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Abstract	

Neural	competition	plays	an	essential	role	in	active	selection	processes	of	noisy	

and	ambiguous	input	signals	and	it	is	assumed	to	underlie	emergent	properties	of	

brain	functioning	such	as	perceptual	organization	and	decision	making.	Despite	

ample	 theoretical	 research	 on	 neural	 competition,	 experimental	 tools	 to	 allow	

neurophysiological	investigation	of	competing	neurons	have	not	been	available.	

We	 developed	 a	 “hybrid”	 system	 where	 real-life	 neurons	 and	 a	 computer-

simulated	neural	circuit	interacted.	It	enabled	us	to	construct	a	mutual	inhibition	

circuit	between	two	real	life	pyramidal	neurons.	We	then	asked	what	dynamics	

this	minimal	unit	of	neural	competition	exhibits	and	compared	them	to	the	known	

behavioral-level	 dynamics	 of	 neural	 competition.	 We	 found	 that	 the	 pair	 of	

neurons	shows	bi-stability	when	activated	simultaneously	by	current	injections.	

The	addition	of	modelled	noise	and	changes	in	the	activation	strength	showed	that	

the	dynamics	of	 the	circuit	are	strikingly	similar	 to	 the	known	properties	of	bi-

stable	visual	perception.	
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Introduction	

Visual	perception	is	an	emergent	property	resulting	from	an	active	organization	

of	input	signals	by	the	brain.	This	organization	has	to	be	accomplished	while	being	

subjected	to	the	underrepresented,	noisy	and	ambiguous	signals	received	by	the	

eyes.	 In	 other	 words,	 the	 brain	 is	 constantly	 challenged	 to	 make	 coherent	

selections	 among	 often	 conflicting	 local	 signals.	 Underlying	 the	 selection	

processes	are	neural	competition	mechanisms	between	neurons	representing	the	

conflicting	 signals.	 A	 well-known	 perceptual	 phenomenon	 representing	 signal	

competition	and	selection	processes	 is	 "bi-stable	perception”	 that	occurs	when	

visual	signals	support	two	likely	perceptual	interpretations.	Signals	that	support	

one	of	 the	percepts	are	 selected	 coherently	at	 any	given	 time	 and	one	percept	

becomes	dominant.	The	input	signals	are	eventually	re-organized	to	establish	the	

alternative	 percept,	 leading	 to	 reversals	 between	 the	 two	 percepts	 every	 few	

seconds	(Leopold	&	Logothetis,	1999).	This	repetitive	perceptual	re-organization	

in	 bi-stable	 perception	 provides	 information	 about	 how	 visual	 signals	 are	

processed,	organized,	and	eventually	lead	to	conscious	perception.	The	abundant	

literature	 on	 bi-stable	 perception	 is	 an	 important	 resource	 of	 information	 to	

investigate	the	neural	mechanisms	of	signal	competition	and	selection	processes.	

In	 the	 computational	 neuroscience	 literature,	 neural	 competition	 is	 often	

modelled	by	 “mutual	 inhibition”	between	differently	 tuned	neurons.	A	possible	

neural	 circuit	 diagram	 of	mutual	 inhibition	 is	 shown	 in	 Fig.	 1a	 in	 which	 each	

pyramidal	neuron	(PN1	or	PN2)	activates	a	partner	inhibitory	neuron	(IN1	and	

IN2,	respectively)	which,	in	turn,	projects	an	inhibitory	synapse	to	the	competing	

pyramidal	neuron,	forming	disynaptic	inhibitory	connections	in	both	directions.		
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It	 has	 been	 suggested	 that	 the	 conflicting	 signals	 for	 local	 features	 such	 as	

orientation	 (Bonds,	 1989;	 Sillito,	 1975),	motion	 direction	 (Mikami	 et	 al.,	 1986;	

Snowden	et	al.,	1991),	and	edge	assignment	(Kogo	&	van	Ee,	2015;	Zhou	et	al.,	

2000)	 compete	 with	 each	 other	 through	 such	 mutual	 inhibition	 circuits.	 This	

mutual	inhibition	circuit	has	been	implemented	in	computer	models	to	explain	bi-

stable	perception	(Laing	&	Chow,	2002;	Lankheet,	2006;	Matsuoka,	1984;	Mueller,	

1990;	Noest	et	al.,	2007;	Shpiro	et	al.,	2009;	Wilson	et	al.,	2000;	Wilson,	1999),	

object	 recognition	 (Masquelier	 et	 al.,	 2009),	 decision	 making	 (Heuer,	 1987;	

Machens	et	al.,	2005;	Usher	&	McClelland,	2001),	and	place	cell	field	generation	

(Mark	 et	 al.,	 2017).	 It	 has	 also	 been	 suggested	 that	 these	 circuits	 underlie	

mechanisms	such	as	larger	scale	neural	interactions	and	feedback	systems	(Beck	

&	 Kastner,	 2005;	 Lee	 et	 al.,	 1999;	Wang	 et	 al.,	 2013)	 that	 establish	 a	 globally	

Fig.	1	Mutual	inhibition	circuit	and	experimental	design	
a:	Neural	circuit	diagram	for	a	mutual	inhibition.	Triangles:	pyramidal	neurons	(PNs).	
Disks:	 inhibitory	 neurons	 (INs).	 b:	 The	 disynaptic	 mutual	 inhibition	 circuit	 was	
established	between	two	real-life	pyramidal	neurons	by	implementing	model	inhibitory	
neurons	and	synapses	(dashed	lines)	in	the	StdpC	dynamic	clamp	system.	c:	An	image	of	
the	brain	slice	(right	hemisphere)	from	a	DIC-IR	microscope	during	recording	with	two	
patch	recording	pipettes	placed	in	layer	2/3	of	V1.	1	to	6:	six	layers.	LM:	lateromedial	
area.	 d:	 dorsal,	 v:	 ventral,	 l:	 lateral,	m:	medial.	 Scale	 bar:	 200	µm.	d:	 An	 example	 of	
biocytin	filled	pair	of	pyramidal	neurons.	Scale	bar:	50	µm. 
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coherent	 percept.	 Moreover,	 disynaptic	 inhibitory	 connections	 between	

pyramidal	neurons,	the	necessary	constituent	of	mutual	inhibition,	are	found	in	

various	layers	and	areas	of	neocortex	(Berger	et	al.,	2009;	Kapfer	et	al.,	2007;	Ren	

et	al.,	2007;	Silberberg	&	Markram,	2007)	and	hippocampus	(Miles,	1990).	 It	 is	

hence	 possible	 that	 mutual	 inhibition	 serves	 as	 a	 canonical	 element	 of	 signal	

processing	circuits	in	the	brain.	

Despite	the	numerous	theoretical	models	implementing	mutual	inhibition	circuits,	

experimental	tools	are	missing	that	allow	thorough	neurophysiological	analysis	of	

competing	 cortical	 neurons	 at	 the	 system-wide	 level,	 due	 to	 the	 limitations	 of	

current	 technology.	However,	with	 the	 approach	 introduced	 in	 this	 paper,	 it	 is	

possible	 to	 construct	 a	 minimal	 unit	 of	 neural	 competition	 in	 real-life.	 By	

investigating	the	neural	dynamics	of	the	minimal	unit,	considering	it	as	a	building	

block	of	the	whole	system,	and	comparing	its	dynamics	to	the	ones	of	the	whole	

system,	it	may	be	possible	to	deduce	how	neural	elements	are	integrated	into	a	

whole	system	such	that	known	behavioral	properties	emerge.		

We	established	an	experimental	model	where	a	model	mutual	inhibition	circuit	is	

implemented	 between	 a	 pair	 of	 two	 real-life	 pyramidal	 neurons	 in	 brain	 slice	

preparations	of	mouse	primary	visual	cortex	(Fig.	1).	The	two	neurons	are	patch	

clamped	and	connected	with	each	other	via	a	computer	model	that	allows	them	to	

interact	 in	 real	 time.	 This	 hybrid	 system	 has	 the	 advantage	 of	 keeping	 all	

physiological	properties	of	the	real	pyramidal	neurons	intact,	while	providing	full	

control	over	the	computer	simulated	connections	between	them.	Using	this	hybrid	

system,	we	succeeded	 to	evoke	bi-stable	activity	 in	 the	pyramidal	neurons.	We	

investigated	the	dynamics	of	the	bi-stable	activity	and	compared	them	with	the	
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known	dynamics	of	bi-stable	visual	perception,	namely	the	effects	of	noise	and	the	

effect	of	changing	stimulus	input	intensity.		

	

Results	

Double	 patch	 clamp	 recordings	 were	 performed	 from	 visually	 identified	

pyramidal	neurons	in	layer	2/3	of	mouse	primary	visual	cortex	(Fig.	1c).	In	total,	

93	pairs	of	pyramidal	neurons	 from	32	mice	were	recorded.	By	using	biocytin-

filled	patch	pipettes,	some	pyramidal	neuron	pairs	were	 labeled	and	visualized	

after	 the	 experiments	 (N=9).	 In	 all	 cases,	 the	 stereotypical	 morphology	 of	

pyramidal	 neurons	 (with	 a	 short	 apical	 dendrite	 and	 thin	 multiple	 oblique	

dendrites)	was	identified,	located	in	layer	2/3	of	V1	(Fig.	1d).	

