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Abstract

In recent years, the observed antibody sequence space has grown exponentially due to
advances in high-throughput sequencing of immune receptors. The rise in sequences has
not been mirrored by a rise in structures, as experimental structure determination
techniques have remained low-throughput. Computational modeling, however, has the
potential to close the sequence–structure gap. To achieve this goal, computational
methods must be robust, fast, easy to use, and accurate. Here we report on the latest
advances made in RosettaAntibody and Rosetta SnugDock—methods for antibody
structure prediction and antibody–antigen docking. We simplified the user interface,
expanded and automated the template database, generalized the kinematics of
antibody–antigen docking (which enabled modeling of single-domain antibodies) and
incorporated new loop modeling techniques. To evaluate the effects of our updates on
modeling accuracy, we developed rigorous tests under a new scientific benchmarking
framework within Rosetta. Benchmarking revealed that more structurally similar
templates could be identified in the updated database and that SnugDock broadened its
applicability without losing accuracy. However, there are further advances to be made,
including increasing the accuracy and speed of CDR-H3 loop modeling, before
computational approaches can accurately model any antibody.

Introduction 1

Antibodies are a crucial component of the adaptive immune system of vertebrates. They 2

are antigen-specific and can be directed towards virtually any antigen to protect us from 3

infections. Their high specificity, in combination with their favorable biophysical 4

properties and pharmacodynamics, have allowed for their development and use as drugs, 5

diagnostics, and research reagents. Antibodies are glycoproteins and are composed of 6

two identical heavy chains and two identical light chains. The isotype is determined by 7

the constant region that dictates effector functions and half life. These constant regions 8

are the same for antibodies of the same isotype. The variable fragments (Fv) on the 9

other hand, are unique to each monoclonal antibody and provide antigen specificity. 10
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Human antibody variable regions consist of a variable light and a variable heavy 11

domain and are extremely diverse, due to V(D)J recombination and somatic 12

hypermutation. These processes result in sequence diversity primarily located in the 13

complementarity determining region (CDR) loops, where the antigen is bound. The 14

CDR 3 loop of the heavy chain (H3) is the most diverse and often particularly 15

important for antigen binding. The remainder of the variable domains is termed 16

framework region and assumes a conserved immunoglobulin (Ig) fold. Antibodies from 17

camelids and cartilaginous fish were found to contain only a variable heavy chain and 18

are referred to as nanobodies, single-domain antibodies, or VHHs. 19

Antibodies not only play an important role in health and disease, but they are also 20

developed and used as therapeutics. While the availability of sequence information has 21

increased sharply thanks to high throughput sequencing technologies [1], methods for 22

structure determination have remained low throughput. In order to understand the role 23

of antibodies in disease and to efficiently develop drugs, there is a demand for structural 24

information, both for unbound antibodies and for antibodies in complex with their 25

antigens. Computational prediction of these structures is both attractive and feasible 26

because of the relative conservation of the Ig fold across different antibodies [2]. There 27

are several algorithms for antibody structure prediction, such as ABodyBuilder [3], 28

PIGSPro [4], and RosettaAntibody [5]. Across these methods, framework regions are 29

routinely predicted to below 1 Å root-mean-square deviation (RMSD) [6,7], as they 30

pose a simple homology modeling problem wherein a similar structure can be readily 31

identified by a search within a template database. However, the diverse sequences of the 32

CDR loops result in a variety of conformations, making accurate prediction more 33

difficult. All CDR loops, except the H3 loop, fold into clusters of conformations that are 34

termed canonical conformations [8, 9]. These loops can be predicted within 1 Å RSMD 35

as long as the correct cluster is identified [10, 11]. On the other hand, the CDR-H3 loop 36

does not have a limited set of canonical conformations, necessitating de novo modeling 37

and resulting in lower accuracy models. 38

For certain applications, an antibody model suffices, but often there is interest in 39

further downstream modeling, particularly docking against a target antigen. The 40

antigen adds yet another layer of complexity and even more potential for error, 41

especially as the CDR loops can move to accommodate induced-fit binding [12]. Several 42

software packages exist specifically for antibody–antigen docking, including 43

ClusPro [13,14], FRODOCK [15], PatchDock [16], and Rosetta SnugDock [17]. The first 44

three methods are global, rigid-body approaches, adopting different docking algorithms. 45

