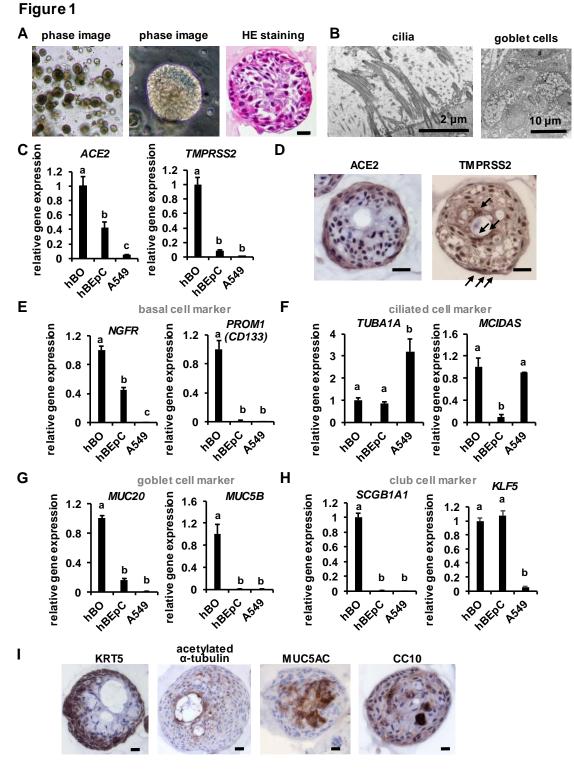
376

377 Statistical analyses

378 Statistical analysis was performed using the unpaired two-tailed Student's *t*-test.

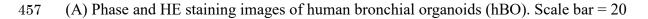
379 Statistical significance was evaluated by one-way analysis of variance (ANOVA)

followed by Tukey's or Dunnett's post hoc tests to compare all groups.