	

Disynaptic	mutual	inhibitory	connections	

Mutual	 inhibitory	 connections	 between	 each	 pair	 of	 pyramidal	 neurons	 were	

constructed	by	a	dynamic	clamp	system	(spike	timing	dependent	plasticity	clamp,	

StdpC	(Kemenes	et	al.,	2011;	Nowotny	et	al.,	2006).	The	inhibitory	neurons	were	

modeled	by	implementing	Hodgkin-Huxley	type	conductance-based	ion	channel	

models	with	parameters	derived	from	literature	(see	Materials	and	Methods).	The	

connections	 between	 the	 (real)	 pyramidal	 neurons	 and	 the	 (model)	 inhibitory	

neurons	were	established	with	modelled	excitatory	and	inhibitory	synapses	(see	

Materials	and	Methods	for	details).	In	Fig.	2a,	an	example	of	the	recording	of	two	

pyramidal	neurons	is	shown.	An	action	potential	of	pyramidal	neuron	1	(PN1)	was	

evoked	by	the	injection	of	a	short	depolarization	current	pulse	(red	triangle).	This	

action	 potential	 triggered	 the	 computation	 within	 the	 dynamic	 clamp	 system,	

activating	 a	 model	 inhibitory	 neuron,	 and,	 in	 turn,	 triggering	 an	 inhibitory	
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synaptic	conductance	and	current,	which	was	 injected	 into	pyramidal	neuron	2	

(PN2)	 (see	 Fig.	 7	 for	 more	 details).	 This	 evokes	 an	 inhibitory	 postsynaptic	

potential	 (IPSP)	 in	PN2	(blue	asterisk	 in	Fig.	2a).	When	an	action	potential	was	

evoked	in	PN2	(blue	triangle),	a	modelled	IPSP	was	evoked	in	PN1	(red	asterisk),	

illustrating	that	a	mutual	inhibition	circuit	between	the	pair	of	pyramidal	neurons	

was	established	successfully.	

	

Bi-stable	activity	

When	 continuous	 depolarization	 currents	 were	 injected	 into	 PN1	 and	 PN2	

simultaneously,	 bi-stable	 activity	with	 alternating	 dominance	 between	 the	 two	

pyramidal	neurons	was	evoked	as	shown	in	Fig.	2b.	Fig.	2c	shows	the	details	of	the	

onset	of	the	response	to	the	current	injection	on	a	shorter	time	scale.	Both	neurons	

started	to	depolarize	at	the	onset	but	PN2	reached	the	action	potential	threshold	

before	 PN1	 and,	 hence,	 PN1	 received	 the	 evoked	 IPSP	 before	 succeeding	 to	

generate	an	action	potential.	Thereafter,	PN2	showed	sustained	 firing	of	 action	

potentials	and	it	achieved	initial	dominance.	Note,	that	an	increase	of	inter-spike	

intervals	in	the	dominant	neuron	is	visible.	Also	note	that	there	is	a	ramp-like	slow	

depolarization	of	the	suppressed	neuron	(Fig.	2b).	The	former	is	a	sign	of	neural	

adaptation	 while	 the	 latter	 indicates	 both	 the	 recovery	 of	 the	 neuron	 from	

adaptation	and	the	decreasing	effect	of	inhibition	from	the	other	neuron.	Fig.	2d	

shows	data	from	when	the	reversal	of	dominance	occurred.	With	the	continuous	

increase	of	inter-spike	interval	in	PN2,	PN1	recovered	more	and	more	from	the	

received	barrage	of	IPSPs.	The	inter-spike	interval	of	PN2	eventually	became	long	

enough	such	 that	 the	membrane	 potential	 of	PN1	 reached	 the	 action	 potential	

threshold	 before	 PN2	 could	 generate	 an	 action	 potential.	 Consequently,	 PN2	
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received	an	IPSP	evoked	by	the	first	action	potential	of	PN1.	From	then	on,	PN1	

became	dominant	and	PN2	became	suppressed.	

	

Adaptation	and	dominance	durations	

To	investigate	the	role	of	adaptation	in	the	mutual	inhibition	competition	process,	

we	 analyzed	 neurophysiological	 properties	 that	 reflect	 adaptation:	 inter-spike	

Fig.	2	Mutual	inhibition	between	a	pair	of	pyramidal	neurons	and	bi-stable	activity	
a:	With	the	mutual	 inhibition	circuit	established,	an	action	potential	(red	triangle)	in	the	first	
pyramidal	neuron	(PN1)	triggers	an	inhibitory	postsynaptic	potential	(IPSP,	blue	asterisk)	in	the	
second	pyramidal	neuron	(PN2);	similarly,	an	action	potential	of	PN2	(blue	triangle)	causes	an	
IPSP	in	PN1	(red	asterisk).	Traces	are	an	average	of	5	trials.	Baseline	membrane	potentials	were	
set	to	-60mV	in	both	neurons.	b:	Continuous	injection	of	depolarization	currents	into	the	two	
pyramidal	neurons	produces	bi-stable	activity	with	alternating	dominance	between	them.	MP:	
membrane	 potential	 (mV).	 MC:	 membrane	 current	 (pA).	 Inset:	 The	 response	 of	 the	 same	
pyramidal	neurons	to	the	same	depolarization	current	injection	without	the	mutual	inhibition	
circuit,	 showing	 sustained	 continuous	 firing	 of	 action	 potentials.	c:	 The	 part	 of	 data	 (orange	
rectangle)	 shown	 in	 b.	 Upon	 the	 onset	 of	 the	 current	 injection,	 both	 neurons	 started	 to	
depolarize,	but	fired	an	action	potential	first.	As	a	result,	PN1	received	an	IPSP	causing	PN2	to	
become	dominant	and	PN1	suppressed.	d:	The	part	of	data	(orange	triangle)	around	the	time	of	
reversal.	The	inter-spike	interval	increased	during	the	dominant	period	of	PN2	due	to	adaptation.	
Just	after	the	rightmost	action	potential	of	PN2,	PN1	got	a	sufficient	time	to	recover	from	its	IPSP,	
enabling	it	to	reach	its	firing	threshold	before	PN2	was	able	to	fire	its	next	action	potential.	The	
action	potential	of	PN1	now	resulted	in	an	IPSP	in	PN2	entailing	a	reversal	of	dominance.	 
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intervals	and	peaks	of	action	potentials	are	plotted	in	Fig.	3a,	b,	respectively,	for	

the	example	bi-stable	activity	shown	in	Fig.	2b.	Normalized	values	are	pooled	for	

the	 “control	 pairs”	 (N=93,	 see	Materials	 and	Methods	 for	 the	 definition	 of	 the	

“control	pairs”)	and	plotted	over	normalized	dominance	durations	in	Fig.	3c,	d,	for	

inter-spike	intervals	and	action	potential	peaks,	respectively.	The	results	indicate	

monotonic	 changes	 (increase	 of	 inter-spike	 intervals	 and	 decrease	 of	 action	

potential	peaks	over	time)	while	a	neuron	 is	dominant.	Furthermore,	 there	are	

clear	correlations	between	the	dominance	durations	and	the	changes	of	the	inter-

Fig.	3 Adaptation	of	dominant	neuron	and	its	correlation	to	dominance	duration	
a-b:	The	physiological	signatures	of	adaptation.	Inter-spike	intervals	increase	(a)	and	the	peaks	of	
action	potentials	decrease	(b)	due	to	adaptation	during	dominance	episodes.	c-d:	Average	of	inter-
spike	intervals	(c)	and	the	action	potential	peaks	(d)	for	pooled	data	of	all	93	“control	pairs”	(see	
Materials and Methods	for	the	definition).	e:	Slope	of	inter-spike	interval	as	a	function	of	dominance	
durations,	showing	the	inverse	correlation	between	them.	f:	Inverse	correlation	between	the	slope	
of	 inter-spike	 interval	 and	dominance	 duration	 in	 the	pooled	 data.	 The	 dominance	 durations	 of	
individual	pairs	were	normalized	by	their	mean	values	before	pooling.	The	normalized	duration	was	
binned	and	the	pooled	data	was	averaged	for	the	individual	bins.	Error	bars	indicate	+/-	SEM. 
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spike	 intervals.	 We	 applied	 a	 linear	 regression	 to	 inter-spike	 intervals	 as	 a	

function	of	time	in	the	dominance	duration	(see	Fig.	9).	The	slope	indicates	how	

quickly	the	adaptation	progresses.	As	shown	in	Fig.	3e	(for	the	example	shown	in	

Fig.	2b)	and	Fig.	3f	(for	the	pooled	data	of	the	control	pairs),	the	slopes	and	the	

dominance	durations	were	inversely	correlated	(repeated	measures	ANOVA	for	

the	pooled	data	F(3,15)=19.518,	p<0.0001).	Hence,	when	adaptation	progresses	

quickly,	 the	 dominance	 duration	 is	 bound	 to	 be	 shorter,	 indicating	 a	 role	 for	

adaptation	in	dominance	reversals.		

	

Effect	of	noise	

Because	 of	 the	 stochasticity	 of	 dominance	 durations	 (Brascamp	 et	 al.,	 2006,	 p.	

2006;	Huguet	et	al.,	2014;	Kim	et	al.,	2006;	Moreno-Bote	et	al.,	2007;	Pisarchik	et	

al.,	2014)	it	has	been	argued	that	noise	plays	an	important	role	for	the	reversal	in	

bi-stable	 perception.	 To	 investigate	 the	 role	 of	 noise	 on	 the	 dynamics	 of	 bi-

stability,	we	implemented	an	algorithm	in	the	dynamic	clamp	system	to	introduce	

simulated	noise	of	the	synaptic	conductance	(Delgado	et	al.,	2010;	Destexhe	et	al.,	

2001).	 The	 noise	 was	 given	 to	 both	 PNs	 and	 mINs	 in	 the	 form	 of	 random	

fluctuations	of	excitatory	and	inhibitory	synaptic	conductance	(see	Materials	and	

Methods	 for	 details).	 Fig.	 4a	 shows	 the	 baseline	 membrane	 potential	 of	 a	

pyramidal	neuron	and	Fig.	4b	shows	the	result	of	adding	the	modeled	synaptic	

noise	to	it	(all	at	-60mV).	Next,	the	level	of	noise	was	changed	systematically	while	

the	two	pyramidal	neurons	were	exhibiting	bi-stable	activity	as	shown	in	Fig.	4c	

(the	parameter	sets	for	different	noise	level	are	shown	in	the	table	in	Fig.	4d).	The	

results	 indicate	 that	 increased	 noise	 caused	 an	 increase	 of	 the	 reversal	 rate	
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(F(19,171)=50.868,	 p<0.0001).	 The	 pooled	 data	 from	 15	 pairs	 of	 pyramidal	

neurons	are	shown	in	Figure	4d.		

