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2 

Abstract 26 

Recent studies provided novel insights into the meso-scale organization of the brain, highlighting the co-27 
occurrence of different structures: classic assortative (modular), disassortative and core-periphery. 28 
However, the spectral properties of the brain meso-scale remain unexplored. To fill this knowledge gap, 29 
we investigated how this meso-scale structure is organized across the frequency domain. We analyzed the 30 
resting state activity of healthy participants with source-localized high-density electroencephalography 31 
signals. Then, we inferred the community structure using weighted stochastic block-modelling to capture 32 
the landscape of meso-scale structures across the frequency domain. Despite meso-scale modalities were 33 
mixed over the entire spectrum, we found a selective increase of disassortativity in the delta/theta bands, 34 
and of core-peripheriness in the low/high gamma bands. We observed, for the first time, that the brain at 35 
rest shows frequency-specific meso-scale organizations supporting spatially distributed and local 36 
information processing, shedding new light on how the brain coordinates information flow. 37 

  38 
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Introduction  39 

Functional connectivity (FC), i.e. the statistical association among neural signals of separate brain regions 40 
(1), has received a great deal of attention during the last years (2). FC has been widely recognized as a tool 41 
to investigate spatio-temporal properties of brain networks. These networks have been characterized at 42 
different levels of topological organization (3), ranging from local (single brain area or node) to global 43 
(whole-brain network) (4), through the intermediate level referred to as meso-scale (5). The single unit of 44 
the meso-scale architecture is a “community” (or module), which is composed by a set of nodes sharing 45 
similar connectivity patterns. Modules are crucial elements of FC network organization since they are 46 
essential to identify areas belonging to the same functional domain. Moreover, modules well describe 47 
network resilience and flexibility in response to external perturbation (as in the case of occurred cerebral 48 
lesions) and also they shape the information flow (6). To date, the meso-scale structure of the human brain 49 
has been extensively investigated by community detection algorithms prone to detect “assortative” (also 50 
defined as “modular”) meso-scale structure (5, 7, 8), for a review see (9). Briefly, in the assortative 51 
structure, the within-community densities are greater than the between-community densities. In other 52 
words, this structure facilitates information processing of segregated modules while the integration 53 
capability between them is reduced (10). 54 

Recently, non-assortative community interactions have been also described, such as the “disassortative” 55 
and the “core-periphery” (5). A disassortative structure is complementary to the assortative one . This is 56 
characterized by the connections between communities being greater than within communities, thus 57 
suggesting a strong flow of information between different modules. In the core-periphery structure, the 58 
nodes of a high-density core strongly interact with nodes of other periphery communities, which are 59 
characterized by poorly connected nodes. This structure thus allows an efficient broadcasting of information 60 
between core and peripheries (10). Importantly, it has been recently shown that these three classes (i.e. 61 
assortative, disassortative and core-periphery) may coexist in the brain, forming the so-called mixed meso-62 
scale structure (5, 9). Therefore, it is pivotal to detect the richness and diversity of meso-scale organization, 63 
without being constrained by the assortative one (5, 10). To this purpose, algorithms have been proposed 64 
in the literature (11), such as the Weighted Stochastic Block Model (12) (WSBM) able to capture the meso-65 
scale diversity. An important feature of WSBM is the exploitation of the stochastic equivalence principle, 66 
according to which the network nodes belonging to a given community have the same probability of being 67 
connected with all the remaining nodes of the network (12). The WSBM can detect other modalities of 68 
meso-scale modules interactions, beyond assortativity (5). Recent studies investigating human (5, 10, 13) 69 
and non-human networks (14, 15) made use of the WSBM method. In these investigations, human 70 
connectomes were derived with magnetic resonance imaging (MRI), using either functional (during both 71 
rest (5) and task (10)) or structural data (5, 13). In particular, it was observed that assortative communities 72 
dominate resting state FC with the co-existence of other non-assortative communities (10). Overall, these 73 
results indicated that brain networks are not characterized by a unique community structure. 74 

Motivated by the above findings, we aimed at investigating whether resting state FC meso-scale structures 75 
can exhibit a more diverse and richer organization when using non-invasive electrophysiological 76 
techniques. Notably, high-density electroencephalography (hdEEG) provides a unique opportunity to 77 
capture the richness of neuronal oscillations’ spectral content (16). HdEEG was recently employed to 78 
reconstruct and unravel novel features of human brain activity during resting state in health (17-19) and 79 
disease (20-23). By coupling hdEEG recordings with appropriately built head model conductors and with 80 
source reconstruction algorithms, it is possible to achieve neural source reconstruction with relatively good 81 
spatial resolution (24) (in the order of less than 1 cm). This permitted the estimation of large-scale resting 82 
state networks that spatially overlap with those obtained with functional MRI (fMRI) (18) and 83 
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magnetoencephalography (MEG) (25). Thus, we posit that describing the time-frequency features of FC 84 
meso-scale architecture estimated from source-localized hdEEG recordings will have important 85 
implications to highlight novel properties of the human brain at rest (26-28).  86 

With this aim, we here exploited the peculiar features of hdEEG-based source imaging, to identify modules 87 
of spontaneous oscillatory activity. Specifically, we tested whether the meso-scale structure is frequency-88 
dependent. In other terms, we examined if assortative, disassortative and core-periphery modalities are 89 
tuned onto a specific frequency or they are equally distributed over the frequency domain. To address these 90 
questions, we applied the WSBM to FC adjacency matrices estimated from source-localized hdEEG 91 
recordings of healthy participants (17, 18, 29). We first selected the best number of communities to perform 92 
WSBM community detection with a data-driven approach. Then, we defined the cortical and sub-cortical 93 
spatial distribution of modules in both time and frequency domains, respectively, and we finally described 94 
the assortative, disassortative and core-periphery community interactions across frequency bands. Thus, we 95 
observed that the brain at rest relies on peculiar topological meso-scale organization supporting spatially 96 
distributed and local information processing. Our results improve and extend the knowledge of resting state 97 
meso-scale organization and the way in which the brain propagates the information, leveraging the 98 
frequency-specific variability of the meso-scale structure. 99 

 100 

Results 101 

In this study, we reconstructed neural sources per each participant and we then mapped them onto 384 102 
regions of interest (ROIs) of the AICHA atlas (30). This procedure defined the nodes for the subsequent 103 
meso-scale structure investigation. We then extracted the FC adjacency matrices and applied the WSBM. 104 
We investigated the organization of the meso-scale structure across time (i.e. full bandwidth) and 105 
frequencies. When presenting the results, we localized the wavelet carrier frequencies (i.e. 2, 4, 8, 16, 32 106 
and 64 Hz) to the corresponding EEG spectral bands, as in our previous work (29), where the bands are 107 
defined as delta (δ, 1-4 Hz), theta (θ, 4-8 Hz), alpha (α, 8-13 Hz), beta (β, 13-30 Hz), and gamma (γ, 30-80 108 
Hz). 109 