ClusPro and FRODOCK are fast-Fourier transformation (FFT) based. PatchDock 46

decomposes proteins into geometric patches of hotspots and combines geometric hashing 47

and pose clustering to identify interactions. On rigid targets, for which unbound 48

structures are known, these methods tend to perform well. However, using homology 49

models as input or docking flexible targets remains a challenge. SnugDock was 50

developed to address this challenge. SnugDock is a local, flexible docking method that 51

refines the CDR and VH–VL orientation in the context of the antibody–antigen 52

interface. But, to yield low-RMSD models, SnugDock requires an input orientation close 53

to the native, as it is not a global docking approach. A recent assessment revealed that 54

ClusPro was able to find medium quality models (according to the CAPRI 55

definition [18]) less than 40% of time in a global search, while SnugDock found medium 56

quality models 80% of the time on the same set of targets in a local search [19]. 57

Antibody modeling and antibody–antigen docking are fields under active research. 58

Here we report recent developments of RosettaAntibody and SnugDock to improve 59

accuracy of the predicted structures and to make the software more robust and 60

accessible for users and future developers. The template database is now fully 61

automated and can be updated at will, ensuring access to the latest antibody structures 62
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in SAbDab [20]. Both RosettaAntibody and SnugDock can now model heavy-chain only 63

antibodies, without any additional flags or specifications. Options for the protocols have 64

been simplified with defaults set based on benchmarks. Constraints have been 65

introduced to improve the quality of models and to allow experimental data to guide 66

modeling. Finally, as these developments were implemented, a set of scientific tests was 67

curated to regularly assess the performance of RosettaAntibody and SnugDock on 68

real-life scenarios. 69

Materials and methods 70

The improvements made to RosettaAntibody and SnugDock are available from Rosetta 71

version 2019.24 on. Note the antibody template database has moved from 72

$ROSETTA/tools/antibody to 73

$ROSETTA/main/database/additional protocol data/antibody. The database 74

location can be manually specified with the -antibody::grafting database flag. 75

Template database automation 76

We developed a Python script to query SAbDab, [20] an online antibody database, for 77

the set of sub-3-Å crystal structures. SAbDab pre-processes antibody crystal structures 78

from the PDB and renumbers them according to the Chothia convention [21]. All 79

residue numbers in this manuscript follow the Chothia convention, unless otherwise 80

specified. Based on the information curated by SAbDab, the script then truncates the 81

antibody structures to the relevant structural regions (light chain residues 1–109 and 82

heavy chain residues 1–112). While a crystal structure typically contains a single unique 83

antibody (light chain and heavy chain), there are several structures with multiple 84

distinct antibodies. When multiple chains are present, to avoid ambiguity, we retain the 85

first reported to the SAbDab summary file. If the structure contains only a single light 86

or heavy chain, we retain it. However, if the chain is a single-chain Fv (scFv) (covalently 87

linked light and heavy chain), then it is ignored to limit downstream errors that could 88

arise if the chains are incorrectly assigned. From the truncated structures, sequences are 89

extracted for the regions specified in Table 1 and will be later used in alignments to 90

select structural templates. CDRs containing chainbreaks are omitted during the 91

BLAST database construction. The database is constructed by pooling sequences of the 92

same structural region and length (e.g. database.L1.11 for all sequences of length 11 93

of the first light-chain CDR) into a single FASTA file, indexed by PDB ID. Each 94

FASTA file is used to build a BLAST database with the makeblastdb command. 95

Additionally, the sequences used to construct the database are compiled by structural 96

region and reported to tab-delimited information files for further analysis. Finally, 97

average B-factors for all atoms in each CDR loop and VH–VL relative orientation 98

metrics are computed, so these values can later be available to quality filters. 99

The automated database can be generated by running the create antibody db.py 100

script. A comparison of the last version of the manual template database and the first 101

version of the automatic template database is presented in the results section. 102

Enabling nanobody–antigen docking 103

In the grafting step of RosettaAntibody we removed the requirement for a light chain. 104

Using the flag --vhh only it is now possible to produce heavy-chain only antibody 105

models. Within SnugDock, we now apply a hierarchical kinematic representation 106

(referred to as a FoldTree) of the antibody–antigen complex by taking advantage of 107

“virtual” residues. In Rosetta, such residues are ignored during energy calculations, but 108
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Table 1. Structural region to sequence mapping for RosettaAntibody.