Fig.	4	Effect	of	noise		
Model	 excitatory	 and	 inhibitory	 synaptic	 noise	was	 applied	 to	 the	 pyramidal	 neurons	 and	 the	
inhibitory	neurons	 through	 the	dynamic	clamp	system.	a-b:	Baseline	membrane	potentials	at	 -
60mV	without	(a)	and	with	(b)	the	model	noise.	c:	Effect	of	changing	the	noise	level	systematically	
to	bi-stable	activity.	Increase	of	the	noise	resulted	in	increase	of	reversal	rate	(from	top	to	bottom).	
Noise	 levels	 are	 indicated	 as	 standard	 deviations	 (SD)	 of	 gE	 and	 gI	 (excitatory	 and	 inhibitory	
conductance,	respectively,	in	nS).	Asterisk:	Data	with	the	“standard”	noise	parameter	set.	d:	Pooled	
data	of	the	effect	of	noise	(N=15).	The	reversal	rates	from	the	individual	pair	are	normalized	by	the	
value	at	the	standard	noise	parameters	(iii)	before	pooling.	Orange	bar	(i)	indicates	the	data	with	
no	model	noise.	Error	bars	indicate	+/-	SEM.	The	noise	parameter	sets	for	i	(no	model	noise),	ii,	iii	
(standard	noise	parameters),	iv	and	v	are	shown	in	the	table	below.	The	noise	level	is	increased	
linearly	 from	 ii	 to	 v.	e:	Histogram	of	 dominance	 durations	 for	 PN1	 and	PN2	 from	10	minutes	
continuous	recording	(with	the	“standard”	noise	parameters). 
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It	 is	 known	 that,	 in	 brain	 slice	 preparations,	 the	 amount	 of	 synaptic	 noise	 in	

individual	neurons	is	much	less	than	what	is	observed	in	intact	brain	preparations	

due	to	the	cutoff	of	axons	and	 lesser	spontaneous	activity	 in	slice	preparations	

(Destexhe	et	al.,	2001).	Therefore,	to	reproduce	the	intact	brain	environment,	we	

use	a	parameter	set	of	modelled	excitatory	and	inhibitory	synaptic	noise	which	

will	be	called	the	“standard	noise	parameter	set”	(asterisk	in	Fig.	4c	and	4d	table)	

from	here	on.	For	the	rest	of	the	experiments,	the	standard	noise	parameter	set	

was	used.	The	histogram	of	dominance	durations	of	 a	600	sec	 recording	of	bi-

stable	 activity	with	 the	 standard	 parameter	 set	 is	 shown	 in	 Fig.	 4e.	 It	 shows	 a	

skewed	 distribution	 as	 stereotypically	 observed	 in	 bi-stable	 perception.	 The	

average	 of	 dominance	 durations	 and	 reversal	 rates	 of	 the	 15	 pairs	 with	 the	

standard	noise	parameter	set	were	7.7±5.6sec	and	12.0±10.5min-1,	respectively.	

These	values	 for	 the	 control	pairs	 (N=93)	were	8.2±7.8sec	and	11.5±10.8min-1,	

respectively.	

	

Effect	of	current	intensity	(“Levelt	paradigms”)	

A	 set	 of	 widely	 replicated	 empirical	 laws	 from	 the	 perceptual	 competition	

literature	¾known	as	Levelt’s	propositions¾	describes	the	relationship	between	

the	 strengths	 of	 two	 competing	 stimuli	 and	 the	 dynamics	 of	 their	 bi-stable	

perception	(W.	J.	M.	Levelt,	1965)	in	terms	of	dominance,	dominance	duration,	and	

reversal	 rate.	Furthermore,	 the	paper	by	Brascamp	and	Klink	 (Brascamp	et	 al.,	

2015)	reported	a	generally	accepted	updated	version	of	Levelt’s	propositions	so	

that	 the	 description	 of	 bi-stable	 dynamics	 covers	 the	 full	 range	 of	 stimulus	

strengths	(Levelt’s	original	propositions	were	based	on	the	range	of	stimulation	
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where	the	stimulus	strength	of	one	of	the	two	input	signals	increased,	and	hence,	

the	effect	of	decreasing	the	strength	was	not	included).	To	compare	the	dynamics	

of	the	pairs	of	mutually	inhibited	pyramidal	neurons	to	the	modified	version	of	

Levelt’s	 propositions,	 we	 injected	 sustained	 depolarization	 currents	 and	

systematically	varied	(increased	and	decreased)	the	strength	of	the	current	into	

one,	or	both,	of	the	pyramidal	neurons	(Fig.	5a).	

	

To	examine	the	first	three	propositions	of	Levelt,	the	current	injected	into	one	of	

the	two	neurons	was	varied	while	the	current	injected	into	the	other	neuron	was	

Fig.	5	Results	of	paradigm	equivalent	to	Levelt’s	paradigm	for	proposition	I	to	III	
a:	 Schematics	 of	 the	 paradigms	 equivalent	 to	 Levelt’s	 experimental	 paradigms	 for	 bi-stable	
perception.	 The	 level	 of	 injected	 current	 to	 either	 one	 or	 both	 of	 the	 two	mutually	 inhibiting	
pyramidal	 neurons	 was	 systematically	 changed	 (analogous	 to	 the	 change	 of	 the	 contrasts	 in	
Levelt’s	 experiments).	b:	 Example	 data	 of	 the	 experiment	 equivalent	 to	 Levelt’s	 experimental	
paradigm	for	proposition	I	to	III.	The	level	of	depolarization	current	in	PN1	was	increased	(from	
top	 to	 bottom)	 while	 the	 current	 to	 PN2	 was	 kept	 constant.	 c-e:	 Changes	 in	 dominance	 (c),	
dominance	duration	(d),	and	reversal	rate	(e)	for	this	pair.	PN1	red,	PN2	blue.	f-h:	Pooled	data	
(N=46)	plotted	over	the	normalized	injected	current.	The	dominance	durations	are	normalized	for	
the	maximum	values	of	the	individual	neurons.	Red:	responses	of	the	neurons	that	received	the	
changes	of	the	injected	current.	Blue:	responses	of	the	neurons	whose	injected	current	was	kept	
constant.	Left	column:	The	data	of	the	individual	pairs.	Right	column:	The	normalized	current	was	
binned	and	the	pooled	data	were	averaged	for	the	individual	bins.	Error	bars	indicate	+/-	SEM. 
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kept	constant	(Fig.	5b).	 In	 total,	46	pairs	were	recorded	with	this	paradigm.	To	

pool	the	data,	first,	the	current	that	would	evoke	50%	dominance	(the	total	period	

that	 one	 neuron	 is	 dominant	 over	 the	 other	 is	 equal	 for	 both	 neurons)	 was	

estimated	(I50%)	by	linear	regression	of	dominance	over	the	changed	current.	The	

change	of	the	current	is	reported	with	reference	to	this	control	current	value	(i.e.,	

0	in	abscissa	indicates	the	current	pair	that	would	evoke	50%	dominance).	Hence,	

in	the	plots	shown	in	Fig.	5c	to	5h,	the	neurons	with	the	changing	injected	current	

is	more	dominant	(“stronger”)	on	the	right	side	of	the	plot	from	0,	while	on	the	left	

side,	they	are	less	dominant	(“weaker”).	

	

We	first	tested	Levelt’s	proposition	I:	Increasing	stimulus	strength	for	one	of	the	

competing	stimuli	will	increase	the	perceptual	dominance	of	that	stimulus.	Fig.	5c	

depicts	 the	 change	of	 the	dominance	 ratios	of	 the	 two	pyramidal	neurons	over	

injected	current	(with	reference	to	I50% of	PN1)	for	the	example	shown	in	Fig.	5b.	

There	 is	 a	 clear	 trend	 of	 increase	 of	 dominance	 of	 PN1	 whose	 current	 was	

increased	 (red)	 and	 of	 decrease	 of	 dominance	 of	 PN2	whose	 current	was	 kept	

constant	 (blue).	 Fig.	 5f	 shows	 pooled	 data	 (N=46)	 for	 the	 dominance	 ratio,	

replicating	that	there	is	an	increasing	dominance	of	the	neurons	whose	currents	

were	 increased	 (red,	 F(6,24)=15.558,	 p<0.0001),	 and	 decreasing	 dominance	 for	

their	 counterparts	 whose	 currents	 were	 kept	 constant	 (blue,	 F(6,24)=15.558,	

p<0.0001))xxxcheck	thisxxx.	This	is	in	line	with	Levelt’s	proposition	I.	

	

Levelt’s	 proposition	 II	 states:	 Increasing	 the	 difference	 in	 stimulus	 strength	

between	 the	 two	 competing	 stimuli	 will	 primarily	 act	 to	 increase	 the	 average	

perceptual	 dominance	 duration	 of	 the	 stronger	 stimulus.	 Furthermore,	 the	
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modified	Levelt’s	proposition	II	states	that	the	change	of	stimulus	intensity	of	the	

non-dominant	input	is	less	effective.	This	means	that	when	the	stimulus	intensity	

changes	from	non-dominant	range	to	dominant	range,	the	effect	of	the	change	to	

average	dominant	durations	is	weak	in	the	non-dominant	range	and	strong	in	the	

dominant	 range.	 In	 Fig.	 5d	 the	 change	 of	 the	 average	 dominance	 durations	 is	

plotted	over	the	changing	current	for	the	example	shown	in	Fig.	5b.	PN1	shows	

weak	changes	of	the	dominance	durations	on	the	left	half	of	the	plot	where	PN1	is	

weaker	than	PN2.	It	shows,	however,	a	steep	increase	on	the	right	half	of	the	plot	

where	 it	 is	 stronger	 than	 PN2,	 and	 vice	 versa	 for	 the	 other	 neuron.	 Hence,	 in	

general,	the	dominant	neuron	shows	a	steep	increase	of	the	dominance	durations	

with	current	values	deviating	further	away	from	I50%.	This	trend	can	be	seen	in	Fig.	

5g	 with	 pooled	 data	 for	 the	 neurons	 whose	 currents	 were	 increased	 (red,	

F(6,24)=4.371,	 p<0.01))	 and	 for	 their	 counter	 parts	 whose	 currents	 were	 kept	

constant	(blue,	F(6,24)=7.396,	p<0.0001)xxxcheck	againxxx.	This	is	in	line	with	the	

modified	version	of	Levelt’s	proposition	II.	