Identification of meso-scale communities 110 

To evaluate the clustering performance, we used the Normalized Variation of Information (NVI), which 111 
identify a good clustering performance with values near to zero (31). Searching for a good clustering, we 112 
made experiments with a variable number of cluster K, ranging from 2 to 16 and we observed (see Figure 113 
1) that only with less than 6 clusters the clustering performance was good (0.0079 ± 0.0023, 0.011 ± 0.0036, 114 
0.014 ± 0.012, and 0.015 ± 0.0059, mean ± SD, for K=2,..,5 respectively). We excluded K = 2 from the 115 
range of possible solutions because for this value we could only had one community interaction, preventing 116 
us from investigating the meso-scale richness. With K = 4 communities, some fits terminated in different 117 
local maxima (see light-blue lines in Figure 1a and red crosses in Figure 1b) leading to a higher degree of 118 
variability than K = 3 and K = 5. Instead, for K ≥ 6, the NVI values increased sharply, suggesting that 119 
greater K-values were not worth being considered.  120 
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 121 

Fig. 1. Parameter selection conducted by means of Normalized Variation of Information (NVI). a Pairwise 122 
comparisons of all the 200 fits from K = 2 until K = 16. Dark blue and yellow elements indicate respectively a pair of 123 
fits showing a good (low NVI) and weak (high NVI) clustering performance, as indicated by the colorbar. Self-fit 124 
comparisons are depicted in white. Note that all the matrices are symmetric. b Distributions of the NVI values obtained 125 
by averaging the matrices containing the fits’ pairwise comparisons depicted in panel a. Boxplots’ upper and lower 126 
boundary exhibited 25th and 75th percentile, respectively. Data points (black dots) are overlaid over boxplots. Green 127 
diamonds and red lines indicates mean and median value of the distributions, respectively. Red crosses indicate 128 
outliers. 129 

Despite the fact that the optimization problem was non-convex, the WSBM converged almost always to the 130 
same solution for K-values smaller than 6, as shown by the small variability of the NVI (see boxplots in 131 
Figure 1B). For those values, the variance of the data was small when compared to the variance for the 132 
higher values of K ≥ 6 (Figure 1b). The reached local maxima were not consistent for higher K values, 133 
suggesting that the algorithm struggled to get similar results across trials. Thus, the assessment of the 134 
clustering performance suggested to partition the resting state activity with the K-values for which the NVI 135 
was closer to zero. Among these values, we selected K = 5 as Kbest because: i) it offered a good compromise 136 
between the granularity of FC network parcellation and reliable clustering performance; ii) it was consistent 137 
with similar choices made in recent fMRI literature of WSBM applied to human connectome datasets (5, 138 
10). To check whether the clustering performance showed a consistent behavior across K-values, we also 139 
calculated other performance parameters: the Adjusted Rand Index (32) (ARI) and the Normalized Mutual 140 
Information (31) (NMI) (see Methods) that both led to the same outcome (Supplementary Figure S1 and 141 
Supplementary Figure S2). 142 

Meso-scale connectivity structure in time domain  143 

The original full bandwidth adjacency matrix (𝐴𝐷𝐽𝑇, where the superscript T refers to time domain, see 144 
Methods and Figure 2, panel a1) was reordered based on the WSBM community assignment (with kbest = 145 
5, see Figure 2, panel a2), which was then overlaid onto the T1-weighted template (see Figure 2b) to better 146 
appreciate its spatial distribution (see Methods for details about the computation of best community 147 
assignment). The first community (purple cluster) showed a medial and lateral spatially distributed pattern.  148 
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 149 

Fig. 2. Community assignment at Kbest = 5 for the group-representative matrix in the time domain. a1 Adjacency 150 
matrix prior to community detection (nodes of the AICHA atlas, N = 384 × 384). First 192 and last 192 nodes indicated 151 
left and right hemisphere, respectively. The colorbar represents connection strength mapped onto the interval [-1, +1], 152 
see Methods. a2 Reordered adjacency matrix according to the best community assignment after WSBM estimation. 153 
Colored rectangles on the left side of the adjacency matrix represent the 5 resulting clusters. b Spatial distribution of 154 
the best estimated communities, cluster colors as in a2.  155 

Despite its intrinsic variability, it can be roughly associated with an executive function as it largely covers 156 
the left frontal lobe. As the first, also the second community (dark gray cluster) exhibited a complex spatial 157 
distribution. In this case, the left areas clustered predominantly in parieto-temporo-occipital (PTO) cortex 158 
while the right areas in frontal lobe. On the other hand, the remaining three clusters presented a compact 159 
spatial localization (in particular in the medial areas). We assigned them to three separate functional 160 
domains: mostly sensorimotor (bilateral motor and sensory cortices encompassing also the right temporal 161 
lobe, green cluster), limbic (medial temporal lobe and cingulate gyrus, yellow cluster) and visual (occipital 162 
lobe, red cluster). However, the latter approximately spanned other cortical areas, until the frontal and left 163 
temporal lobe and this occipital-fronto-temporal gradient resembled the ventral and dorsal streams linked 164 
to visual stimuli processing. Then, we investigated the between-community interactions across participants, 165 
calculating the percentage of assortative, disassortative and core-periphery motifs in the time domain. We 166 
found a significant effect of the meso-scale classes (Kruskal-Wallis test, p < 0.0001, see Figure 3a).  167 
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 168 

Fig. 3. Organization of the meso-scale structure in the time domain. a Boxplots representing distribution of the 169 
meso-scale classes across participants. Magenta: assortative; green: disassortative; gray: core-periphery. Boxplots 170 
show upper and lower bound of the distributions at 25th and 75th percentile. Whiskers indicate the 1st and 99th 171 
percentile. The black horizontal lines represent the median, while the small colored squares indicate the mean of the 172 
distributions. N.S. indicates non-statistically significant comparison as revealed by post-hoc comparison of mean 173 
ranks. b Mean community classes across participants: assortative (top), disassortative (middle) and core-periphery 174 
(bottom). The colorbar is kept fixed to the minimum and maximum values across the meso-scale modalities. See 175 
Figure S3 in the Supplementary Materials where the same plot is showed with a different colorbar for each meso-scale 176 
interaction. 177 

Furthermore, the post-hoc test for multiple comparisons showed a significant increment of the assortative 178 
with respect to both disassortative and core-periphery structure (p < 0.0001 in both cases, see Figure 3a). 179 
Instead, there was no significant difference between the disassortative and core-periphery class (p = 0.067, 180 
see Figure 3a). This can be observed also in Figure 3b (and Figure S3 in Supplementary Materials) where 181 
we overlaid the percentages of the three modalities onto the T1-weighted template. As expected, we 182 
observed that the meso-scale spatial organization of the source-level time courses reflected the behavior 183 
depicted in Figure 3a. In fact, there was a clear whole-brain predominance of the assortative structure (see 184 
Figure 3b). Brain regions which showed the greatest assortativity level were located in bilateral medial and 185 
lateral prefrontal cortices as well as in the occipital lobe visual areas (yellow and red regions, top row 186 
Supplementary Figure S3). These were the areas with low disassortative interaction (blue-light blue regions, 187 
middle row Supplementary Figure S3). Conversely, the areas showing higher level of disassortativity are 188 
medial areas such as the posterior cingulate cortex together with the sensorimotor and temporal cortex. 189 
Furthermore, the areas exhibiting the greatest level of core-periphery structure were focally localized in the 190 
PTO cortex (yellow and orange regions, bottom row Supplementary Figure S3). 191 