381

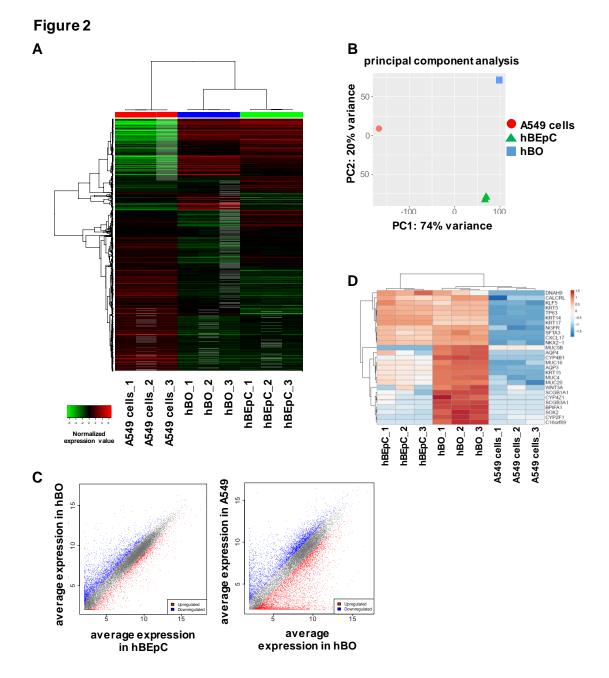
382 Acknowledgements

383	The SARS-CoV-2 strain used in this study (SARS-CoV-2/Hu/DP/Kng/19-020)
384	was obtained from Kanagawa Prefectural Institute of Public Health. This research was
385	supported by the iPS Cell Research Fund. The figure 3A was created using Biorender
386	(https://biorender.com). We thank Dr. Tomohiko Takasaki and Dr. Jun-Ichi Sakuragi
387	(Kanagawa Prefectural Institute of Public Health) for providing SARS-CoV-2 strain
388	(SARS-CoV-2/Hu/DP/Kng/19-020), Dr. Misaki Ouchida (Kyoto University) for
389	creating graphical abstract, Dr. Peter Karagiannis (Kyoto University) for critical reading
390	of the manuscript, Dr. Nobihiro Morone (University of Cambridge) for critical
391	discussions, Ms. Sayaka Deguchi (Osaka University) for technical assistance with the
392	qPCR analysis, and Ms. Kazusa Okita and Ms. Eri Kawaguchi for technical assistance
393	with the RNA-seq experiments.
394	
395	Author Contributions
396	TS performed the SARS-CoV-2 experiments and analyses
397	YI performed the SARS-CoV-2 experiments and analyses
398	
	YS performed the immunohistochemical analysis
399	YS performed the immunohistochemical analysis AS prepared the materials for the SARS-CoV-2 experiments and analyses
399	AS prepared the materials for the SARS-CoV-2 experiments and analyses
399 400	AS prepared the materials for the SARS-CoV-2 experiments and analyses DO performed the analysis of RNA-seq data of the infected bronchial organoids
399 400 401	AS prepared the materials for the SARS-CoV-2 experiments and analyses DO performed the analysis of RNA-seq data of the infected bronchial organoids DM collected RNA-seq data of the infected bronchial organoids
399400401402	AS prepared the materials for the SARS-CoV-2 experiments and analyses DO performed the analysis of RNA-seq data of the infected bronchial organoids DM collected RNA-seq data of the infected bronchial organoids SM performed the SARS-CoV-2 experiments and analyses
 399 400 401 402 403 	AS prepared the materials for the SARS-CoV-2 experiments and analyses DO performed the analysis of RNA-seq data of the infected bronchial organoids DM collected RNA-seq data of the infected bronchial organoids SM performed the SARS-CoV-2 experiments and analyses TK performed the SARS-CoV-2 experiments and analyses


406	KT designed the research, generated the bronchial organoids, performed statistical							
407	analysis, and wrote the paper							
408								
409	Declar	ation of interests						
410]	The authors declare no competing financial interests.						
411								
412	Refere	nces						
413								
414	1	Lu, H., Stratton, C. W. & Tang, Y. W. Outbreak of Pneumonia of Unknown Etiology						
415		in Wuhan China: the Mystery and the Miracle. Journal of Medical Virology.						
416	2	Whitworth, J. COVID-19: a fast evolving pandemic. Transactions of The Royal						
417		Society of Tropical Medicine and Hygiene (2020).						
418	3	Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is						
419		blocked by a clinically proven protease inhibitor. <i>Cell</i> (2020).						
420	4	van der Vaart, J. & Clevers, H. Airway organoids as models of human disease.						
421		Journal of Internal Medicine (2020).						
422	5	Lukassen, S. <i>et al.</i> SARS - CoV - 2 receptor ACE2 and TMPRSS2 are primarily						
423		expressed in bronchial transient secretory cells. The EMBO journal (2020).						
424	6	Zhu, N. et al. A novel coronavirus from patients with pneumonia in China, 2019.						
425		New England Journal of Medicine (2020).						
426	7	Pizzorno, A. et al. Characterization and treatment of SARS-CoV-2 in nasal and						
427		bronchial human airway epithelia. <i>bioRxiv</i> (2020).						
428	8	Han, Y. et al. Identification of Candidate COVID-19 Therapeutics using						
429		hPSC-derived Lung Organoids. <i>bioRxiv</i> (2020).						
430	9	Wong, A. P. et al. Directed differentiation of human pluripotent stem cells into						
431	mature airway epithelia expressing functional CFTR protein. <i>Nature biotechnology</i>							
432		30 , 876 (2012).						
433	10	Firth, A. L. et al. Generation of multiciliated cells in functional airway epithelia						
434		from human induced pluripotent stem cells. Proceedings of the National Academy of						
435		Sciences 111, E1723-E1730 (2014).						
436	11	Sachs, N. et al. Long - term expanding human airway organoids for disease						
437		modeling. The EMBO journal 38 (2019).						