Regiona Definitionb

CDR L1 24–34
CDR L2 50–56
CDR L3 89–97

10–23
35–39

FRLc 46–49
57–66
71–88

98–104

CDR H1 26–35
CDR H2 50–65
CDR H3 95–102

10–25
36–39

FRHc 46–49
66–94

103–109

Orientation L5–L104
H5–H109

aCDR and framework region definitions in RosettaAntibody. These definitions are used
to extract sequences and templates for the homology modeling database. In a modeling
task, templates are selected for each region and combined to produce the initial
homology model. bThe definitions are based on the Chothia numbering convention, but
are modified for use in RosettaAntibody. cThe FRH and FRL definitions do not exactly
complement the CDR definitions as there are additional (non-CDR) loops that are
excluded from the frameworks.

can be used to describe translations and rotations. Throughout SnugDock, a single, 109

“universal” FoldTree permitting both VH–VL and antibody–antigen docking motions is 110

implemented as described in Figure 1. 111

Fig 1. Comparison of a default FoldTree versus one permitting multi-body
docking. Proteins are shown as blobs and labeled A, B, C, and D, jumps (describing
relative translations and rotations) are labeled as “J” followed by the number,
indicating the order of appearance in the FoldTree, and the jumps connect either
protein centers of mass (COMs) or virtual residues (V). A: With the default, linear
FoldTree, protein A can dock to the BCD protein complex, the AB complex can dock
to the CD complex, and the ABC complex can dock to protein D, but protein B cannot
move independently. B: In the new hierarchical FoldTree, subcomplexes of interest (e.g.
antibody chains or antigen chains) are grouped by virtual residues, such that the
resultant FoldTree permits relative motions. In the exemplary implementation, virtual
residues are positioned at the individual chain COMs and complex COMs. Docking
across individual chain COMs allows for motions within complexes, whereas docking
across complex COMs allows for cross-complex docking.
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Simplified options, new filters, and new constraints 112

Improvements were made to the options, filters, and constraints within 113

RosettaAntibody and SnugDock. Briefly, we reduced the number of options required to 114

be set by the user in both protocols by setting optimal defaults based on our 115

benchmarking simulations. For the homology modeling stage of RosettaAntibody, we 116

implemented new filters as command-line options to permit the exclusion of specific 117

template PDB files or of cases where the template and query have sequence mismatches 118

involving proline residues in the CDR loops (see Results). Finally, we implemented an 119

automatic glutamine–glutamine (Q–Q) hydrogen bonding constraint in the CDR-H3 120

loop modeling stage of RosettaAntibody and in SnugDock. 121

The Q–Q constraint is described by a flat harmonic potential: 122

f(x) =

{
( |x−x0|−dm

σ )2, if |x− x0| > dm

0, otherwise.

Here, x is the distance between the donor and acceptor heavy atoms, x0 is the mean 123

observed distance in our antibody database, dm is the minimal difference at which the 124

penalty will be applied, and σ is the observed standard deviation. There are two 125

possible hydrogen bonds between Gln 39 of the heavy chain and Gln 38 of the light 126

chain. We measured the donor–acceptor distances for all antibodies in our updated 127

antibody database that contain the relevant Gln residues. The fit is shown in Figure S1. 128

The distances between the N and O atoms yielded x0 = 2.91 Å and σ = 0.23 Å. The dm 129

value is chosen to be 0.5 σ, such that there is no penalty in being within half a standard 130

deviation of the mean and there is a penalty of 0.5 REU at one standard deviation. 131

New loop modeling and scientific benchmarks 132

The final set of improvements to RosettaAntibody and SnugDock brought a new, 133

fragment-based loop modeling approach and new scientific benchmarks to both methods. 134

Both the new loop modeling approach (Pan, X. et al.) and the scientific benchmarking 135

framework (Leman, J. K. et al.) will be fully detailed in other publications that are 136

currently in preparation. 137

Results 138

Scientific benchmarking 139

In the process of developing RosettaAntibody and SnugDock, a series of scientific 140

benchmarks were developed. Scientific benchmarking complements other forms of 141

software testing, such as integration and unit tests, by assessing Rosetta’s performance 142

on a diverse set of relevant modeling challenges. A single scientific benchmark consists 143

of a full simulation, whereas unit tests focus on individual functions and integration 144

tests assess exact changes in output. A scientific benchmark is considered successful if 145

the performance is within a certain threshold, usually set by a prior publication. We 146

created three scientific tests for RosettaAntibody and SnugDock. The tests are based on 147

previously published datasets and run regularly on a webserver 148

(https://benchmark.graylab.jhu.edu). There are two RosettaAntibody tests: grafting 149