 192 

Frequency analysis of meso-scale connectivity structure 193 

We examined the community assignments across the six carrier frequencies considered (𝐴𝐷𝐽𝐹(𝑓), where 194 
the superscript F refers to frequency domain and f are the wavelets’ carrier frequencies, see Methods). As 195 
for the delta band (see Figure 4, panel a1), we obtained an association cluster, almost entirely located in the 196 
right hemisphere (corresponding roughly to somatic areas, and association PTO cortex, purple). Another 197 
lateralized cluster was obtained in the left hemisphere, putatively associated with executive functions 198 
(frontal and temporal lobe, dark gray). Finally, we obtained a “limbic” cluster, related to phylogenetically 199 
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old regions (medial areas in both hemisphere, orbito-fontal cortex, green cluster). The remaining two 200 
clusters were spanning several areas (the primary and premotor cortices bilaterally and parietal lobe, yellow 201 
and red clusters). 202 

 203 

Fig. 4. Organization of the meso-scale structure in the frequency domain. Each row represents the best community 204 
assignments (Kbest = 5) in each of the considered carrier frequency: 2 Hz (a1), 4 Hz (a2), 8 Hz (a3), 16 Hz (a4), 32 Hz 205 
(a5), 64 Hz (a6). Each row contains the re-ordered group-representative adjacency matrix after WSBM estimation 206 
and spatial distribution of partitions across the brain. Colors on left side of each adjacency matrix match with the 207 
colors overlaid on the brain. 208 

As for the theta oscillations (see Figure 4, panel a2), the block-modelling partitioning associated brain areas 209 
in the medial orbito-frontal cortex (purple), in the parietal lobe and posterior cingulate cortex (PCC) 210 
(“sensory association” cluster, dark gray), in the visual areas (primary and higher order visual cortices, 211 
green), in the frontal and parietal lobes (a “mixed” cluster, yellow) and in the frontal and temporal cortices 212 
(red cluster). 213 

As for the alpha rhythm (see Figure 4, panel a3), the generated cluster were approximately the left temporal 214 
and frontal lobe (purple), the sensory multimodal regions (primary and secondary visual cortices and the 215 
associated dorsal stream, dark gray), the right and left premotor areas (green), the limbic structures (yellow) 216 
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and the right PTO cortex (red). The latter cluster, roughly recalled the association cluster of the lower delta 217 
oscillations.  218 

As for the beta band (see Figure 4, panel a4), the clusters covered bilateral premotor and prefrontal cortices 219 
(purple and dark gray), and mixed areas, with a cluster spanning the dorsal areas in the parietal lobe (green), 220 
bilateral temporal lobes (mainly right) and left prefrontal association cortex (yellow), PTO and cingulate 221 
cortices (red). 222 

As for the low gamma oscillations (see Figure 4, panel a5), the clustering showed two sensory partitions: 223 
one that mainly gathered the primary and secondary somatosensory areas in the parietal lobe (purple) and 224 
the posterior parietal cortex (dark gray). Other clusters correspond to the executive cluster (motor and 225 
prefrontal cortex, green), the limbic cluster (yellow) and the visual cluster (red). 226 

Finally, as for the high gamma rhythm (see Figure 4, panel a6), a parietal and cingulate cortex cluster 227 
emerged (purple) together with a “sensori-motor” cluster (bilateral sensorimotor cortices, expanding to left 228 
temporal lobe, dark gray). A third cluster was located in the occipital lobe (green). Lastly, we found two 229 
clusters (yellow and red) predominantly encompassing limbic areas, as well as orbito-frontal and prefrontal 230 
cortex.  231 

Overall, for brain areas close to the midline, we found more symmetric spatial distribution of clusters than 232 
in the laterally located areas. Indeed, when moving towards more lateral regions, the clusters spatial pattern 233 
became more complex than the one observed in medial areas. Furthermore, we found that higher rhythms 234 
were more likely characterized by functionally distinct clusters than lower frequencies.  235 

Community structure in the frequency domain is diverse and non-assortative 236 

To answer the question whether meso-scale structure is frequency-specific, we investigated possible 237 
differences among the six carrier frequencies considering all three community classes (i.e. assortative, 238 
disassortative, core-periphery). For the assortative class, we did not find any significant difference across 239 
the six bands (p = 0.083), suggesting that the assortative structure is homogeneously distributed across 240 
frequency bands (see Figure 5a). Instead, we had a statistically significant effect concerning the 241 
disassortative and core-periphery structure (for both, p < 0.0001), as revealed by non-parametric testing. 242 
Specifically, modules of spontaneous activity interacted in a more disassortative manner in the delta and 243 
low theta bands (2 Hz, 4 Hz) than the beta and gamma bands (32 Hz, 64 Hz), see Figure 5a and 244 
Supplementary Table 1. In addition, a further decrease, albeit weakly significant (p = 0.045, see 245 
Supplementary Table 1), of the low beta (16 Hz) with respect to gamma band (64 Hz) existed. On the other 246 
hand, when considering the core-periphery structure, the beta and gamma rhythms (16 Hz, 32 Hz, 64 Hz) 247 
showed an increase with respect to the delta and theta rhythms (2 Hz, 4 Hz), see Figure 5a and 248 
Supplementary Table 2. We additionally found another weakly significant increase of core-periphery 249 
community interactions between 2 Hz and 8 Hz (p = 0.042, see Supplementary Table 2).  250 
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 251 

Fig. 5. Organization of the meso-scale structure in the time-frequency domain. a Boxplots representing 252 
distributions across participants of the three meso-scale classes for each carrier frequency. Magenta: assortative; green: 253 
disassortative; gray: core-periphery. Boxplots show upper and lower bound of the distributions at 25th and 75th 254 
percentile. Whiskers indicate the 1st and 99th percentile. The black horizontal lines represent the median, while the 255 
small colored squares indicate the mean of the distributions. Statistical analysis for multiple comparisons across carrier 256 
frequencies of the depicted data is reported in Table 1 and Table 2 in the Supplementary Materials. b Median values 257 
of each meso-scale structure distributions (black horizontal lines in a) across frequency bands. 258 

Overall, we observed complementary trends along the entire range of oscillatory rhythms (i.e. delta and 259 
theta vs. gamma). Specifically, for increasing frequencies we found respectively a decreasing disassortative 260 
and an increasing core-periphery trend (see Figure 5b). This phenomenon was not observed for low 261 
frequencies (i.e. alpha). Finally, we averaged across participants the total amount of meso-scale modalities 262 
and we then overlaid these values onto the T1-weighted template (see Figure 6). We observed that the core-263 
periphery structure was predominant starting from alpha/beta bands and peaking in low and high gamma 264 
bands. The prefrontal and PTO areas showed the highest degree of core-periphery (see Figure 6 and 265 
Supplementary Figure S4) and this was true also when progressively moving towards higher-frequency 266 
oscillations. In addition, the medial areas belonging to limbic system showed a low degree of core-periphery 267 
in the higher rhythms. When considering the lowest delta/theta bands the core-periphery pattern decreased 268 
its overall amount. This decrease in core-periphery organization corresponded to an emerging role of the 269 
disassortative structure. Despite this increase, the amount of disassortative and core-periphery was still 270 
comparable. Concerning the disassortative structure, there was a spatial gradient increasing from anterior-271 
medial to posterior areas emerging in the alpha and beta band. Instead, the opposite gradient (i.e. increasing 272 
in posterior-anterior direction) was found for the core-periphery structure, in the same bands.  273 
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 274 

Fig. 6. Mean community classes across participants in the frequency domain. Each column indicates the meso-275 
scale class (assortative, disassortative, core-periphery) while each row indicates the carrier frequency (2 Hz, 4 Hz, 8 276 
Hz, 16 Hz, 32 Hz, 64 Hz). The colorbar is kept fixed to the minimum and maximum values across the meso-scale 277 
modalities. See Figure S4 in the Supplementary Materials where the same plot is showed with colorbar customized 278 
between minimum and maximum values within each meso-scale modality. 279 