	

According	 to	 Levelt’s	 proposition	 III:	 Increasing	 the	 difference	 in	 stimulus	

strength	 between	 the	 two	 competing	 stimuli	 will	 reduce	 the	 perceptual	

alternation	rate.	Fig.	5e	plots	the	number	of	reversals	for	the	example	shown	in	

Fig.	5b.	The	pair	showed	a	higher	number	of	reversals	for	a	current	close	to	I50%.	

Deviating	further	from	I50%	in	either	direction,	the	values	decreased,	in	line	with	

Levelt’s	proposition	III.	However,	the	pooled	data	(Fig.	5h)	show	that	the	response	

is	not	symmetric.	In	fact,	some	pairs	showed	an	increase	of	the	reversal	rate	when	

a	neuron	is	dominant	(see	Supplement	figure,	Fig.	S1	bottom),	in	contrast	to	the	

example	pair	of	Fig.	5b	(and	Fig.	S1	top).	Thus,	the	pyramidal	neuron	pairs	did	not	
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always	follow	Levelt’s	proposition	III.	Due	to	the	increase	in	the	left	half,	repeated	

measures	ANOVA	indicated	a	significant	effect	(F(6,24)=2.663,	p<0.05).	

	

To	 examine	 the	 fourth	 proposition	 of	 Levelt,	 the	 currents	 injected	 into	 both	

neurons	were	varied.	In	total,	32	pairs	were	recorded	with	this	paradigm.	To	pool	

the	data,	the	change	of	the	current	is	reported	with	reference	to	the	current	that	

would	evoke	approximately	10Hz	(I10Hz,	see	Materials	and	Methods).	

Proposition	IV	states:	Increasing	stimulus	strength	of	both	competing	stimuli	will	

generally	 increase	 the	 perceptual	 alternation	 rate.	 In	 addition,	 the	 modified	

version	of	proposition	IV	(Brascamp	et	al.,	2015)	noted	that	this	effect	may	reverse	

at	near-threshold	stimulus	strengths	(i.e.	the	lower	range	of	stimulation	intensity).	

Fig.	6a	shows	an	example	of	the	effect	of	increasing	the	injected	currents	into	both	

neurons.	In	Fig.	6b,	the	number	of	reversals	of	this	example	are	plotted	over	the	

injected	 current.	Fig.	6c	 shows	pooled	data	 indicating	 increasing	 reversal	rates	

(F(6,30)=4.051,	p<0.01).	In	addition,	there	is	a	small	decrease	of	the	reversal	rate	

at	the	lower	range	of	the	stimulation.	These	results	are	in	line	with	the	modified	

version	of	Levelt’s	proposition	IV.		
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Discussion	

We	developed	a	system	to	establish	a	mutual	inhibition	connection	between	two	

real-life	neurons	mediated	by	model	neurons	and	synapses.	This	system	enabled	

us	to	evoke	bi-stable	activity	reproducibly	in	a	pair	of	pyramidal	neurons	in	visual	

cortex.	 We	 analyzed	 the	 dynamics	 of	 the	 induced	 bi-stability,	 a	 number	 of	

physiological	 properties,	 as	 well	 as	 the	 effects	 of	 manipulating	 the	 level	 of	

background	noise	and	activation	level.	We	compared	the	dynamics	of	this	pair	of	

neurons	with	the	known	dynamics	of	human	bi-stable	visual	perception.	Although	

our	experimental	system	represents	the	simplest	neural	unit	of	competition	and	

human	 behavior	 represents	 the	most	 complex	 system,	 we	 found	 that	 the	 two	

systems	show	striking	similarities	in	their	dynamics.		

Fig.	6	Results	of	paradigm	equivalent	to	Levelt’s	paradigm	for	proposition	IV 
a:	The	effect	of	increasing	the	depolarization	currents	simultaneously	in	both	pyramidal	neurons	
(from	top	to	bottom).	b:	The	changes	of	the	reversal	rate	for	this	pair.	c:	Pooled	data	of	reversal	
rate	(N=32)	plotted	over	the	normalized	injected	currents. 
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The	analyses	of	the	physiological	properties	during	bi-stable	activity	showed	clear	

signs	of	neural	adaptation	of	the	dominant	neurons	(Fig.	3).	Moreover,	we	found	a	

link	between	the	variations	of	inter-spike	intervals	and	dominance	durations	(Fig.	

3e	and	3f),	indicating	a	causal	link	between	neural	adaptation	and	the	reversals	in	

bi-stable	activity.	Neural	adaptation	has	only	been	assumed	as	a	key	element	for	

bi-stable	perception	theoretically	(Laing	&	Chow,	2002;	Lankheet,	2006;	Matsuoka,	

1984;	Mueller,	1990;	Noest	et	al.,	2007;	Shpiro	et	al.,	2009;	Wilson	et	al.,	2000;	

Wilson,	1999)	or	 it	has	been	shown	 indirectly	 in	 the	 form	of	decreased	contrast	

sensitivity	 (Alais	 et	 al.,	 2010).	Our	data	directly	 show,	 in	physiological	 terms,	 a	

progression	of	adaptation	during	bi-stable	activity	in	pyramidal	neurons	in	visual	

cortex	and	its	link	to	the	dominance	durations.	

In	addition	to	neural	adaptation,	we	investigated	the	effect	of	neural	noise	on	the	

dynamics	 of	 bi-stable	 activity.	 The	 apparent	 stochasticity	 in	 the	 sequence	 of	

reversals	and	the	skewed	distribution	of	dominance	durations	(Levelt,	1967)	in	

bi-stable	perception	led	to	studies	on	the	role	of	noise	(Baker	&	Richard,	2019;	

Brascamp	et	al.,	2006;	Huguet	et	al.,	2014;	Kim	et	al.,	2006;	Moreno-Bote	et	al.,	

2007;	Pisarchik	et	al.,	2014).	To	investigate	the	effect	of	noise	in	our	experimental	

model,	we	incorporated	a	neuro-computational	model	of	synaptic	noise	into	the	

dynamic	clamp	system.	In	this	way,	we	were	able	to	insert	noise	into	the	pyramidal	

and	inhibitory	neurons	and	systematically	change	the	level	of	noise.	We	found	that	

an	increase	of	noise	caused	an	increase	of	reversal	rate	(Fig.	4).	It	is	known	that	

the	synaptic	noise	found	in	neurons	in	brain	slice	preparations	is	much	less	than	

the	noise	present	in	intact	brains	(Destexhe	et	al.,	2001)	or	in	human	brain	tissue		

(Molnár	et	al.,	2008).	Hence,	we	added	noise	levels	equivalent	to	the	noise	level	in	
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the	intact	brain	(Destexhe	et	al.,	2001).	We	found	that	the	histogram	of	dominance	

durations	was	right-skewed	as	is	typically	found	in	bi-stable	perception.		

We	 showed	 that	 when	 one	 of	 the	 two	 neurons	 is	 dominant,	 its	 adaptation	

progresses	and	hence	the	inter-spike	interval	increases	over	time.	This	allows	the	

suppressed	 neuron	 to	 recover	 from	 its	 own	 adaption	 and	 to	 depolarize	 more	

during	 the	 ever-increasing	 inter-spike	 intervals	 of	 the	 dominant	 neuron,	

consequently	 showing	 a	 slowly	 ramping	 depolarization.	When	 the	 depolarized	

membrane	potential	comes	close	to	the	firing	threshold,	the	noise	facilitates	the	

membrane	potential	 to	go	above	 the	 threshold.	As	a	 consequence	of	 the	action	

potentials	 in	 the	 previously	 suppressed	 neuron,	 the	 dominant	 neuron	 now	

receives	 IPSPs	 via	 the	 disynaptic	 inhibitory	 connection	 and	 a	 reversal	 occurs.	

Hence,	our	data	elucidate	the	dynamic	 interplay	between	adaptation,	noise	and	

mutual	inhibition	in	determining	the	dynamics	of	bi-stable	activity.	

Our	 experimental	 model	 allowed	 us	 to	 separately	 manipulate	 the	 levels	 of	

activation	of	the	competing	neurons.	Hence,	it	enabled	us	to	compare	the	effects	

of	 changing	 activation	 levels	 in	 pyramidal	 neurons	 to	 the	 effects	 of	 changes	 in	

stimulus	strength	on	the	dynamics	of	bi-stable	perception,	as	originally	described	

in	Levelt’s	four	‘classic’	propositions	(Levelt,	1965).	Levelt’s	propositions	I,	II	and	

III	make	predictions	about	the	changes	of	dominance,	the	dominance	durations,	

and	 the	 reversal	 rate,	 respectively,	 in	 response	 to	 changes	 of	 the	 stimulation	

strength	in	one	of	the	two	inputs.	Levelt’s	proposition	IV	concerns	the	change	in	

the	 reversal	 rate	 while	 the	 stimulus	 strengths	 of	 both	 inputs	 are	 changed	

concurrently.	The	original	propositions	were	modified	later	(Brascamp	et	al.,	2006,	

2015)	 to	 cover	 the	whole	 range	 of	 the	 stimulus	 strength	 (dominant	 and	 non-

dominant	 ranges).	 By	 running	 paradigms	 equivalent	 to	 these	 experiments,	 we	
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found	that	both	systems	show	striking	similarities	in	their	dynamics.	Our	results	

strongly	suggest	that	the	dynamics	reported	by	Levelt	(and	its	modified	version)	

reflect	the	dynamics	of	an	underlying	neuronal	architecture	of	mutual	inhibition	

circuits.		