and loop modeling. While grafting is a fast process (≤ 10 mins per model), CDR-H3 150

loop modeling is time consuming, so the tests were split based on their runtime. The 151

grafting test runs the antibody executable for 48 targets (listed in the Appendix S1), 152

originally described in [22], and it evaluates the RMSDs between the grafted models and 153

the native crystal structures over all antibody structural regions (Table 1). The 154
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CDR-H3 loop modeling test runs the antibody H3 executable for a six-target subset of 155

the Marze et al. set [22], ranging from easy to difficult, and it evaluates the RMSDs 156

between the models and crystals for the CDR-H3 loop. There is a single SnugDock test 157

that is run on six targets (again ranging from easy to hard) and assesses the interface 158

RSMD between the modeled complexes and the corresponding crystal structures. 159

Template database improvements 160

A homology modeling method, such as the grafting stage of RosettaAntibody, is highly 161

dependent on the structural database it samples for templates. A database with 162

inadequate template coverage will result in poorer modeling outcomes. In the most 163

recent CAPRI assessment [23], we were tasked with modeling two camelid antibodies 164

but could not find suitable non-H3 CDR loop templates in the RosettaAntibody 165

database. Further investigation revealed that the database was outdated and contained 166

artifacts due to its manual curation, a consequence of its initial development in 2008. At 167

that point in time, antibody structures were few and antibody structure databases with 168

consistent numbering schemes, such as IMGT [24], SAbDab [20], and abYsis [25], were 169

not yet developed or, in the case of IMGT, did not use a numbering scheme compatible 170

with RosettaAntibody. 171

Now we have a new antibody template database that can be automatically generated 172

and updated with the create antibody db.py script. Table 2 shows the increase in 173

available templates following the update and Figure 2 shows the increase in unique 174

sequence templates for each structural region, which is in the range of 15–49%. For the 175

overlapping portion of the two databases (identical PDBs), we compared the template 176

structures and sequences to ensure that no drastic changes had occurred. We found 177

approximately 1–2% of the overlapping templates mismatched at the sequence level, 178

depending on the structural region. 179

Table 2. More templates are available for all structural regions in the new
database.

Old Count New Count Overlap
All CDRs 1,902 2,611 1,560
FRH 1,785 2,390 1,427
FRL 1,577 2,832 1,111
Orientation 1,003 1,721 749

Comparison of the template count between the last iteration of the manual database
and the first iteration of the automatic database (February 15th, 2019). Template
counts for each region are shown as well as the “overlap” or number of shared templates
between the two databases. Additionally, some sequences in the old database do not
appear in the new database because it has more stringent quality criteria.

Fig 2. New database increases unique sequence count for all regions.
Comparison of counts of unique sequences for each structural region in the old manually
curated database (gray, last updated May, 2017) and new automatically generated
database (white, last updated June, 2019).

Investigating the individual cases that differed revealed three general trends. One set 180

of cases arose when multiple antibodies were present in the same PDB asymmetric unit 181

and different antibodies were selected from the multiple possibilities. In another set of 182

cases, PDBs were omitted in the new database because they did not adhere to the new 183
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quality criteria. I.e. these structures had missing atoms or non-realistic C–N distances 184

in critical regions. Finally, the most prevalent set of cases revealed differences in the 185

heavy-chain framework or CDR-H2 loop because the numbering schemes differed as the 186

old database had incorrectly numbered a few highly variable loops, possibly because the 187

regular expressions failed to account for edge cases such as engineered antibodies. In the 188

new database, numbering errors are avoided because structures and sequences are 189

derived from Chothia-numbered PDB files that have been numbered more 190

accurately. [26] 191

RosettaAntibody improvements 192

Improvements to RosettaAntibody affected either the grafting or CDR-H3 loop 193

modeling stage. 194

Grafting with an expanded database and filters 195

In the grafting stage, RosettaAntibody benefited from the new template database and 196

new filters. Figure 3 shows a direct comparison of the grafted models for 48 target 197

antibody sequences, previously described in [22]. We omit 3MLR due to its atypical 198

CDR L3 loop. We report RMSDs of the loops and framework regions, as well as 199

Orientational Coordinate Distance (OCD), a measure of the relative orientation 200

between the heavy and light chain [22]. In general, we found that the new database 201

produces lower-RMSD grafted models for 53.5–55.0% of target regions. This set of 202

grafting targets was implemented as an automatic scientific benchmark. 203

Fig 3. Comparison of grafted model metrics produced by the new and old
databases. Plots show values for structural metrics (either OCD or RMSD),
comparing the grafted models to the native structures as generated using either the old
database (manually curated, x-axis) or new database (automatically curated, y-axis).
Solid lines indicate either 1 Å or 2 OCD and the diagonal (i.e. expected performance if
there is no change). The OCD is a measure of the heavy-light chain orientation,
previously described in [22]. The new database slightly improves the performance of the
grafting step of RosettaAntibody, with 55% of CDR loops and 53.5% of FRs having
lower RMSDs.