 280 

Discussion 281 

To date, the features of human brain meso-scale structure during resting state have not been fully explored. 282 
Specifically, the meso-scale spectral fingerprints are still unknown and evidences about how the diversity 283 
of meso-scale structure (i.e. assortative, disassortative and core-periphery) organizes over the frequency 284 
spectrum are missing. Thus, we aimed at filling this knowledge gap, by using WSBM to infer the richness 285 
of the latent community structure estimated from source-reconstructed hdEEG signals. We indeed described 286 
the spatial distribution of communities and their interactions across time and frequency domains. Our 287 
analysis showed that the meso-scale is characterized by a frequency-specific organization. We highlighted 288 
that community structure in the frequency domain is characterized by a high level of non-assortativity. 289 
Finally, we found that association areas exhibited the highest degree of integration, as revealed by the high 290 
incidence of core-periphery structure for those areas. 291 
 292 
Parameter selection in the time domain 293 

To the best of our knowledge, no previous hdEEG study has been conducted to investigate WSBM 294 
community detection. We thus shaped our analysis on an already published procedure on Blood 295 
Oxygenation Level Dependent (BOLD) signals oscillations, where the authors fitted the WSBM to group-296 
representative adjacency matrix (5). Thus, we performed the parameter selection procedure in the time 297 
domain and we kept the chosen best K in the frequency domain to compare the community detection results 298 
in different frequency bands. One may argue that the time domain is affected by the problem of volume 299 
conduction (33). However, many approaches have been proposed to attenuate such effect for 300 
electrophysiological recordings (for a review, see (34)). Among all, we applied spatial filtering during 301 
sources reconstruction, which mitigates the negative effects of volume conduction on FC (34). Indeed, we 302 
employed spatial filtering for the analysis in the time domain, whereas, for spectral analysis, we combined 303 
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both spatial filtering and the method of power spectra orthogonalization (27), which has been largely 304 
accepted and validated (35) even by recent studies employing both low and high density montages (17, 26, 305 
29, 36). Moreover, time domain analysis is a valid tool to estimate the Kbest and for the further comparisons 306 
of the meso-scale structure in the frequency domain, because the time-courses of source-reconstructed 307 
hdEEG signals contain all the neuronal oscillations of interest, that are then band-pass filtered during 308 
spectral analysis.  309 

According to the above, we performed parameter selection in the time domain. The goal of parameter 310 
selection in a community detection problem is to find models which have to be simultaneously simple and 311 
good at describing the system (11). We thus aimed at identifying a fine grain parcellation while maintaining 312 
a steady clustering performance, as indicated by low NVI value. We therefore selected Kbest = 5. Indeed, 313 
higher number of modules (i.e. K ≥ 6) showed weak reliability of the clustering performance, which may 314 
have led to the calculation of a non-representative community assignment. Finally, the same number of 315 
communities was employed to describe meso-scale organization with other neuroimaging datasets (5). 316 

Meso-scale structure has frequency-dependent fingerprints 317 

By relying on the spectral richness of hdEEG recordings, we could investigate how meso-scale and the 318 
related way to route information within the FC network, is organized across frequency bands. According 319 
to our results, the meso-scale structure clearly indicates a frequency-dependent behavior. Indeed, when 320 
increasing the neuronal oscillation frequency from delta to high gamma, the core-periphery structure 321 
increased, showing greater values in the gamma band. Conversely, the disassortative structure showed an 322 
opposite trend when compared to core-periphery, as disassortative organization exhibited high values in 323 
delta and theta rhythms. In addition, the assortative structure was uniformly distributed across the spectrum 324 
and did not show any particular trend. Thus, in the low frequency bands, characterized by long-range 325 
communication (37), information is exchanged across long-distances. This behavior is, in our opinion, well-326 
expressed by the disassortative structure which is significantly higher in delta and theta when compared to 327 
the other frequencies, thus favoring high information flow between distinct modules (10). Therefore, we 328 
can consider the disassortative structure as a meso-scale fingerprint of the long-distance and slow 329 
oscillations. However, in these low rhythms even the core-periphery structure is comparable with the 330 
disassortative one, suggesting a ‘hybrid’ communication mechanism during resting state. Moreover, at low 331 
frequencies, the clustering in separate and functionally distinct areas is less clear than the higher frequency 332 
bands, because these oscillatory regimens are characterized by long-range interactions (37) which require 333 
communication among several different areas. On the other hand, by increasing the oscillatory frequency 334 
(from delta to low and high gamma band) we encountered not only an increase of the core-periphery meso-335 
scale structure, but also a clearer subdivision in functional clusters with respect to the low and mid-low 336 
bands (see Figure 4) that, in turn, may reflect a local processing of information. In fact, gamma oscillations 337 
might represent a rhythmic synaptic inhibition mediated by parvalbumin-expressing inhibitory interneurons 338 
and the interconnected pyramidal neurons (38-40). Gamma-oscillations might thus resemble a local 339 
processing of coactive functional areas. Indeed, these functional areas are approximately grouped in the 340 
five modules emerging at 32 and 64 Hz: sensory associative, somatomotor, executive, limbic and visual. 341 
Other studies showed that neuronal oscillations in the gamma band reflect not only a local processing, but 342 
also synchronization across long-distance areas (38, 41). From this perspective, the core-periphery structure 343 
might be a good candidate to support this “dual property” of gamma oscillations: the dense core represents 344 
the local processing, while the numerous interactions between the core and the nodes located in the 345 
peripheries may indicate the presence of the long-distance connections that are also typical of gamma 346 
oscillations (39). In summary, we provided evidence supporting the concept that non-assortative structures 347 
reflect how information is processed in the delta/theta (disassortative) and gamma (core-periphery) bands. 348 
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Furthermore, despite the considerable amount of disassortative and core-periphery structures at specific 349 
frequencies, we must recall that a certain degree (around 20 % of median values) of assortative structure is 350 
still present and uniformly distributed across the frequency spectrum. According to previous fMRI studies, 351 
the brain presents a mixed meso-scale organization, but the network dominantly exhibits 352 
modular/assortative meso-scale structures, specifically during resting state (5, 10) and, to a lesser extent, 353 
during cognitive tasks (10). Our hdEEG analysis showed that the meso-scale assortative structure is 354 
predominant in the time domain, thus confirming previous findings (see Figure 3). Instead, in the frequency 355 
domain the amount of assortative modules was reduced, and a clear non-assortative organization emerged.  356 