It	is	quite	intriguing	that,	although	the	overall	effect	of	increasing	the	injections	

current	 was	 the	 increase	 of	 the	 reversal	 rate	 in	 the	 paradigm	 for	 Levelt’s	

proposition	IV,	we	observed	a	small	decrease	of	it	in	the	lower	range	of	the	injected	

currents.	 As	 Brascamp	 and	 Klink	 (Brascamp	 et	 al.,	 2015)	 pointed	 out,	 a	 small	

deviation	 of	 the	 response	 from	 the	 original	 proposition	 by	 Levelt	 has	 been	

reported	by	several	papers	(Curtu	et	al.,	2008;	Seely	&	Chow,	2011;	Shpiro	et	al.,	

2007).	In	our	experiment,	when	the	injection	current	was	lowered,	the	firing	rate	

of	the	neurons	became	low	and	the	dominant	neuron	generated	action	potentials	

sporadically.	 As	 a	 result,	 the	 spike	 interval	 became	 longer,	 giving	 room	 to	 the	

suppressed	 neuron	 to	 recover	 from	 the	 inhibition	 and	 reach	 the	 threshold	 of	

action	potentials,	causing	reversal	of	dominance.	On	the	one	hand,	in	the	higher	

range	of	injection	currents,	the	reversal	occurred	because	spike	intervals	of	the	

dominant	neuron	gradually	increased	due	to	adaptation.	On	the	other	hand,	in	the	

lower	range	of	injection	currents,	the	reversal	occurred	because	of	the	long	spike	

intervals	due	to	the	lower	frequency	of	evoked	action	potentials.	The	latter	may	

be	potentially	a	mechanism	underlying	the	small	decrease	in	the	lower	range	of	

stimulus	reported	in	bi-stable	perception.	

One	exception	where	our	data	did	not	necessarily	match	the	known	dynamics	of	

bi-stable	 perception	was	 the	mixed	 results	 for	 the	 Levelt	 III	 paradigm.	 In	 this	

paradigm,	some	pyramidal	neuron	pairs	showed	a	decrease	of	reversal	rates	when	

the	depolarization	current	either	increased	or	decreased	from	the	control	value,	
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I50%,	which	is	in	line	with	Levelt’s	proposition	III.	However,	other	pairs	showed	no	

significant	change	or	an	increase	of	reversal	rate	when	the	current	was	higher	than	

the	 control	 (see	 Supplement	 Fig.	 S1	 bottom	 for	 the	 examples).	 Note	 that	 the	

reversal	 rate	 is	 determined	 by	 the	 balance	 between	 increased	 dominance	

durations	 of	 the	 stronger	 neuron	 and	 decreased	 dominance	 durations	 of	 the	

weaker	neuron.	If	the	former	is	more	significant,	the	reversal	rate	will	decrease	

and	if	the	latter	is	more	significant,	it	will	increase.	The	mixed	results	suggest	that	

there	may	be	multiple	factors	involved	in	determining	the	balance.	The	increase	

of	the	firing	rate	in	the	stronger	neuron	with	the	increase	of	depolarization	current	

may	 cause	 a	 stronger	 dominance	 of	 the	 neuron	 on	 one	 hand,	 and	 a	 stronger	

adaptation	of	the	neuron	on	the	other	hand.	The	latter	may	prevent	the	increase	

of	 the	 dominant	 durations	 due	 to	 the	 faster	 decay	 of	 the	 firing	 rate.	 Hence,	

depending	 on	 the	 individually	 different	 adaptation	 properties	 and	 the	 spiking	

properties	of	the	neurons,	the	strong	activation	of	the	stronger	neuron	may	have	

caused	a	decrease	of	the	reversal	rate	in	some	cases	and	an	increase	in	other	cases.	

At	systems	level,	the	competition	is	presumably	between	populations	of	neurons	

rather	than	single	neurons	as	 tested	here.	Hence,	differences	 in	adaptation	and	

spiking	properties	among	 the	 involved	neurons	may	collectively	have	different	

impacts	on	the	dynamics	of	bi-stability.	Furthermore,	it	should	be	noted	that,	in	

the	human	brain,	 the	 input	 signals	go	 through	multiple	 steps	of	normalization,	

starting	from	the	retinae,	before	reaching	the	mutual	inhibition	processes.	It	may	

be	possible	that	the	activation	level	of	neurons	in	the	human	visual	system	is	kept	

within	the	range	where	the	fast	adaptation	occurs	in	a	lesser	amount.	If	this	is	the	

case,	the	strong	stimulation	would	cause	the	prolongation	of	dominant	durations	

in	 the	 stronger	 neuron	 and,	 hence,	 cause	 the	 decrease	 of	 the	 reversal	 rate	 as	
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reported	 in	 Levelt	 III.	 Therefore,	 this	 result	may	 represent	 an	 example	where	

emergent	properties	of	bi-stable	perception	at	the	behavioral-level	differ	from	the	

dynamics	found	in	the	minimal	neural	competition	unit	we	investigated.	

Regarding	 the	 dominance	 durations,	 it	 should	 be	 noted	 that	 there	 are	 short	

periods	when	the	neuron	that	has	been	suppressed	fires	only	one	or	two	action	

potentials	and	then	becomes	suppressed	again.	Such	short	events	(less	than	250	

ms)	are	not	considered	as	a	reversal	in	our	analyses,	and	the	dominance	durations	

are	determined	by	neglecting	 these	events	 (see	Fig.	8).	 Furthermore,	 there	are	

periods	where	short	events	occurred	alternatingly	between	the	two	neurons	with	

intermingled	action	potentials	from	both	neurons	(Fig.	8).	In	these	periods,	none	

of	 the	two	neurons	are	considered	to	be	dominant.	These	observations	may	be	

linked	to	known	observations	 in	bi-stable	perception.	 It	has	been	reported	that	

human	subjects	experience	short	reversal	events	detected	in	reflexes	(optokinetic	

nystagmus	 and	 pupil	 dilations)	 but	 they	 are	 too	 short	 to	 be	 reported	 by	 the	

subjects	 (Naber	 et	 al.,	 2011).	 Furthermore,	 the	 intermingled	 firing	 of	 action	

potentials	by	the	two	neurons	may	be	related	to	the	period	in	bi-stable	perception	

where	the	perception	of	 the	subject	 is	either	uncertain	or	a	mixture	of	 the	two	

possible	percepts	(“composite”	or	“mixed”	perception).	The	short	and	the	mixture	

events	 are	 potentially	 important	 because	 they	 may	 elucidate	 the	 neural	

mechanisms	 underlying	 the	 stochastic	 properties	 of	 bi-stability	 and	 decision	

making	processes.	This	intriguing	property	of	bi-stable	neural	activity	during	the	

transition	of	the	dominances	should	be	investigated	further.	

Concluding,	 our	 experimental	 model	 provides	 a	 platform	 for	 investigating	 the	

dynamics	of	a	 theoretically	derived	neural	circuit	 in	real-life	neurons.	Our	data	

showed	that	even	the	simplest	neural	competition	circuit,	between	two	individual	
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pyramidal	 neurons,	 already	 reproduces	many	 aspects	 of	 dynamics	 of	 bi-stable	

perception	 in	human	perception.	Our	study	using	 the	novel	 approach	 reported	

here	 provides	 a	 platform	 to	 investigate	 further	 how	 elementary	 neural	

competition	units	are	integrated	to	execute	system-level	bi-stable	dynamics.	
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Materials	and	Methods	

Experiments	 were	 performed	 at	 the	 Brain	 Science	 Institute	 (Tamagawa	

University,	 Japan),	and	the	Donders	 Institute	 for	Brain,	Cognition	and	Behavior,	

(Radboud	 University,	 The	 Netherlands).	 The	 experimental	 animal	 procedures	

were	approved	by	the	Animal	Research	Ethics	Committee	of	Tamagawa	University	

(animal	experiment	protocol	H29/08)	and	 the	Animal	Ethics	Committee	of	 the	

Radboud	 University	 Nijmegen,	 under	 DEC	 application	 number	 2018-0016	

(Nijmegen,	 the	 Netherlands).	 The	 procedures	 are	 in	 accordance	 with	 the	

Guidelines	 for	 Animal	 Experimentation	 in	 Neuroscience	 (Japan	 Neuroscience	

Society)	and	the	Dutch	legislation.		

	

Brain	slice	preparation	

Brain	slices	were	prepared	from	the	occipital	part	of	the	mouse	brain	that	includes	

the	visual	cortex	(strain	C57BI6/J,	age	p12	to	p24).	Mice	were	anesthetized	deeply	

using	isoflurane	in	an	induction	chamber.	Following	deep	anesthesia,	mice	were	

quickly	decapitated	and	the	brain	was	removed	from	the	skull	in	a	small	container	

with	chilled	“cutting	solution”.	For	this	process,	the	solution	of	either	one	of	the	

following	 compositions	was	used	 (in	mM):	125	NaCl,	25	NaHCO3,	2.5	KCl,	1.25	

NaH2PO4,	1	CaCl2,	2	MgCl2,	25	D-glucose,	or	75	sucrose,	87	NaCl,	25	NaHCO3,	2.5	

KCl,	1.25	NaH2PO4,	0.5	CaCl2,	7	MgCl2,	25	D-glucose,	both	saturated	with	95%	O2,	

5%	CO2.	Then,	the	brain	tissue	was	glued	on	to	the	cutting	stage	of	a	vibratome	

(VT1000S,	 Leica,	 Germany,	 or	 Microm	 HM	 650V,	 Thermo	 Scientific,	 USA),	

submerged	in	the	cutting	solution	above.	Coronal	or	angled-coronal	(Dong	et	al.,	

2004)	 sections	 of	300~400µm	 thickness	were	 cut	 and	 stored	 in	 an	 incubation	
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chamber	 in	32~34°C	for	at	 least	30	min,	and	then	stored	at	room	temperature	

until	use.	

	

Double	whole-cell	recordings	

Slices	were	transferred	to	a	recording	chamber	on	a	microscope	stage	and	were	

superfused	 with	 artificial	 cerebrospinal	 fluid,	 ACSF,	 maintained	 at	 a	 constant	

temperature	(32~34°C).	ACSF	had	the	following	composition	(in	mM):	125	NaCl,	

25	NaHCO3,	2.5	KCl,	1.25	NaH2PO4,	2	CaCl2,	1	MgCl2,	25	D-glucose,	saturated	with	

95%	 O2,	 5%	 CO2.	 The	 location	 of	 V1	 was	 identified	 under	 the	 microscope	

(Olympus,	 Japan)	 equipped	 with	 DIC-IR	 (differential	 interference	 contrast	 –	

infrared).	Layers	of	visual	cortex	were	identified	and	the	point	where	layer	5	starts	

thickening,	 going	 from	medial	 to	 lateral,	was	used	as	a	 landmark	of	 the	border	

between	V1	and	LM	(lateromedial	area,	Wang	and	Burkhalter,	2007,	equivalent	to	

V2,	Fig.	1c).	All	recordings	were	made	from	the	region	medial	from	the	landmark.	