Following template selection (based on sequence similarity) potential templates are 204

then filtered based on certain criteria. We introduced a PDB ID and a proline filter to 205

improve the selection process for non-H3 CDR templates. The PDB ID filter excludes a 206

particular PDB from the template set, e.g. -antibody:exclude pdb 1AHW. This is 207

useful for benchmarking; if the query sequence has a known structure, then it can be 208

excluded from the template set. The proline filter ensures that prolines match between 209

the query sequences and template structures. Prolines occupy a distinct region of 210

Ramachandran space, but the current template selection approach, BLAST, uses either 211

the BLOSUM62 (for framework alignments) or PAM30 (for CDR alignments) matrix 212

and does not sufficiently penalize proline mismatches. While the filter eliminated 213

proline–non-proline mismatches between template and query sequences, it did not 214

demonstrate a concrete improvement in terms of loop RSMD (Figure S2). 215

CDR-H3 loop modeling with fragments and VH–VL refinement with 216

constraints 217

In the CDR-H3 loop modeling stage, we simplified options and introduced a new 218

fragment-based loop modeling method. The options system permits users to pass values 219
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to compiled Rosetta binaries via flags on the command line. To configure the CDR-H3 220

loop modeling stage of RosettaAntibody, a user previously had to specify the loop 221

modeling method, its settings, and custom constraints to maintain the Q–Q bond at the 222

VH–VL interface, if present. This constraint is now automated and included by default. 223

The legacy options -cter insert, -flank residue min (bool), -bad nter (bool), 224

-idealize h3 stems before modeling (bool), -remodel (string), and -refine 225

(string) have been completely removed. C-terminal H3 insertions can now be 226

accomplished via fragment-based kinematic loop closure (KIC). We no longer minimize 227

flanking residues during loop modeling or manually adjust CDR-H3 loop dihedral 228

angles, bond angles, and bond lengths, as this does not affect performance. Finally, the 229

remodel and refine options are removed. These options previously set the loop 230

modeling algorithm, but the loop modeler is now fixed to be KIC, as it has been shown 231

to be the most accurate approach within Rosetta [27]. Furthermore, by refactoring the 232

code to use the newly developed LoopModel class, all other loop-related options are by 233

default set to reasonable values, so it is no longer necessary for the user to configure 234

loop-modeling options, although the possibility remains. In sum these efforts have 235

reduced the number of options required to configure RosettaAntibody from 236

approximately 30 to 5 Appendix S2. 237

We implemented a new fragment-based loop modeling approach as it was found that 238

fixing sub-regions of loops to match the structures of short fragments (either of length 239

three or nine residues) of similar sequence improved both the fraction of sub-Å models 240

and the RMSDs of near-native models (Pan, X., personal communication). Fragments 241

were selected via the fragment picker on the Robetta server [28]. The new loop 242

modeling method was tested on 49 antibody targets from Marze et al. [22] and showed 243

no difference in performance when compared to the standard approach. In particular, 244

we expected the use of structural fragments to enhance sampling during loop modeling 245

and lower the minimum RMSD observed across all models. Instead we observed a slight 246

worsening of this metric in the fragment-based models (Figure 4A). As this lack of 247

improvement may have been caused by the highly unique nature of the CDR-H3 loop, 248

we sought to quantify the structural similarity between both protein and CDR-H3 loops 249

and the fragments used in modeling. We investigated the structural similarity between 250

the fragment sets picked for loop modeling and the corresponding target antibody 251

CDR-H3 loop or other (non-antibody) protein loop. For each loop and each possible 252

window of size three or nine residues, the fragment picker selected two hundred selected 253

fragments. These fragments and their corresponding loop segments were compared by 254

measuring the average difference in the backbone dihedral angles as a chord distance 255