438	12	Monteil, V. et al. Inhibition of SARS-CoV-2 infections in engineered human tissues
439		using clinical-grade soluble human ACE2. <i>Cell</i> (2020).
440	13	Zhao, B. et al. Recapitulation of SARS-CoV-2 infection and cholangiocyte damage
441		with human liver ductal organoids. Protein & Cell, 1-5 (2020).
442	14	Lamers, M. M. et al. SARS-CoV-2 productively infects human gut enterocytes.
443		<i>Science</i> (2020).
444	15	Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science 328,
445		1662-1668 (2010).
446	16	Si, L. et al. Human organs-on-chips as tools for repurposing approved drugs as
447		potential influenza and COVID19 the rapeutics in viral pandemics. $bioRxiv$ (2020).
448	17	Matsuyama, S. et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing
449		cells. Proceedings of the National Academy of Sciences 117, 7001-7003 (2020).
450	18	Ge, S. X., Son, E. W. & Yao, R. iDEP: an integrated web application for differential
451		expression and pathway analysis of RNA-Seq data. BMC bioinformatics 19, 534
452		(2018).
453		
454		

456 Figure 1 Generation of human bronchial organoids

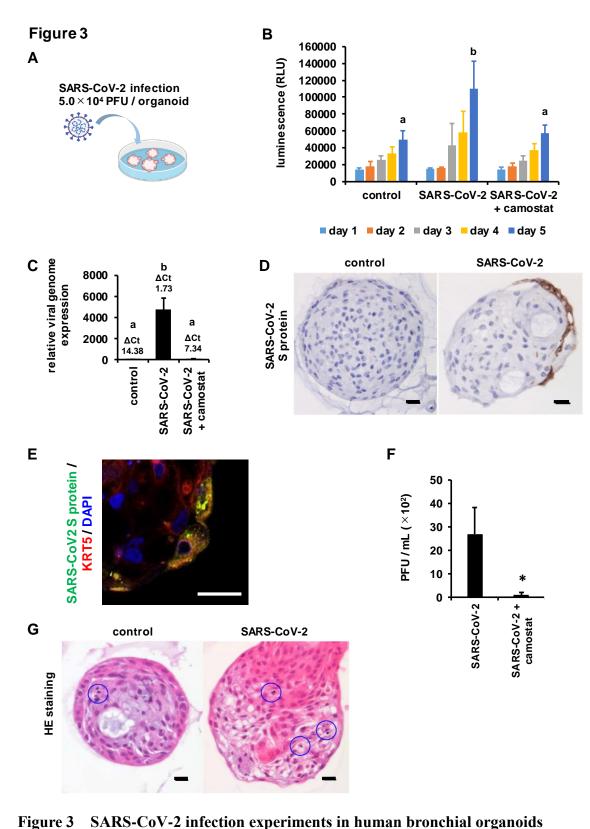


458 μm. (B) A TEM image of hBO. Larger images are shown in Fig. S2. (C) The gene

	459	expression levels	of ACE2 and	TMPRSS2 in	hBO and hBE	pC were examined b	y qPCR
--	-----	-------------------	-------------	------------	-------------	--------------------	--------