Association cortex underlie core-periphery structures 357 

We observed a whole-brain high incidence of core-periphery structure towards the higher-frequency bands, 358 
starting from alpha oscillations. In this overall level of increased core-peripheriness, high-order association 359 
areas belonging to prefrontal and PTO cortices emerged among others. High levels of non-assortativity 360 
have been linked to association areas using fMRI (10). We found that, when decreasing the carrier 361 
frequency, the meso-scale organization changed: there was still a considerable amount of core-periphery, 362 
but the disassortative structure increased, exhibiting a spatially distributed gradient in the middle bands (i.e. 363 
alpha, beta) from posterior to anterior cortices. On the other hand, the prefrontal cortices were strongly 364 
core-periphery. When the frequencies are further decreased, in delta and theta bands, we had the steepest 365 
decrease of core-periphery, favoring an increasing of the disassortative structure (particularly in the medial 366 
frontal and temporal areas) that might underlie spatially distributed information processing (see above). 367 
Overall, the regions selectively exhibited a frequency-specific behavior, in particular when comparing low 368 
(delta/theta) and high rhythms (gamma). Association areas such as PTO showed high degree of core-369 
peripheriness across frequency bands, corroborating the integrative role of this meso-scale modality. On 370 
the other hand, medial frontal areas exhibited both high degree of core-periphery in the higher bands while 371 
higher level of disassortativity in the lower bands. We therefore posit that the same regions might employ 372 
a specific frequency to route information, underlying a frequency-dependent meso-scale organization that 373 
is also linked to the cortical and subcortical spatial distribution. 374 

Our analysis allowed, for the first time, to observe WSBM-estimated meso-scale organization with a 375 
different focus: by investigating FC in different frequency bands, we captured peculiar features of module 376 
interactions revealing the non-assortative nature of resting state networks, demonstrating its frequency-377 
specificity. Furthermore, this study demonstrated that WSBM applied to sources-level neuronal oscillations 378 
is an effective tool to explore yet unknown properties of FC topological organization. 379 

Overall, these results may be taken into consideration for future studies that will address the 380 
pathophysiological mechanisms underlying neurological/psychiatric disorders (16, 42). It would indeed be 381 
crucial to examine how the presence of a neurological disease can affect the meso-scale structure and 382 
whether and how a neurorehabilitation program can impact the re-organization of brain networks and the 383 
interactions among communities. This will have a direct  impact in the clinical assessment of sensory, motor 384 
and cognitive functions, being EEG acquisitions widely employed in the clinical setting. Collectively, the 385 
results of our study increase the knowledge of human brain meso-scale organization and of communication 386 
modalities between brain networks, which is still an open topic in network neuroscience (6). 387 

 388 

  389 
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Materials and Methods 390 

Participants 391 

We recruited 32 healthy volunteers (29.6 ± 4.5 years, mean ± SD, 17 females). To be included, the 392 
participants had: a) to be right-handed according to the Edinburgh inventory (43); b) to be without 393 
neurological or psychiatric disorders; c) to have normal or corrected-to-normal vision; d) to be free of 394 
psychotropic and/or vasoactive medication. Prior to the experimental procedure, all participants provided 395 
written informed consent. The study, which was in line with the standard of the Declaration of Helsinki, 396 
was approved by the local ethical committee (CER Liguria Ref. 1293 of September 12th, 2018). 397 

 398 

Resting state hdEEG recording and MRI acquisition 399 

HdEEG signals were recorded using a 128-channel amplifier (ActiCHamp, Brain Products, Germany) while 400 
participants were comfortably sitting with their eyes open fixating on a white cross on a black screen for 401 
five minutes. Participants were required to relax as much as possible and to fixate on the cross, located in 402 
the middle of a screen in front of them. The experiment was performed according to the approved 403 
guidelines, in a quiet, air-conditioned laboratory with soft natural light. HdEEG signals were collected at 404 
1000 Hz sampling frequency, using the electrode FCz (over the vertex) as physical reference electrode. The 405 
horizontal and vertical electrooculograms (EOG) were collected from the right eye for further identification 406 
and removal of ocular-related artifacts. Prior to resting state hdEEG recordings, the three-dimensional 407 
locations of the 128 electrodes on the scalp were collected with either infrared color-enhanced 3D scanner 408 
(44) or Xensor digitizier (ANT Neuro, The Netherlands). To build each participant’s high-resolution head 409 
model, the participants underwent T1-weighted MRI acquisition using either a 3 T (N = 28) or a 1.5 T (N 410 
= 4) scanner (see Suppl. Materials for details about acquisition parameters).  411 

 412 

Pre-processing of hdEEG recordings 413 

HdEEG preprocessing was performed according to the same steps described in previous works (17, 18). 414 
Briefly, we first attenuated the power noise in the EEG channels by using a notch filter centered at 50 Hz. 415 
Later, we identified channels with low signal to noise ratio by following an automatic procedure. We 416 
combined information from two channel-specific parameters: i) the minimum Pearson correlation between 417 
a channel against all the others in the frequency band of interest (i.e. 0.5-100 Hz); ii) the noise variance that 418 
we defined in a band where the EEG information is negligible (i.e. 200-250 Hz). We defined a channel as 419 
“bad”, whenever one of the two parameters described above were outliers as compared to the total 420 
distribution of values. We interpolated the identified bad channels with the information of the neighboring 421 
channels, using Field Trip (http://www.fieldtriptoolbox.org/). Then, hdEEG signals were band pass filtered 422 
(0.5-100 Hz) with a zero-phase distortion FIR filter and downsampled to 250 Hz. To further reduce noise 423 
in our data, we employed the fast-ICA algorithm (http://research.ics.aalto.fi/ica/fastica/) to identify 424 
independent components related to ocular and movement artifacts. To classify the ocular artifacts we used 425 
the following parameters: i) Pearson correlation between the power of the independent components and the 426 
vertical and horizontal EOG; ii) the coefficient of determination obtained by fitting the independent 427 
component (IC) spectrum with a 1/f function. We classified the IC as ocular artifacts if at least one of the 428 
two parameters was above a pre-defined thresholds (0.2 and 0.5, as in (18)). Finally, for movement-related 429 
artifacts, we used the kurtosis of the independent component (we considered a kurtosis exceeding the value 430 
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of 20 (18) indicated a noisy IC). We re-referenced the artifacts-free signals with the average reference 431 
approach (45). 432 

 433 

Head model of volume conduction and source reconstruction 434 

We followed the same procedure as detailed in (29). Briefly, we used T1-weighted structural images in 435 
order to generate a realistic volume conductor model. In accordance with previous studies (17, 18), we 436 
assigned conductivity values to 12 tissue classes (skin, eyes, muscle, fat, spongy bone, compact bone, gray 437 
matter, cerebellar gray matter, white matter, cerebellar white matter, cerebrospinal fluid and brainstem), 438 
based on the literature  (see Liu et al. (18) for the conductivity values assigned per each tissue class). Then, 439 
given the intrinsic difficulty in segmenting all the 12 classes directly on the T1-weighted individual space, 440 
we warped the MNI (Montreal Neurological Institute) template to individual space using the normalization 441 
tool of SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12), as reported in Liu et al. (18). Then, we 442 
spatially co-registered the 128 electrodes positions onto each individual T1-weighted space. We 443 
approximated the volume conduction model using a finite element method (FEM) and, to estimate the 444 
relationship between the measured scalp potentials and the dipoles corresponding to brain sources, we 445 
employed the Simbio FEM method (https://www.mrt.uni-jena.de/simbio/). Finally, by combining the 446 
individual head model conductor and the artifacts-free hdEEG signals, we reconstructed source activity 447 
using the eLORETA (46) algorithm. Sources were constrained within a 6 mm regular grid covering the 448 
cerebral gray matter. Thus, we reconstructed the sources (voxels) per each participant and we then mapped 449 
the voxels time courses into 384 regions of interest (ROIs) of the AICHA atlas (30). This procedure defines 450 
the nodes for the subsequent meso-scale structure investigation. We estimated the activity of each ROI 451 
employing the first principal component of the voxels falling within a sphere centered in the ROI center of 452 
mass and with 6 mm radius. 453 