(originally defined by Dunbrack and North [8]). We found that non-antibody protein 256

loops were more likely to have near-native fragments identified by the picker than 257

antibody CDR-H3 loops (Figure 4B). This was due to one of two possibilities: (1) either 258

structurally similar fragments exist and the fragment picker cannot identify them for 259

antibody CDR-H3 loops or (2) the fragments do not exist. Considering that the 260

fragment picker tends to perform well across a diverse set of targets [28] and previous 261

observations that antibody CDR-H3 loops have fewer structurally similar fragments in 262

the PDB than than other protein loops [29], we concluded that the latter is most likely 263

and the lack of structural similarity between fragments and CDR-H3 loops can explain 264

the inability of fragment-based loop modeling to improve CDR-H3 loop models. 265

To ensure continuous testing of the CDR-H3 loop modeling stage, we implemented a 266

subset of the Marze et al. antibody targets as a scientific benchmark. Specifically, we 267

selected six targets of varying difficulty, based on prior modeling performance [30] and 268

CDR-H3 loop length (Table S1). The scientific benchmark then consists of running the 269

CDR-H3 loop modeling stage on homology models of these antibody frameworks 270

(Appendix S2). 271
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Fig 4. Comparison of loop modeling methods. (A) The distributions of the
minimum CDR-H3 loop RMSDs observed for all antibodies in the benchmark, for two
loop modeling methods, do not significantly differ according to Student’s t-test (p-value
= 0.67). (B) Three-residue fragments from the PDB are more structurally similar to
protein loops than to antibody CDR-H3 loops. All three-residue fragments selected by
the fragment picker were compared to their corresponding loop sub-regions. For each
fragment and loop combination, a chord distance was calculated to compare the
difference in dihedral angles: 〈D〉 = 1

n

∑
n(D2

φ +D2
ψ)/2 where

D2(θ1, θ2) = 2− 2 cos(θ2 − θ1). Thus, 〈D〉 has a minimum of 0, if a fragment matches a
loop exactly, and a maximum of 4, if a fragment differs by 180 degrees at every dihedral
angle. The cumulative distribution function of these distances then yields the
probability (y-axis) that a fragment is within a certain chord distance (x-axis) of a loop.

Finally, beyond enabling a new loop modeling approach, we introduced an 272

automated VH–VL Q–Q hydrogen bond constraint. Constraints modify the Rosetta 273

score function by adding customizable functions to the standard collection of physical 274

and statistical terms. A typical use case for constraints is to incorporate experimental 275

data in simulations by penalizing protein conformations that are nonconcordant. 276

RosettaAntibody recommends constraining the C-terminal CDR-H3 loop kink and a 277

Q–Q hydrogen bond at the VH–VL interface, if present. The kink and the Q–Q 278

hydrogen bond are both present in 81.1% and 88.5% of antibodies in our database. 279

Thus both constraints should be enabled by default. However, the kink constraint was 280

only recently automated [30] and the Q–Q constraint remained user specified until this 281

publication. As a consequence, the constraints were under utilized because they relied 282

on manual user input to identify the corresponding residues and determine the 283

functional form and weights of the constraint. 284

We implemented a constraint automation similar to the one used by Weitzner and 285

Gray to constrain the kink [30]. Key residues are automatically identified by relying on 286

known sequence features and implementing a consistent numbering scheme throughout 287

modeling. The functional form and weights of the constraint are based on observed 288

geometries in the protein data bank. Using the recently established scientific 289

benchmarking framework, we tested multiple constraint functions and strengths to 290

identify a reasonable default. We found that the harmonic constraint improved the 291

fraction of models in which the hydrogen bond is formed (Figure S3), but did not 292

significantly affect the CDR-H3 loop RMSDs (Figure S4). The constraint is now 293

enabled whenever the requisite glutamine residues are present in the antibody sequence. 294

Rosetta SnugDock improvements 295

The primary improvement to SnugDock was the introduction of a more general 296

FoldTree that enabled the modeling of heavy-chain only antibodies. Additionally, we 297

introduced the possibility for fragment-based loop modeling, the capacity for 298

experimental constraints, as well as two automated constraints (as in RosettaAntibody), 299

and scientific benchmarks. 300

FoldTree simplification 301

Primarily, we improved the kinematics of Rosetta SnugDock. The kinematic layer of 302