Under	high	magnification	with	x40	objective,	pyramidal	neurons	in	layer	2/3	were	

identified	by	their	stereotypical	morphology.	In	some	cases,	the	recorded	neurons	

were	filled	with	biocytin	and	post-experimental	process	indicated	that,	in	all	cases,	

they	were	pyramidal	neurons	in	layer	2/3	(see	below).	Two	neurons	separated	by	

at	 least	 150µm	 distance	 were	 selected	 to	 reduce	 the	 probability	 of	 choosing	

connected	pairs.	Furthermore,	experimental	protocols	were	performed	to	check	

for	monosynaptic	(paired-pulse	injection	at	10Hz	to	one	of	the	neurons	to	evoke	

action	potentials)	and	disynaptic	connections	(Kapfer	et	al.,	2007;	Silberberg	&	

Markram,	2007)	(100Hz	11	pulses	injection	to	one	of	the	neurons	to	evoke	a	train	

of	action	potentials).	None	of	the	pairs	reported	in	this	paper	were	connected.	
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Pipettes	 for	 patch	 clamp	 recordings	 were	 pulled	 from	 borosilicate	 thin	 glass	

capillaries	(TW150-4,	WPI,	USA)	and	filled	with	a	 filtered	 intracellular	solution	

with	the	following	composition	(mM).	130	K-gluconate,	10	KCl,	4	ATP-Mg,	0.3	Na-

GTP,	 10	 HEPES,	 10	 phosphocreatine.	 For	 phosphocreatine,	 either	 10mM	 Na2-

phosphocreatine	 or	 a	 mixture	 of	 5mM	 Na2-phosphocreatine	 and	 5mM	 tris-

phosphocreatine	 was	 used.	 The	 osmolarity	 of	 the	 solution	 was	 adjusted	 to	

290~300Osm	 by	 either	 Osmotron-5	 (Orion	 Riken	 Co.,	 Japan)	 or	 Semi-Micro	

Osmometer	K-7400	(Knauer,	Germany)	and	the	pH	was	adjusted	to	7.2.	The	final	

resistance	of	the	pipettes	was	7~9MΩ.	In	some	cases,	biocytin	was	added	to	the	

pipette	 solution	 (2.5~5mg/ml)	 to	 visualize	 the	 recorded	 neurons	 post-

experimentally.	 Recordings	 were	 carried	 out	 using	 either	 two	 Axopatch	 200B	

amplifiers	or	a	Multiclamp	700	amplifier	(both	Molecular	Devices,	Sunnyvale,	CA,	

USA).	Data	were	lowpass	filtered	at	10kHz	and	were	digitized	at	20	kHz	using	a	

Digidata	A/D	board	model	1440A.	Data	were	captured	using	the	Clampex	program	

suite	(Molecular	Devices,	USA).	Series	resistances	were	constantly	monitored	by	

injecting	a	−100pA	pulse	in	current-clamp	configuration.	Series	resistances	were	

balanced	via	a	bridge	circuit.	

	

Cell	identification	

To	visualize	the	pyramidal	neuron	pairs	that	were	recorded,	they	were	filled	with	

biocytin	by	diffusion	(N=9).	After	the	recording	(approximately	30	to	60	minutes),	

the	slices	were	kept	in	4%	paraformaldehyde	in	phosphate	buffer	solution,	PBS,	

(0.1	M,	pH	7.2)	and	were	kept	at	4˚C.	After	washing	the	tissue	with	PBS,	 it	was	

quenched	with	1%	H2O2	in	10%	methanol	and	90	%	PBS	for	5	minutes.	The	tissue	

was	washed	with	PBS	and	permeabilized	with	2%	Triton	X-100	in	PBS	for	1	hour	
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and	then	put	in	ABC	solution	(ABC	Elite	Kit,	Vector,	USA)	overnight	at	4˚C.	After	

washing	the	tissue	with	PBS	and	then	with	Tris	buffer	(0.05M),	it	was	processed	

with	DAB	solution	(0.5g/l	in	0.05M	Tris	buffer)	and	1%H2O2	was	added	to	enhance	

the	reaction.	After	verifying	the	visualization	of	neurons,	the	tissue	was	washed	

by	PBS	and	then	mounted	to	glass	slides	with	a	mounting	medium	(Aquamount,	

Vector,	USA).	

	

Dynamic	clamp	

A	modified	version	of	the	dynamic	clamp	system	StdpC	(spike	timing	dependent	

plasticity	 clamp)(Nowotny	 et	 al.,	 2006)	was	 used	 to	 establish	 the	 connections	

between	 recorded	 neurons	 and	 model	 neurons	 with	 model	 synapses.	 The	

communication	 between	 the	 amplifier	 and	 StdpC	 was	 mediated	 by	 a	 National	

Instruments	A/D	board,	model	PCIe-6321.	Dynamic	clamp	is	a	method	whereby	a	

modelled	conductance,	e.g.	a	synaptic	or	ionic	conductance,	is	computed	based	on	

the	measured	membrane	potential	of	a	neuron,	then	injected	into	that	neuron	in	

real	time	with	a	patch	clamp	electrode.	Unlike	other	dynamic	clamp	systems	which	

operate	at	fixed	frequencies,	StdpC	does	not	require	a	real-time	operating	system,	

relying	 instead	 on	 precise	measurement	 of	 the	 time	 elapsed	 in	 each	measure-

compute-inject	cycle	to	perform	the	numerical	integration	of	its	models.	

Besides	numerous	improvements	to	the	software	interface,	the	following	major	

additions	were	made	to	the	previous	version	of	StdpC	(Nowotny	et	al.,	2006).	A	

passive	membrane	model	was	added,	which	 can	be	 augmented	with	models	of	

ionic	and	synaptic	conductances	to	form	completely	synthetic	neuron	models.	To	

stabilize	 numerical	 integration	 of	 such	 models	 at	 StdpC’s	 unpredictable	 and	

varying	sampling	frequency,	the	clamp	cycle	was	upgraded	from	explicit	Euler	to	
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a	 Runge-Kutta	 integration	 scheme	 of	 order	 4/5.	 A	 number	 of	 performance	

enhancements	 were	 made	 to	 ensure	 high-frequency,	 and	 thus	 high-fidelity,	

updates	 to	 the	 injected	 current.	 A	 delay	mechanism	was	 added	 to	 the	 synapse	

models,	 allowing	 the	 simulation	 of	 conduction	 and	 synaptic	 delays.	 Finally,	 a	

model	 of	 synaptic	 background	 noise	 was	 added,	 reproducing	 the	 synaptic	

bombardment	 we	 would	 expect	 to	 see	 in	 vivo	 with	 statistically	 equivalent,	

randomly	generated	inhibitory	and	excitatory	currents,	as	described	in	the	section	

on	noise	below.	The	upgraded	version	of	StdpC	(StdpC	version	6.1)	is	available	at	

github.com	 (github.com/CompEphys-team/stdpc,	 DOI	

10.5281/zenodo.3492203). 

A	custom-made	summing	circuit	was	used	to	combine	the	command	signal	from	

StdpC	and	the	one	from	Clampex	software,	and	the	combined	command	signal	was	

fed	to	the	amplifier.		

Hodgkin-Huxley	models	of	ionic	channels	(conventional	sodium,	delayed	rectifier	

potassium,	 and	 Kv3	 potassium	 channels)	 were	 given	 to	 the	 model	 inhibitory	

neuron	 (membrane	 capacitance	 0.2115nF,	 leak	 conductance	 63.462nS,	

equilibrium	potential	for	the	leak	conductance	-70mV	(Pospischil	et	al.,	2008)).	A	

Kv3	channel	was	added	to	simulate	fast	spiking	inhibitory	neurons(Lien	&	Jonas,	

2003).	 The	 models	 are	 based	 on	 an	 “a/b	 formalism”	 as	 follows	 (see	

github.com/CompEphys-team/stdpc/tree/master/manual).		

	

𝐼 = 𝑔$%&𝑚(ℎ*(𝑉 − 𝑉./0)	

𝑑𝑚
𝑑𝑡 = 𝛼$(1 − 𝑚) − 𝛽$𝑚	

𝛼$ = 𝑘8,$𝐹8,$ ;
𝑉 − 𝑉8,$
𝑠8,$

=	
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𝛽$ = 𝑘>,$𝐹>,$ ;
𝑉 − 𝑉>,$
𝑠>,$

=	

	(and	analogous	for	h).	

Here,	m	 and	 h	 are	 activation	 and	 inactivation	 variables.	 gmax	 is	 the	 maximum	

conductance	of	 the	 ion	channel	and	Vrev	 is	 the	reversal	potential	of	 the	 ion.	The	

form	of	the	function	F	is	either	one	of	the	three	below.	

	

𝐹?(𝑥) =
𝑥

exp(𝑥) − 1	

𝐹D(𝑥) = exp	(𝑥)	

𝐹F(𝑥) =
1

1 + exp	(𝑥)	

	

For	 the	 potassium	 channels,	 the	 formalisms	 are	 the	 same,	 except	 that	 no	

inactivation	 components	 are	 included.	 The	 form	 of	 the	 function	 F	 and	 the	

parameters	for	a	and	b		for	the	individual	components	are	as	summarized	in	Table	

1	(top).	These	parameter	values	were	taken	from	Pospischil	et	al.	(Pospischil	et	al.,	

2008)	for	basic	membrane	properties,		from	Hodgkin	&	Huxley(Hodgkin	&	Huxley,	

1952)	for	sodium	and	delayed	rectifier	potassium	channels	and	from	Lien	&	Jonas	

(Lien	&	Jonas,	2003,	p.	3)	for	KV3	channel.		

Conductance	of	excitatory	and	inhibitory	synaptic	events	were	modeled	using	the	

ChemSyn	 model	 in	 StdpC,	 following	 the	 equations	 and	 parameters	 described	

below.		