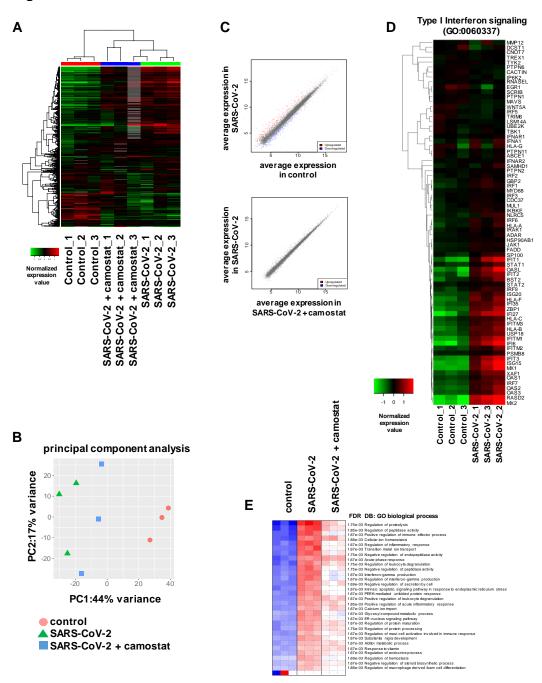

- 460 The gene expression levels in hBO were normalized to 1.0. (D) The expressions of
- 461 ACE2 and TMPRSS2 were examined by immunohistochemistry. Scale bar = $20 \mu m$.
- 462 (E-H) The gene expression levels of basal (E), ciliated (F), goblet (G), and club (H) cell
- 463 markers in hBO, hBEpC, and A549 cells were examined by qPCR. The gene expression
- 464 levels in hBO were normalized to 1.0. (I) Immunohistochemistry analysis of KRT5
- 465 (basal cell marker), acetylated α-tubulin (ciliated cell marker), Mucin 5AC (goblet cell
- 466 marker), and CC10 (club cell marker) in hBO. Scale bars = $20 \mu m$. All data are
- 467 represented as means \pm SD (n = 3). Statistical significance was evaluated by one-way
- 468 ANOVA followed by Tukey's post-hoc tests. Groups that do not share the same letter

469 are significantly different from each other (p < 0.05).



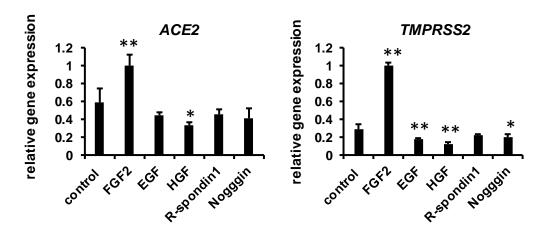
471

472 Figure 2 Global gene expression profile of human bronchial organoids


477 "hBEpC". (D) A clustering analysis of bronchial markers was performed.

480 Figure 3 SARS-CoV-2 infection experiments in human bronchial organoids
481 (A) hBO were infected with SARS-CoV-2 (5.0×10⁴ PFU/well) in the presence or

482	absence of 10 μ M camostat and then cultured with differentiation medium for 5 days.
483	(B) At days 1, 2, 3, 4, and 5 after the infection, an LDH assay was performed. (C) The
484	viral genome expression levels in uninfected organoids (control), infected organoids
485	(SARS-CoV-2), and infected organoids treated with camostat (SARS-CoV-2 +
486	camostat) were examined by qPCR. The gene expression levels in control were
487	normalized to 1.0. Statistical significance was evaluated by one-way ANOVA followed
488	by Tukey's post-hoc tests. Groups that do not share the same letter are significantly
489	different from each other ($p < 0.05$). (D) The expression of SARS-CoV-2 Spike protein
490	was examined by immunohistochemistry. Scale bar = $20 \ \mu m$. (E) The expression of
491	SARS-CoV-2 Spike protein and KRT5 was confirmed by immunofluorescence staining.
492	Nuclei were counterstained with DAPI. Scale bar = $20 \ \mu m$. (F) The amount of infectious
493	virus in the supernatant was measured. Statistical analysis was performed using the
494	unpaired two-tailed Student's <i>t</i> -test (* $p < 0.05$). (G) HE staining images of uninfected
495	organoids (control) and infected organoids (SARS-CoV-2) are shown. Blue circles show
496	the existence of pyknotic cells. Scale bar = 20 $\mu m.$ All data are represented as means \pm
497	SD $(n = 3)$.


- 501 RNA seq analysis of uninfected hBO (control), SARS-CoV-2-infected hBO
- 502 (SARS-CoV-2), and SARS-CoV-2-infected hBO treated with camostat (SARS-CoV-2+
- 503 camostat). (A) A clustering analysis of 2,000 variable genes was performed. (B)

- 504 Principal component analysis (PCA) in "control", "SARS-CoV-2", "SARS-CoV2 +
- 505 camostat". (C) A scatter plot in "control", "SARS-CoV-2", "SARS-CoV2 + camostat".
- 506 (D) A heat map of IFN-I signaling-related genes in "control" and "SARS-CoV-2" is
- shown. (E) PGSEA (Parametric Gene Set Enrichment Analysis) applied on GO
- 508 biological process gene sets was performed.
- 509

510 Supplemental figures

511

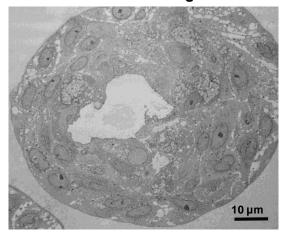
Figure S1

513 Figure S1 FGF2 promotes the maturation of human bronchial organoids

514 Expanded hBO were cultured with differentiation medium containing FGF2, EGF, HGF,

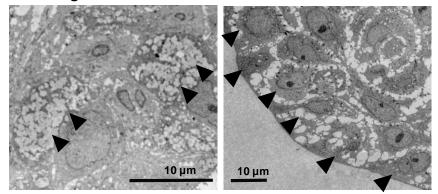
R-spondin 1, or Noggin for 5 days. The gene expression levels of *ACE2* and *TMPRSS2*

516 were examined by qPCR. The gene expression levels in "FGF2" were normalized to 1.0.