Rosetta controls how atomic coordinates are updated over the course of a simulation. It 303

is necessary because Rosetta uses internal coordinates (dihedral angles, with fixed bond 304

lengths and angles) to accelerate sampling in most protocols (simulations in Cartesian 305

coordinates are possible, but not common) [31]. Central to the process of keeping 306
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internal and Cartesian coordinates up-to-date is an object known as the FoldTree, at 307

the residue level, and the AtomTree, at the atomic level [32]. The FoldTree is 308

implemented as a directed acyclic graph that propagates coordinates changes. For 309

example, a typical FoldTree for a four-protein complex would be linearly ordered, 310

taking the chain order from the PDB file (Fig 1A). In this FoldTree, one cannot dock a 311

middle protein independently of its neighbors. This poses a problem in the case of an 312

antibody–antigen complex, where the relative VH–VL orientation might change as the 313

antibody accommodates the antigen. This problem is further amplified when modeling 314

loops, as loops require alterations to the FoldTree to permit the repeated breaking and 315

closing of covalent bonds. The typical solution is to switch between multiple, 316

incompatible, “simple” FoldTree objects that rely on assumptions about the input and 317

have to be specified beforehand. To overcome this issue, we generalized the set of 318

assumptions applied in the FoldTree construction stage of SnugDock, resulting in a 319

single, consistent FoldTree that can be used throughout the simulation. This tree also 320

enabled the modeling of heavy-chain only antibodies (e.g. camelid). 321

In the initial implementation of Rosetta SnugDock, it was assumed that the docking 322

partners consisted of a light chain, a heavy chain, and an antigen, in that order. The 323

FoldTree was updated at each stage of the simulation to accommodate appropriate 324

sampling. The light chain could be docked to the heavy chain to refine the orientation. 325

In the stage sampling the Ab–Ag interface, the FoldTree was re-ordered to have the 326

antigen first then the light and heavy chains, so the antigen could be docked to the 327

antibody. Additionally, during H3 and H2 loop modeling stages, a third FoldTree was 328

applied to permit opening and closing the loops. This scheme assumed the presence of a 329

light chain, excluding heavy-chain only antibodies from SnugDock simulations. 330

To correct this issue, we introduced a more hierarchical FoldTree that exploits 331

“virtual” residues – residues that are chemically and physically ignored, but tracked by 332

the FoldTree to store positional information. The virtual residues are placed at 333

individual protein and complex centers-of-mass and then connected to corresponding 334

polypeptide chains in a hierarchical fashion (Fig 1B), such that complexes of interest are 335

grouped together (e.g. the two antibody chains or any number of antigen chains). Using 336

virtual residues overcomes the aforementioned challenges. First, by placing the proteins 337

downstream of virtual residues, each chain can have its own internal FoldTree without 338

affecting any downstream partner. This permits FoldTree-dependent modifications 339

within in each chain (such as loop modeling) to take place, without necessitating a new 340

FoldTree. Second, by placing virtual residues at the centers-of-mass of each protein 341

and the relevant complexes, simultaneous docking between multiple partners is now 342

possible in one FoldTree. Finally, this FoldTree makes no assumptions about the 343

identity of individual chains, so it is compatible with heavy-chain only antibodies. 344

The new FoldTree enabled our participation for Targets 123, 124, and 160 in the 345

blind protein docking challenge called CAPRI, detailed in [23]. Briefly, we ran standard 346

ensemble SnugDock simulations (Appendix S4). The results showed that we were 347

technically able to model the camelid antibodies, but the models were inaccurate due to 348

the challenges associated with modeling longer CDR-H3 loops (11–21 residues). 349

Introducing constraints to SnugDock 350

We also implemented automatic Q–Q and kink constraints in SnugDock, and further 351

enabled user-defined constraints. Experimental or computationally-derived epitope data 352

(e.g. [33]) can now guide docking. As a proof of principle, we combined hydrogen 353

exchange-mass spectrometry (HX-MS) data with SnugDock. HX-MS measures the 354

backbone amide hydrogen/deuterium exchange rate, and interacting residues, such as 355

those at epitope or paratope, will yield slower exchange rates that can then suggest 356

binding sites for docking. During the docking process, constraints based on 357
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Fig 5. Constraints aid global antibody–antigen docking, but do not affect
local refinement. A global, rigid-body search with constraints added to the score
function resulted in multiple high-quality models, according to the CAPRI criteria (top
panel). However, applying the same constraints to a local search with an antibody
homology model did not improve sampling (middle panel). Interestingly, the addition of
constraints to SnugDock led to the sampling of native-like CDR-H3 loops, despite not
including any constraints during the H3 modeling stage of Rosetta Antibody (bottom
panel). “Refined” indicates models created from the bound complex structure, for
reference.