 454 

Spectral analysis 455 

We implemented time-frequency analysis by convolving the ROIs signals (𝑋𝑖(t), with i = 1. . N) with 456 

Generalized Morse Wavelets (GMW), described in (47). This wavelet superfamily guarantees, under certain 457 
parametrizations, a strict analytic behavior and therefore is appropriate for accurate time-frequency 458 
analysis. The GMW is defined, in the frequency domain, as: 459 

𝜓𝛽,𝛾(𝑓) = 𝑎𝛽,𝛾𝑓𝛽𝑒−𝑓𝛾
 460 

Where, 𝑎𝛽,𝛾 = 2(𝑒 𝛾 𝛽⁄ )
𝛽

𝛾⁄
 is a normalizing constant, 𝑓 are the carrier frequencies of the wavelet, and β 461 

and γ are the two parameters controlling the wavelet shape. As suggested in (47), a choice of γ = 3, 462 
guarantees the most symmetric, most nearly Gaussian, and generally most frequency concentrated member 463 
of the GMW superfamily. In this work, we thus set γ = 3.00 and β = 11.33 to capture the essential idea of 464 
the widely used Morlet wavelet (27), while avoiding aliasing for specific parameter choices (47). We used 465 

23 carrier frequencies, ranging from 20.5 to 26 Hz in quarter steps (f =  2(0.5:0.25:6) Hz), to cover a large part 466 
of the EEG spectrum with a fine detail. We employed the Matlab version of the Jlab toolbox (freely 467 
available online: http://www.jmlilly.net/jmlsoft.html).  468 

 469 

 470 
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Functional connectivity analysis in the time domain 471 

We defined the single-subject FC matrix (𝐴𝐷𝐽𝑆
𝑇 , 384 ×  384, 𝑆 = 1. .32) using the Pearson’s correlation 472 

coefficient (𝑟) between the time course of each pair of ROIs. Then, to explore FC in the time domain, we 473 
averaged single-subject’s adjacency matrices and we regressed out the effect of the Euclidean distance 474 
between the ROIs since we considered the Euclidean distance as a covariate of no interest, as performed in 475 

Betzel et al. (5) We obtained a group level representative matrix (𝐴𝐷𝐽𝐺
𝑇) whose elements (i.e. the weights) 476 

contained the strength of the connection between brain regions. We Fisher-transformed (arctanh (𝐴𝐷𝐽𝐺
𝑇)) 477 

the resulting correlation values of the group-representative FC matrix to improve Gaussianity. Finally, we 478 

linearly mapped 𝐴𝐷𝐽𝐺
𝑇 values between the [-1, +1] range, obtaining: 479 

𝐴𝐷𝐽𝑇 = 𝑏1 + (
(𝑣𝑎𝑙 − 𝑎1)(𝑏2− 𝑏1)

(𝑎2−𝑎1)
) 480 

Where 𝑣𝑎𝑙 is a single element of 𝐴𝐷𝐽𝐺
𝑇;  𝑎1, 𝑎2 are the minimum and maximum edges value of 𝐴𝐷𝐽𝐺

𝑇; 𝑏1, 𝑏2 481 
are the limits of the new range -1 and +1. This linear transformation allows for further comparison of the 482 
meso-scale structure among different frequency content (see next section cf. ‘Functional connectivity in the 483 
frequency domain’). It is indeed necessary to normalize the weights of the adjacency matrices in the same 484 
range to compare outputs of the WSBM, according to the literature (12). 485 

 486 

Functional connectivity analysis in the frequency domain 487 

To measure the frequency-specific properties of FC, we employed the method of power envelope 488 
orthogonalization (27) that is necessary in order to estimate the pairwise connection strength among the 489 
ROIs. Indeed, although the brain activity estimation at the sources level is a promising tool to investigate 490 
the brain dynamics at both good spatial and high temporal resolutions, it is affected by the signal leakage 491 
problem (26, 27). Reconstructing cortical and sub-cortical sources (several thousand sources) from scalp 492 
potentials (here 128 electrodes) is an ill-posed inverse problem, introducing artefactual cross-correlations 493 
between sources. A recent validation study (35) established the power envelope orthogonalization as a valid 494 
candidate to estimate the physiological FC properties in the field of neuroimaging by electrophysiological 495 
recordings. Thus, for each wavelet carrier frequency and participant, we followed the same 496 
orthogonalization procedure, described in previous EEG studies (17, 26), leading to the estimation of 497 

𝐴𝐷𝐽𝑆
𝐹(𝑓) (𝑓 =  2(0.5:0.25:6) ;  𝑆 = 1. .32). The group-representative adjacency matrices (𝐴𝐷𝐽𝐹(𝑓)) were 498 

obtained starting from the single subject adjacency matrices 𝐴𝐷𝐽𝑆
𝐹(𝑓) and performing the same procedure 499 

described for the time domain (cf. ‘Functional connectivity analysis in the time domain’). The same 500 
regressing and mapping procedures were also implemented for the analysis of single subject adjacency 501 
matrices that were employed to calculate the percentage of each community interaction. 502 

 503 

Community detection via Weighted Stochastic Block Models 504 

WSBM is as an unsupervised learning algorithm for the identification of network communities that group 505 
together network nodes that have similar FC patterns (12). The WSBM can work without the need of 506 
thresholding the adjacency matrix, as this procedure might have a negative impact on the analysis of the 507 
meso-scale structure of network connectivity, as previously reported (12). The WSBM goal is to learn the 508 
hidden community structure that is estimated from both the existence and the weights of edges. Moreover, 509 
an interesting property is that the algorithm retains the principle of stochastic equivalence, that is, all the 510 
nodes in a community have the same probability of being connected with all the remaining communities of 511 
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the network. This last property is important in differentiating this community detection problem from the 512 
modularity maximization algorithms that are extensively employed for community detection in network 513 
neuroscience and are by nature biased towards the assortative community structure. Additionally, it is 514 
important to note that stochastic block-modelling has the unmet advantage of being a generative model, as 515 
it tries to estimate the process underlying the observed network topology. The WSBM learns two 516 
parameters starting from the adjacency matrix (in this section, for general explanation, we refer to any 517 
adjacency matrix, being it either in time or frequency domain or obtained by single or group level, by using 518 
the notation 𝐴𝐷𝐽) and from a priori assumptions about the distributions of edges weights and existence of 519 

edges. An important parameter is the vector of nodes assignment 𝑍 = [𝑧1, … , 𝑧𝑁] where  𝑧𝑗 𝜖 {1, . . , 𝐾}, with 520 

N the number of nodes and K the number of communities the algorithm must learn. The other parameter is 521 
the edge bundle matrix (or affinity matrix) θ ([𝐾 ×  𝐾]), representing the probability of two communities 522 
being connected. It is worth noting that the probability of connection between two nodes only depends on 523 

their community labels assignment, 𝑝𝑖𝑗  = 𝜃𝑧𝑖𝑧𝑗 . In its formulation, the log-likelihood of the adjacency 524 

matrix being described by the parameters θ and 𝑍, can be written as (5, 12): 525 

log[𝑝(𝐴𝐷𝐽|𝑍, θ)] =  𝛼 [∑ 𝑇𝑒(𝐴𝐷𝐽𝑖𝑗)𝜂𝑒 (𝜃𝑧𝑖𝑧𝑗
(𝑒)

)