	

𝐼 = 𝑔HIJ𝑆(𝑡)(𝑉HIJ − 𝑉(LHM(𝑡))	
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𝜏HIJ
𝑑𝑆(𝑡)
𝑑𝑡 =

𝑆OP𝑉(./(𝑡)Q − 𝑆(𝑡)
1 − 𝑆OP𝑉(./(𝑡)Q

	

𝑆OP𝑉(./(𝑡)Q = Rtanh ;
𝑉(./(𝑡) − 𝑉WX

𝑉HYL(/
= 	𝑖𝑓	𝑉(./(𝑡) > 𝑉WX

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
	

	

Parameters	for	excitatory	and	inhibitory	synapses	are	shown	in	Table	1	(middle).	

G_syn	for	EPSP	was	selected	so	that	it	evokes	an	action	potential	in	mINs	(Fig.	7),	

and	g_syn	and	τ_syn	for	IPSP	were	selected	to	ensure	strong	enough	suppression	

of	 target	 PN.	 The	 synaptic	 delay	 was	 set	 to	 1ms	 in	 all	 cases,	 and	 no	 synaptic	

plasticity	was	included	in	the	model.		

Table	1	Parameter	sets	for	neuron	models	
Parameter	sets	for	modelled	ionic	channels	(top),	synaptic	conductance	(middle)	and	synaptic	noise	
(bottom). 
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Disynaptic	mutual	inhibition	connections	

Establishment	of	a	mutual	inhibition	circuit	was	verified	as	follows.	Injection	of	a	

brief	 (1ms)	 depolarization	 current	 (1500~2000pA)	 to	 one	 of	 the	 pairs	 of	

pyramidal	neurons	evoked	an	action	potential	(red	and	blue	triangles	in	Fig.	7a),	

which	 triggered	 an	 excitatory	 synaptic	 conductance	 in	 the	 model	 inhibitory	

neuron.	This	synaptic	event	evoked	an	EPSP	in	the	inhibitory	neuron.	As	shown	in	

Fig.	7a,	when	gMax	was	set	to	10nS	or	higher,	the	EPSP	evoked	an	action	potential	

(red	and	blue	disks).	This	action	potential	in	the	inhibitory	neuron	triggered	an	

inhibitory	 synaptic	 conductance,	 which	was	 fed	 to	 the	 postsynaptic	 pyramidal	

neuron	as	an	injected	IPSC	via	the	amplifier,	giving	rise	to	a	corresponding	IPSP	

(blue	and	red	asterisks).	Fig.	7a	shows	that	an	action	potential	was	first	evoked	in	

the	pyramidal	neuron	1	(PN1)	and	the	pyramidal	neuron	2	(PN2)	received	an	IPSP.	

Later,	an	action	potential	was	evoked	in	PN2	that	resulted	in	an	IPSP	given	to	PN1,	

Fig.	7	Evoked	synaptic	events	modelled	by	dynamic	clamp	
a:	An	action	potential	in	PN1	(red	triangle)	evoked	EPSPs	in	the	partner	model	inhibitory	neuron	
(mIN1).	 The	 synaptic	 events	 in	 mIN1	 are	 shown	 with	 six	 different	 levels	 of	 model	 synaptic	
conductance.	With	the	higher	synaptic	strength,	the	EPSP	evoked	an	action	potential	in	mIN1	(red	
disks)	causing	evoked	IPSP	in	the	target	pyramidal	neuron,	PN2	(blue	asterisks).	When	the	synaptic	
strength	is	in	the	lower	range,	it	only	evoked	an	EPSP	without	an	action	potential	in	mIN1	(#)	and,	
hence,	without	an	IPSP	in	PN2.	Vice	versa	from	PN2	to	mIN2	and	PN1.	b:	The	activities	of	PNs	and	
mINs	during	bi-stable	activity. 
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illustrating	 that	 the	mutual	 inhibition	 circuit	was	 established	 between	 the	 two	

pyramidal	neurons	by	 this	 system.	As	 shown	 in	Fig.	7b,	 the	 inhibitory	neurons	

show	 trains	 of	 action	 potentials	 corresponding	 to	 the	 action	 potentials	 of	

presynaptic	pyramidal	neurons	during	bi-stable	activity.	

	

Bi-stable	activity	

Bi-stable	activity	 is	evoked	by	the	 following	protocol.	First,	before	the	dynamic	

clamp	mediated	model	circuit	is	switched	on,	depolarization	currents	that	evoke	

action	 potentials	 at	 approximately	 10	 Hz	 in	 the	 two	 neurons	 are	 determined	

separately.	Next,	the	model	circuit	is	switched	on	to	activate	the	mutual	inhibitory	

connection,	and	the	depolarization	currents	as	determined	above	are	injected.	In	

most	cases,	this	already	produces	bi-stable	activity	in	the	pair	(unless	one	of	the	

neurons	is	100%	dominant).	However,	every	neuron	has	different	firing	patterns,	

different	 degrees	 of	 responses	 to	 given	 synaptic	 inputs,	 and	 different	 sizes	 of	

action	potentials	(which	influence	the	strength	of	postsynaptic	events).	As	a	result,	

the	 bi-stable	 activity	 often	 does	 not	 show	 equal	 dominance	 between	 the	 two	

neurons	even	though	the	firing	rates	are	equivalent	between	them.	Therefore,	in	

the	case	that	it	is	necessary	to	find	the	current	pair	where	the	dominance	of	the	

two	neurons	are	approximately	equal	(50%	dominance	point),	 the	currents	are	

further	 adjusted	 by	 either	 increasing	 the	 current	 in	 the	 weaker	 neuron	 or	

decreasing	the	current	in	the	stronger	neuron.	

Dominance,	 dominance	 durations,	 and	 reversal	 rates	 were	 calculated	 using	

custom	Matlab	(MathWorks,	USA)	scripts.	Unlike	behavioral	studies,	 in	which	a	

dominant	 percept	 is	 indicated	 as	 a	 continuous	 signal	 (by	 button	 press),	 the	

dominance	 of	 a	 neuron	 is	 signaled	 by	 sustained	 repetitive	 firing	 of	 action	

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.05.26.113324doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.26.113324


	
	

33	

potentials.	Hence,	we	defined	 the	 “dominance	duration”	of	 a	neuron	as	 follows	

(illustrated	in	Fig.	8).	First,	a	continuous	firing	of	action	potentials	in	one	neuron	

until	an	action	potential	occurs	in	the	other	neuron	is	considered	as	a	tentative	

dominance	duration	of	the	neuron	(Fig.	8b).	Hence,	at	this	stage,	the	dominance	

durations	of	 the	 two	neurons	are	mutually	exclusive.	Note	 that	 there	are	 short		

dominance	durations	(blue	asterisks	for	PN2	and	red	asterisk	for	PN1).	There	are	

also	 a	 series	 of	 alternations	 of	 short	 dominance	 durations	 between	 the	 two	

neurons	 (green	 asterisks).	 Next,	 dominance	 durations	 shorter	 than	 250ms	 are	

eliminated	 (Fig.	 8c).	 This	 process	 results	 in	 short	 lags	 between	 the	 dominance	

durations	 (blue	 and	 red	 asterisks).	 The	 occurrence	 of	 the	 short	 lag	 is	 not	

Fig.	8 Computation	of	dominant	durations	
a:	A	part	of	a	recording	of	bi-stable	activity.	b:	First	step	computation	of	dominance	durations.	
Here,	continuous	firing	of	action	potentials	in	one	neuron	until	an	action	potential	occurs	in	the	
other	 neuron	 is	 considered	 as	 a	 tentative	 dominance	 duration	 of	 the	 first	 neuron.	Hence,	 the	
dominant	durations	of	the	two	neurons	are	mutually	exclusive.	Note	that	there	are	short	dominant	
durations	(blue	asterisks	for	PN2	and	red	asterisk	for	PN1).	There	are	also	series	of	alternations	
of	short	dominant	durations	between	the	two	neurons	(green	asterisks).	c:	Dominance	durations	
after	 choosing	 only	 long	 durations	 (longer	 than	 250	 ms).	 This	 process	 results	 in	 short	 lags	
between	the	dominance	durations	(blue	and	red	asterisks).	There	are	also	the	intervals	that	are	
not	assigned	to	either	of	the	neurons	corresponding	to	the	period	marked	with	green	asterisks	in	
b.	The	short	lags	are	not	considered	as	reversals	and,	hence,	the	previous	dominance	is	considered	
to	continue	(arrows).	d:	These	processes	result	in	the	final	dominance	durations	without	short	
durations.	And	the	periods	not	assigned	to	neither	of	the	neurons	are	assigned	as	“both	active”	
(bottom). 
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considered	 as	 reversal	 and,	 hence,	 the	 previous	 dominance	 is	 considered	 to	

continue	 (arrows).	 These	 processes	 result	 in	 the	 final	 dominance	 durations	

without	short	durations	(Fig.	8d).	Note	that	there	are	also	the	intervals	that	are	

not	assigned	to	either	of	 the	neurons	corresponding	to	the	period	marked	with	

green	 asterisks	 in	 Fig.	 8c.	 This	 is	 because	 alternating	 short	 durations	 occur	

between	 the	 two	neurons	during	 these	periods	 (Fig.	8c	green	asterisks).	These	

periods	are	assigned	as	“both	active”	(Fig.	8d	bottom).	Dominance	and	reversal	

rates	 were	 computed	 based	 on	 this	 definition	 of	 dominance	 durations.	

“Dominance”	of	a	neuron	is	defined	as	the	ratio	of	total	dominance	durations	of	

the	neuron	(sum	of	all	dominance	durations	of	the	neuron)	divided	by	the	sum	of	

the	 total	 dominance	 durations	 of	 both	 neurons.	 A	 reversal	 is	 defined	 as	 the	

dominance	switching	from	one	neuron	to	the	other,	regardless	of	the	presence	or	

absence	of	a	“both	active”	phase	during	the	switch.	

Special	attention	was	paid	to	the	recording	conditions.	If	the	following	criterion	

were	not	met,	the	recording	was	halted:	The	overshoot	of	action	potential	should	

be	 higher	 than	 10mV,	 and	 changes	 in	 the	 size	 of	 the	 action	 potential,	 in	 series	

resistance,	and	in	firing	rate	to	a	given	depolarization	current	should	be	less	than	

15%	during	data	collection.		