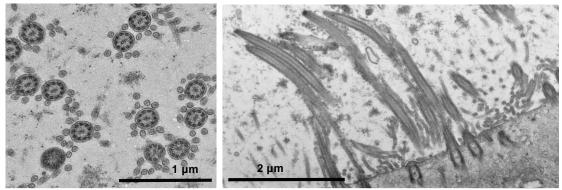

517 All data are represented as means \pm SD (n = 3). Statistical significance was evaluated by

one-way ANOVA followed by Dunnett's post-hoc tests (* p < 0.05, ** p < 0.01, as

- 519 compared with control).
- 520

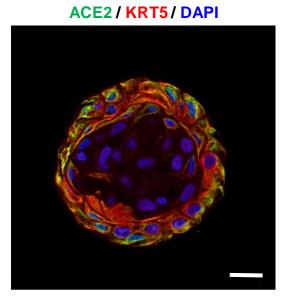

Figure S2

human bronchial organoids


goblet cells

basal cells

9+2 arrangement

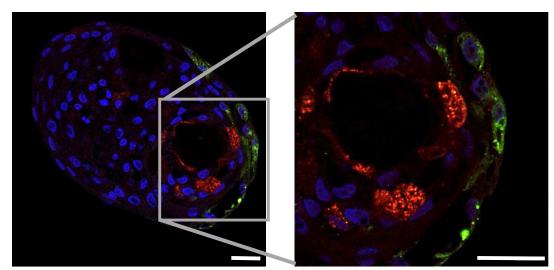

cillia and microvilli

522 Figure S2 TEM image of human bronchial organoids

- 523 The larger TEM images of Fig. 1B are shown. Goblet cells, basal cells, 9+2
- arrangement, cilia, and microvilli can be observed in hBO.
- 525

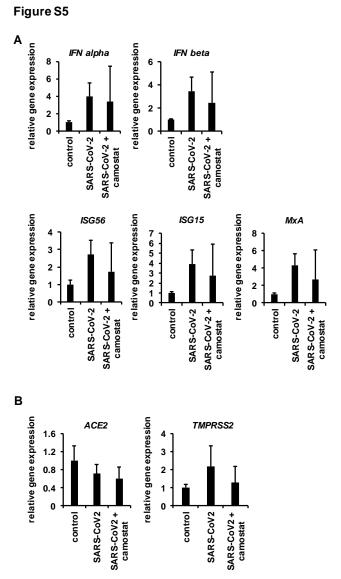
Figure S3

526


527 Figure S3 ACE2 is expressed in basal cells

- 528 The expression of ACE2 and KRT5 (basal cell marker) in hBO was confirmed by
- 529 immunofluorescence staining. Nuclei were counterstained with DAPI. Scale bar = 20
- 530 μm.

Figure S4


SARS-CoV-2-S/CC10/DAPI

SARS-CoV-2-S/CC10/DAPI

533	Figure S4	SARS-CoV-2 Spike protein is not expressed in club cells	
000			

- 534 hBO were infected with SARS-CoV-2 (5.0×10^4 PFU/well) and then cultured with
- 535 differentiation medium for 5 days. The expression of SARS-CoV-2 Spike protein and
- 536 CC10 was confirmed by immunofluorescence staining. Nuclei were counterstained with
- 537 DAPI. Scale bar = $20 \mu m$.
- 538

⁵³⁹ 540

Figure S5 SARS-CoV-2-induced innate immune responses in human bronchial

541 organoids

```
542 hBO were infected with SARS-CoV-2 (5.0 \times 10^4 PFU/well) in the presence or absence of
```