𝑖𝑗

] + (1 − 𝛼) [∑ 𝑇𝑤(𝐴𝐷𝐽𝑖𝑗)𝜂𝑤 (𝜃𝑧𝑖𝑧𝑗
(𝑤)

)

𝑖𝑗

] 526 

where α is a tuning parameter that combines the contribution of the two summations, which respectively 527 

model edges weights and edges existence, to infer the latent community structure. 𝑇𝑒(𝐴𝐷𝐽𝑖𝑗), 𝜂𝑒 (𝜃𝑧𝑖𝑧𝑗
(𝑒)

) and 528 

𝑇𝑤(𝐴𝐷𝐽𝑖𝑗), 𝜂𝑤(𝜃𝑧𝑖𝑧𝑗
(𝑤)

) are the sufficient statistics and the natural parameters of the exponential family 529 

describing the distributions of the edges existence (𝑇𝑒 , 𝜂𝑒) and the edges weights (𝑇𝑤 , 𝜂𝑤). Lastly, 𝑖, 𝑗 530 
indicate the edges of the adjacency matrix onto which we inferred the latent community structure. Usually, 531 
when applying the WSBM framework to structural and functional brain networks, the edges existence and 532 
weights are drawn from Bernoulli and Normal distributions (5, 10, 13, 14), respectively. In our case, α is 533 
set to zero because the graph is fully connected (i.e. no thresholding applied) and, thus, we did not need to 534 
model the edges existence. Hence, our likelihood maximization is simplified leading to a pure-WSBM (12) 535 
(pWSBM) that learns from the weights information, that are assumed to be normally-distributed between 536 
communities. The remaining issue is to find a reliable estimation of the posterior distribution, i.e. 537 
𝑝(𝑍, 𝜃|𝐴𝐷𝐽) that has no explicit analytic formulation (12). To this purpose, we made use of the code freely 538 
available here (http://tuvalu.santafe.edu/~aaronc/wsbm/). The code finds an approximation of the posterior 539 
probability using a Variational Bayes (VB) approach. VB provides a solution to approximate the unknown 540 
posterior distribution by transforming an inference problem into an optimization problem. The algorithm 541 
minimizes the Kullback-Lieber divergence DKL (48) to the posterior probability (for further information 542 
about DKL applied to WSBM, see (12). The solution proposed by (12) states that minimizing the DKL is 543 
equivalent to maximize the evidence lower bound of the model marginal log-likelihood (logEvidence), 544 
𝑝(𝐴𝐷𝐽|𝑍, 𝜃). Thus, the best approximation of the posterior is obtained through a procedure aimed at 545 
maximizing the logEvidence score. Thus, if the logEvidence is maximized, the DKL is the closest possible 546 

to the posterior distribution, 𝑝(𝑍, 𝜃|𝐴𝐷𝐽). After properly initializing the priors for 𝜃 and 𝑧 the VB algorithm 547 
takes the best (i.e. the greatest) logEvidence value across multiple independent trials (or restarts) of the 548 
algorithm. We choose a maximum of 100 independent trials to find the best logEvidence value. Within this 549 
limit, the algorithm searches for the best logEvidence value. At each trial, the initial probability of a node 550 
being assigned to a community is randomized. Every time a better logEvidence value (i.e. a better solution) 551 
is obtained, the algorithm updates the solution. We selected the communities assignment in correspondence 552 
of the highest logEvidence value. We run the WSBM model for different values of K and we performed a 553 
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parameter selection procedure to infer the best number of K communities for our dataset, as described in 554 
the next section. 555 

 556 

Parameter selection: optimal number of communities  557 

The main idea behind our parameter selection procedure is to look at the stability of the clustering 558 
performance, i.e. the aim was to find the best number of communities K for which the clustering 559 
performance is as stable as possible. As a first step towards this goal, we performed 200 WSBM fits, each 560 
one consisting of a maximum of 100 independent trials, on the group level adjacency matrix computed in 561 

the time domain (𝐴𝐷𝐽𝑇, full bandwidth). We calculated 200 WSBM fits for different values of K (ranging 562 

from 2 to 16). To evaluate the clustering performance, we calculated the Normalized Variation of 563 
Information (31) (NVI) across each pair of fits. We averaged across the fits selecting the best K-values 564 
corresponding to the smallest NVI values. Indeed, the lower the NVI the more stable is the clustering 565 
performance. To further validate our choice, we also checked the cluster performance by using two other 566 
metrics: the Adjusted Rand Index (32) (ARI) and the Normalized Mutual Information (31) (NMI). For these 567 
metrics, a consistent matching between couple of fits corresponds to NMI = 1 and to ARI = 1. With this 568 
parameter selection procedure, we obtained the best number of communities and we used it to investigate 569 
the meso-scale structure in both time and frequency domains (at both group and single subject level). 570 
 571 
Community assignment in the time and frequency domain: central fit 572 

Once we defined the best number of communities at the group level (Kbest), we needed to choose the best 573 
nodes assignment among the 200 fits. Therefore, we used the community assignment corresponding to the 574 
central fit across the 200 fits. We defined the central fit as the fit whose distance is minimized from all the 575 
others fits using the NVI, as in a previous work (13) (we used the function partition_distance.m of the Brain 576 
Connectivity Toolbox (49)). We used the central fit not only to identify and to show the resulting 577 
communities at the group level, but also for all the subsequent steps of our analysis: the investigation of 578 
how the percentage of between-community interactions varies across frequencies. Indeed, in addition to fit 579 

the WSBM generative model with the group level time domain (𝐴𝐷𝐽𝑇) and frequency domain (𝐴𝐷𝐽𝐹) 580 

matrices, we also fitted the model for K = Kbest at the single-subject level (𝐴𝐷𝐽𝑆
𝑇 and 𝐴𝐷𝐽𝑆

𝐹): for each 581 
participant we thus performed 100 WSBM fits and we selected as best fit the central one, employing NVI, 582 

as for the group level. The central fit was calculated both for the time domain (𝐴𝐷𝐽𝑆
𝑇) and six carrier 583 

frequencies (𝐴𝐷𝐽𝑆
𝐹(𝑓), 𝑓 = 2 Hz, 4 Hz, 8 Hz, 16 Hz, 32 Hz, 64 Hz). These carrier frequencies have been 584 

chosen as a subset of those selected in previous studies (26, 27). Note that due to high computational cost, 585 
we performed the latter frequency-domain analysis across 100 fits. 586 

 587 

Characterizing the meso-scale structure: between-community interactions 588 

At the single-subject level, we investigated how pairs of communities interacted with each other in order 589 
to generate assortative, disassortative and core-periphery architecture. This permitted us to investigate the 590 
between-community interactions in both time and frequency domains. For each pair of communities r and 591 
s, we estimated the within- and between- community density (10), a topological property of the detected 592 
modules (9): 593 

 𝜔𝑟𝑟 =
1

𝑁𝑟𝑁𝑟
∑ ∑ 𝐴𝐷𝐽𝑆,𝑥𝑦𝑦∈𝑟𝑥∈𝑟 ;             𝜔𝑐𝑐 =

1

𝑁𝑐𝑁𝑐
∑ ∑ 𝐴𝐷𝐽𝑆,𝑥𝑦𝑦∈𝑐𝑥∈𝑐 ;           𝜔𝑟𝑐 =

1

𝑁𝑟𝑁𝑐
∑ ∑ 𝐴𝐷𝐽𝑆,𝑥𝑦𝑦∈𝑐𝑥∈𝑟 ; 594 
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Where, 𝑁𝑟 and 𝑁𝑐  are the number of nodes assigned to the communities 𝑟 and 𝑐 at the central fit. We 595 

calculated community density for the time domain 𝐴𝐷𝐽𝑆
𝑇 and for the different frequencies 𝐴𝐷𝐽𝑆