	

Analysis	of	adaptation	

Inter-spike	 intervals	 and	 the	 peaks	 of	 action	 potentials	 were	 estimated	 with	

custom	Matlab	scripts.	Upon	detection	of	action	potentials	 inter-spike	 intervals	

and	the	peaks	were	measured.	These	values	were	plotted	against	time	to	visualize	

the	progress	of	adaptation	within	individual	dominance	episodes	(Fig.	3a,	b).	To	

pool	the	data,	first,	the	time	from	the	onset	of	the	dominance	cycle	to	the	end	of	
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this	cycle	was	normalized	by	dividing	it	by	the	cycle’s	dominance	duration	(for	the	

individual	cycles	of	the	individual	pairs),	resulting	in	the	normalized	time	ranging	

from	0	to	1.	Second,	 inter-spike	 intervals	and	the	magnitude	of	action	potential	

peaks	 were	 normalized	 by	 the	 first	 values	 of	 the	 individual	 cycles.	 Third,	 the	

normalized	values	across	all	pairs	were	sorted	into	bins	of	size	0.01.	Finally,	the	

mean	and	standard	deviation	of	all	inter-spike	intervals	and	action	potential	peaks	

in	a	given	bin	were	plotted	against	 the	normalized	time	(Fig.	3c	and	3d).	As	an	

indicator	of	the	progress	of	adaptation,	inter-spike	intervals	(normalized	by	the	

mean	of	individual	pair)	was	plotted	over	time	from	the	onset	of	each	dominance	

cycle	and	linear	regression	was	applied	to	the	plot	(Fig.	9).		This	resulted	in	slope	

values	 that	 indicated	 the	 change	 of	 inter-spike	 intervals.	 To	 pool	 the	 data,	 the	

dominance	durations	of	 individual	pairs	were	normalized	by	their	mean	values	

and	the	slopes,	normalized	by	the	mean	values	of	individual	neurons,	were	plotted	

over	the	normalized	duration	(Fig.	3f).	

	

Effect	of	noise	

To	investigate	the	effect	of	noise	on	the	dynamics	of	bi-stable	activity,	synaptic	

background	 activity	 was	 simulated	 according	 to	 the	 model	 by	 Destexhe	 et	 al.	

Fig.	9	Linear	fitting	to	progress	of	inter-spike	interval	
a:	Inter-spike	intervals	of	an	example	shown	in	Fig.	2B.	b:	Linear	regression	(black)	of	inter-
spike	intervals	(orange	plot)	taken	from	the	first	cycle	of	PN1	(orange	asterisk	in	a)	plotted	
over	time	from	the	onset	of	its	dominance	duration. 
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(Destexhe	 et	 al.,	 2001).	 In	 their	 simulation,	 random	 walk-like	 fluctuations	 of	

membrane	 conductance	 were	 modeled	 by	 applying	 the	 Ornstein-Uhlenbeck	

model	 of	 Brownian	motion	 (Uhlenbeck	 &	 Ornstein,	 1930).	 Their	 formalism	 of	

synaptic	 noise	 was	 implemented	 in	 the	 StdpC	 dynamic	 clamp	 system.	 The	

evolution	of	the	simulated	synaptic	noise	depends	on	the	noise	time	constant	τ,	

which	controls	noise	color,	as	well	as	the	mean	gmean	and	standard	deviation	SDg	

of	the	noise,	and	is	modeled	as	follows:	

𝐼 = 𝑔(𝑡)(𝑉./0 − 𝑉)	

𝑔(𝑡 + ∆𝑡) = 𝑔$/%J + (𝑔(𝑡) − 𝑔$/%J)	𝑒
c∆Md + 	𝐴𝑟	

𝐴 =	fgd
D
h1 − 𝑒c

D∆M
d i	

Here,	r	is	a	pseudo-random	number	drawn	from	a	normal	distribution	with	mean	

0	and	standard	deviation	1,	and	the	noise	diffusion	coefficient	D	is	related	to	the	

noise	standard	deviation	as	follows:	

𝐷 = D	kglm
d

		

Excitatory	and	inhibitory	synaptic	noise	are	modeled	separately.	The	level	of	noise	

is	 expressed	 as	 the	 standard	 deviation	 SDg	 of	 the	 synaptic	 conductance	 and	

systematically	 manipulated,	 whereas	 the	 average	 conductance	 gmean,	 which	

functions	as	a	constant	current	offset,	remained	unchanged.	The	amount	of	noise	

given	to	mINs	was	larger	than	that	given	to	PNs	because	PNs	already	have	intrinsic	

synaptic	noise	(Fig.	4a)	from	their	presynaptic	neurons	within	the	brain	slice.	The	

standard	 parameter	 set	 (used	 as	 default	 unless	 mentioned	 otherwise)	 for	 the	

noise	is	shown	in	Table	1	(bottom).	
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In	the	experiments	 for	 the	effect	of	noise	 level	and	the	effect	of	activation	 level	

(below),	the	length	of	each	trial	was	200	sec	with	193.5	sec	long	depolarization	

current.	

	

Paradigms	equivalent	to	Levelt’s	experiments	

For	our	experiments	associated	with	the	classic	behavioral	experiments	of	Levelt	

(Levelt,	 1965),	 we	 systematically	 varied	 the	 strength	 of	 the	 sustained	

depolarization	 current	 into	one,	or	both,	of	 the	pyramidal	neurons.	Concerning	

Levelt’s	proposition	I	to	III,	only	one	of	the	two	currents	(randomly	selected)	was	

altered.	The	change	of	the	current	was	made	by	steps	of	10	or	20pA.		

In	 the	analyses,	 the	 current	 that	would	evoke	50%	dominance,	 called	 I50%,	was	

estimated	 by	 linear	 regression	 of	 dominance	 over	 the	 changing	 current.	 The	

change	 of	 the	 current	 is	 reported	with	 reference	 to	 this	 control	 current	 value,	

defined	as	follows.	

∆𝐼no%JL.$ =
𝐼 − 𝐼no%
𝐼no%

	

Hence,	in	the	plots	in	Fig.	5c	to	5h,	the	right	side	from	x=0	indicates	that	the	neuron	

that	received	the	changing	current	was	more	dominant	(stronger)	than	the	other	

neuron	and	the	left	side	indicates	the	former	being	weaker	than	the	latter.	Before	

pooling	the	data	(N=46)	for	average	durations,	average	dominance	durations	of	

individual	 trials	 were	 computed	 and	 were	 divided	 by	 the	 maximum	 average	

duration	within	 individual	 neuron.	 To	pool	 the	 data	 for	 the	 reversal	 rate,	 data	

were	normalized	by	the	maximum	reversal	rate	of	the	individual	pair	(Fig.	5h).		

Concerning	Levelt’s	proposition	IV,	both	currents	were	modified.	First,	a	current	

pair	that	evoked	a	10Hz	firing	rate	in	the	two	neurons	was	found.	If	necessary,	the	

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.05.26.113324doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.26.113324


	
	

38	

current	 was	 adjusted	 until	 the	 current	 pair	 evoked	 approximately	 50%	

dominance.	This	current	pair	was	considered	as	a	control	and	is	called	I10Hz	(it	is	

called	 as	 such	 for	 convenience	 although	 the	 current	 pair	 did	 not	 always	 evoke	

10Hz	firing).	Next,	in	one	of	the	two	neurons,	the	current	was	changed	with	10	or	

20pA	steps	and	the	current	for	the	other	neuron	was	changed	proportionally.	To	

pool	the	data,	the	change	of	the	current	is	reported	with	reference	to	I10Hz,	defined	

as	follows.	

∆𝐼?oXqJL.$ =
𝐼 − 𝐼?oXq
𝐼?oXq

	

To	pool	the	data	for	the	reversal	rate	(N=32),	data	were	normalized	by	the	reversal	

rate	of	the	individual	pair	when	the	control	current	pair	was	used	(Fig.	6c).		

To	make	the	bar	plots	of	the	pooled	data	(Fig.	5f	to	h,	right,	Fig.	6c	bottom),	the	

DI was	binned	and	the	values	in	the	individual	bins	were	averaged.	The	order	of	

trials	with	different	current	pairs	was	pseudo-randomly	chosen.		

For	 statistical	 analysis,	 repeated	 measures	 analysis	 of	 variance	 (ANOVA)	 was	

applied	using	SPSS	Statistics	(IBM,	USA).	Pairs	with	the	standard	noise	parameter	

set	for	the	experiment	of	noise	(N=15),	pairs	with	injected	current	of	I50%	in	Levelt	

I	 to	 III	 paradigms	 (N=46),	 and	 pairs	with	 injected	 current	 of	 I10Hz	 in	 Levelt	 IV	

paradigm	(N=32)	are	collectively	called	a	“control	pair”	and	statistical	analyses	

were	performed	on	these	93	pairs	 to	report	basic	properties	of	bi-stability	and	

adaptation.	Error	bars	in	the	plots	are	+/-	SEM.	

All	data	and	Matlab	codes	for	data	analyses	are	published	at	Radboud	University	

data	repository	site	with	URL	as	below.	

https://data.donders.ru.nl/collections/di/dcn/DAC_626810_0008_424?93	
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Supplemental	Information	

Fig.	S1	Examples	of	responses	of	average	durations	and	reversal	rate		

They	 are	 shown	 (in	 non-normalized	 absolute	 values)	 as	 responses	 to	 the	 change	 of	 the	

depolarization	current	to	one	of	the	pair	of	pyramidal	neurons	(red)	while	the	current	to	the	

other	 neurons	 was	 kept	 constant	 (blue).	 a-c:	 The	 example	 pairs	 where	 the	 reversal	 rates	

decreased	when	the	current	either	increased	or	decreased	from	the	control	value	(I50%).	d-f:	The	

examples	where	the	reversal	rates	increased	when	the	current	increased	from	the	control	value	

(I50%).	Note	that,	in	the	latter	case,	the	increase	of	the	average	durations	of	the	dominant	neuron	
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