 10μ M canostat and then cultured with differentiation medium for 5 days. (A, B) The

gene expression levels of type I interferon (IFN alpha and IFN beta),

- 545 interferon-stimulated genes (ISG56, ISG15, and MxA) (A), and SARS-CoV-2-associated
- 546 genes (ACE2 and TMPRSS2) (B) in uninfected organoids (control), infected organoids
- 547 (SARS-CoV-2), and infected organoids treated with camostat (SARS-CoV-2 +
- 548 camostat) were examined by qPCR. The gene expression levels in control were
- normalized to 1.0. All data are represented as means \pm SD (n = 3).
- 550
- 551

552 Tables

553

554 Table S1 Composition of expansion and differentiation media for human

555 bronchial organoids

Composition (concentration)	Expansion medium	Differentiation medium
Advanced DMEM/F12	+	+
FGF2 (5 ng/ml)	+	+
FGF7 (20 ng/ml)	+	+
FGF10 (100 ng/ml)	+	+
Noggin (100 ng/ml)	+	-
R-spondin 1 (300 ng/ml)	+	_
Y-27632 (10 μM)	+	+
SB202190 (100 µM)	+	-
А83-01 (1 µМ)	-	+
B27 supplement (1×)	+	+
N-Acetylcysteine (1.25 mM)	+	+
Nicotinamide (5 mM)	+	+
GlutaMAX (1×)	+	+
HEPES (10 mM)	+	+
Penicillin-Streptomycin (100 U/ml)	+	+
Primocin (50µg)	+	+

556

558 Table S2 Primer list

target gene	Fwd primer	Rev primer
ACE2	ACAGTCCACACTTGCCCAAAT	TGAGAGCACTGAAGACCCATT
GAPDH	GGTGGTCTCCTCTGACTTCAACA	GTGGTCGTTGAGGGCAATG
IFN alpha	GCAGATCACCCAGAAGATCG	GGCCCTTGTTATTCCTCACC
IFN beta	CCTTGCTGAAGTGTGGAGGA	CCAGGCGATAGGCAGAGA
ISG15	GCAGATCACCCAGAAGATCG	GGCCCTTGTTATTCCTCACC
ISG56	CCTTGCTGAAGTGTGGAGGA	CCAGGCGATAGGCAGAGA
KRT5	CCAAGGTTGATGCACTGATGG	TGTCAGAGACATGCGTCTGC
MCIDAS	ATTCCCACCAAACGGAAGCAG	CCAGGGTAGGCGACATCATAG
MUC20	ATGACAACGGACGACACAGAA	TCAGCGTTTGAGTTTCCAGAG
MUC5B	GCCTACGAGGACTTCAACGTC	CCTTGATGACAACACGGGTGA
MxA	CTTATCCGTTAGCCGTGGTG	CAAGGTGGAGCGATTCTGAG
NGFR	CCTACGGCTACTACCAGGATG	CACACGGTGTTCTGCTTGT
PROM1	GGCCCAGTACAACACTACCAA	ATTCCGCCTCCTAGCACTGAA
SCGB1A	TTCAGCGTGTCATCGAAACCC	ACAGTGAGCTTTGGGCTATTTTT
TMPRSS2	GTCCCCACTGTCTACGAGGT	CAGACGACGGGGTTGGAAG
TUBA1A	TCGATATTGAGCGTCCAACCT	CAAAGGCACGTTTGGCATACA

559

560 Table S3 Antibody list

Antigen (clone number)	catalog number	company
ACE2	PGI-21115-1-AP-150	Proteintech
acetylated α tubulin (6-11B-1)	sc-23950	Santa Cruz Biotechnology
CC10 (E-11)	sc-365992	Santa Cruz Biotechnology
cytokeratin 5 (RCK103)	sc-32721	Santa Cruz Biotechnology
mucin 5AC (45M1)	sc-21701	Santa Cruz Biotechnology
SARS-CoV/SARS-CoV-2 (COVID-19)	GTX632604	GeneTex
spike protein (1A9)		
TMPRSS2 (H-4)	sc-515727	Santa Cruz Biotechnology

561