𝐹(𝑓) at the 596 
Kbest. Then, the between-community interactions fall into one of the three categories as reported in (5, 10), 597 
according to the following criteria: 598 

𝑀𝑟𝑐 = {

𝑀𝑎𝑠𝑠𝑜𝑟𝑡𝑎𝑡𝑖𝑣𝑒 if min(𝜔𝑟𝑟, 𝜔𝑐𝑐) >  𝜔𝑟𝑐

   𝑀𝑐𝑜𝑟𝑒−𝑝𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑦 if 𝜔𝑟𝑟 >  𝜔𝑟𝑐 >  𝜔𝑐𝑐   𝑜𝑟 𝜔𝑐𝑐 >  𝜔𝑟𝑐 >  𝜔𝑟𝑟

𝑀𝑑𝑖𝑠𝑎𝑠𝑠𝑜𝑟𝑡𝑎𝑡𝑖𝑣𝑒 if 𝜔𝑟𝑐 > max (𝜔𝑟𝑟, 𝜔𝑐𝑐)

 599 

We calculated the percentage of between-community interactions for each participant with respect to the 600 

total number of possible interactions, corresponding to 
1

2
[𝐾𝑏𝑒𝑠𝑡 ∙ (𝐾𝑏𝑒𝑠𝑡 − 1)]. Then, we averaged the 601 

percentage across all participants for the time domain and for the six carrier frequencies. 602 

 603 

Statistical analysis of between-community interactions  604 

Our working hypothesis is to understand whether the meso-scale connectivity organizes across frequency 605 
bands, i.e. the meso-scale connectivity has frequency-specific features. Prior to testing this hypothesis, we 606 
performed statistical testing to check how meso-scale arranges in the time domain. Given the non-normality 607 
of the distributions, we employed non-parametric tests. We used the Kruskal-Wallis test to examine whether 608 
the meso-scale structure shows a statistically significant effect of the between-community classes. Then, 609 
we employed a post-hoc comparison of mean ranks as implemented in Statistica 13 software package 610 
(StatSoft Inc., Tulsa) to investigate potential differences among the three interaction classes. For the 611 
frequency analysis, we also performed a set of Kruskal-Wallis tests to verify for each interaction class (i.e. 612 
assortative, disassortative and core-periphery) whether the carrier frequency has a statistically significant 613 
effect. Finally, a post-hoc comparison of mean ranks has been used to further highlight the potential 614 
differences among the six carrier frequencies within each community class. 615 

 616 

  617 
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Supplementary Materials 740 

Figure S1 741 

 742 

Parameter selection conducted by means of Normalized Mutual Information (NMI). a Pairwise 743 
comparisons of all the 200 fits from K = 2 until K = 16. Yellow and dark blue elements indicate respectively 744 
a pair of fits showing a good (high NMI) and weak (low NMI) clustering performance, as indicated by the 745 
color-bar. Self-fit comparisons are depicted in white. Note that all the matrices are symmetric. b 746 
Distributions of the NMI values obtained by averaging the matrices containing the fits’ pairwise 747 
comparisons depicted in panel a. Boxplots’ upper and lower boundary exhibited 25th and 75th percentile, 748 
respectively. Data points (black dots) are overlaid over boxplots. Green diamonds and red lines indicates 749 
mean and median value of the distributions, respectively. Red crosses indicate outliers. i.e. those fits for 750 
which the WSBM algorithm found a solution that is far from almost all the remaining fits. The clustering 751 
performance is reliable until K = 5 (“good performance”, NMI values are close to one), unreliable otherwise 752 
K ≥ 6 (“bad performance”). 753 

 754 
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Figure S2 757 

 758 

Parameter selection conducted by means of Adjusted Rand Index (ARI). a Pairwise comparisons of all 759 
the 200 fits from K = 2 until K = 16. Yellow and dark blue elements indicate respectively a pair of fits 760 
showing a good (high ARI) and weak (low ARI) clustering performance, as indicated by the color-bar. Self-761 
fit comparisons are depicted in white. Note that all the matrices are symmetric. b Distributions of the ARI 762 
values obtained by averaging the matrices containing the fits’ pairwise comparisons depicted in a. Boxplots’ 763 
upper and lower boundary exhibited 25th and 75th percentile, respectively. Data points (black dots) are 764 
overlaid over boxplots. Green diamonds and red lines indicate the mean and median value of the 765 
distributions, respectively. Red crosses are outliers i.e. those fits for which the WSBM algorithm found a 766 
solution that is far from almost all the remaining fits. The clustering performance is reliable until K = 5 767 
(“good performance”, ARI values are close to one), unreliable otherwise K ≥ 6 (“bad performance”). 768 
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Figure S3 770 

 771 

Mean community interactions in the time domain across participants. The color-bar is different for 772 
each meso-scale modality to better appreciate region-specific variations. See Figure 3 in the main text where 773 
the same plot is shown with a unique color-bar for all the interactions. 774 

  775 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.26.114488doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.26.114488
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 

Figure S4 776 

 777 

Mean community interactions in the frequency domain across participants. Each column indicates the 778 
meso-scale class (assortative, disassortative, core-periphery) while each row indicates the carrier frequency 779 
(2 Hz, 4 Hz, 8 Hz, 16 Hz, 32 Hz, 64 Hz). The color-bar is customized between minimum and maximum 780 
values within each meso-scale modality. See Figure 6 in the main text where the same plot is showed with 781 
a unique color-bar for all the interactions. 782 
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Table 1  785 

 786 

Non-parametric Kruskal-Wallis test for multiple comparisons across frequencies for the 787 
disassortative class.  788 

 789 

Table 2 790 

 791 

Non-parametric Kruskal-Wallis test for multiple comparisons across frequencies for the core-792 
periphery class.  793 

Note that assortative interactions across frequencies were non-statistically significant and thus we did not 794 
perform the multiple comparison test. 795 

 796 
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T1-weighted structural images acquisition 798 

Subjects underwent T1-weighted using either a 3T or 1.5 T scanners. See Supplementary Table 3 for the 799 
T1-weighted acquisition parameters.  800 

Table 3 801 

Number of subject 21 7 4 

MRI scanner 3T Achieva  

(Philips Medical 

System, The 

Netherlands)  

3 T MAGNETOM 

Prisma (Siemens AG, 

Healthcare Sector, 

Germany) 

1.5 T Signa Excite 

(General Electric 

Healthcare, USA) 

T1-weighted sequence 

name 

Magnetization Prepared 

Rapid Acquisition 

Gradient Echo 

(MPRAGE) 

Magnetization Prepared 

Rapid Acquisition 

Gradient Echo 

(MPRAGE) 

Fast Spoiled Gradient 

Echo (SPGR) 

Coil 32-channel head coil 32-channel head coil 8-channels phased 

array head coil 

Voxel Size 0.98×0.98×1.2 mm3 1×1×1 mm3 1×1×1 mm3 

TR/TE 9.6/4.6 ms 2.3/2.96 ms 11.8/5.18 ms 

Field of View (F.O.V) 250x250 mm2 256×256 mm2 256×256 mm2 

 802 
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