pre-processed HX-MS data are applied to the antibody–antigen complex. Interactions 358

that satisfy the experimental constraints are rewarded, whereas the interaction that 359

violate the constraints are penalized. We derived a constraint form for each 360

antigen-residue suggested by HX-MS to the closest antibody CDR residue by using the 361

so-called KofNConstraint with a flat harmonic potential. A KofNConstraint adds the 362

K lowest values of a total of N constraints to the score, where the N constraints are for 363

each residue in the paratope. 364

As a proof-of-principle, we selected a camelid antibody–ricin complex, 5BOZ [34], to 365

evaluate the utility of constraints. This PDB structure is one of several antibody–ricin 366

complexes for which HX-MS data is available (Weiss, D. D., personal communication). 367

We introduced the data in SnugDock as KofNConstraints (Appendix S8). We then ran 368

a local ensemble docking simulation in SnugDock (Appendix S9) and global rigid-body 369

docking simulation with RosettaDock (Appendix S10) [35], both constrained based on 370

the HX-MS data. We found that, when starting from the bound crystal structure, the 371

global search with constraints produced low-scoring (favorable) models of high quality 372

(according to CAPRI criteria), (Figure 5). When using SnugDock and starting from a 373

modeled antibody and unbound antigen crystal structure, constraints did not result in 374

high quality models. Interestingly, these models were able to produce native-like 375

CDR-H3 loop structures. A full study on the utility of constraining antibody–antigen 376

docking simulations with HX-MS constraints is currently in preparation (Zhou, J., Weis, 377

D. D. & Gray, J. J.). 378

Discussion 379

Here we presented several advancements in RosettaAntibody and SnugDock that 380

improve performance and collectively lay a foundation for further work. We improved 381

the homology modeling stage of RosettaAntibody by (1) automating the template 382

database to increase coverage and reduce errors, and (2) introducing new filters. We 383

advanced the CDR-H3 loop modeling stage by introducing a new loop modeling 384

approach and structural constraints. We updated SnugDock to use a universal 385

FoldTree that enabled the docking of single-domain antibodies, added a new loop 386

modeling, and introduced new constraints. Finally, we implemented scientific 387

benchmarks that regularly test the performance of these protocols. 388

However, major challenges remain that could be the focus of future development: 389

CDR-H3 modeling, a truly universal FoldTree for multi-body docking, and improved 390

selection of non-H3 CDR loop templates. Of these, CDR-H3 loop modeling is the most 391

challenging. Broadly, modeling challenges are binned into two categories: scoring and 392

sampling. We recently showed that native-like antibody loops, when sampled, can be 393

identified by score alone in Rosetta [30]. We also observed that for some targets it is 394

challenging to observe a native-like conformation in the set of all models [6, 23]. Thus, 395

the CDR-H3 loop modeling problem is primarily a sampling challenge. The anecdotal 396
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evidence is further supported by observations that CDR-H3 loops are exceptionally 397

diverse, as has been previously demonstrated by others [29] and shown by us here 398

(Figure 4B). One possible approach to overcoming the sampling challenging is to 399

accelerate the loop modeling step to sample more loop conformations. As the slow stage 400

of generating loop models is scoring and filtering, using a knowledge-based rather than 401

physical potential may provide a viable alternative. For example, KORP is a potential 402

capable of scoring 100,000 12-residue loop decoys in under a minute [36]. Another 403

approach to improving sampling would be a more specialized fragment insertion routine 404

during loop modeling. The method used here relied only on sequence similarity to select 405

fragments of either length 3 or 9 and inserted the fragments randomly throughout the 406

loop modeling simulation. An alternative fragment selection approach would not restrict 407

fragment size and might choose fragments from CDR-H3 or H3-like loops. Fragment 408

insertion would focus on the termini that are more structurally conserved regions, e.g. 409

approximately 90% of antibodies have a C-terminal “kink”. Finally, emerging 410

deep-learning-based approaches may accelerate CDR-H3 loop sampling. [37] The new 411

loop modeling framework has laid the foundation for exploring further strategies. 412

The hierarchical FoldTree introduced here allows more flexibility in SnugDock and 413

enable the docking of single-domain antibodies. However, true multi-body docking is 414

still not possible as the SnugDock approach is a specialized class, separate from the 415

general docking approach in Rosetta. Moving forward, docking approaches in Rosetta 416

should be unified. I.e. the DockingProtocol class should be able to provide all docking 417

functionality, based on user specifications and input. 418

Finally, the homology modeling stage of RosettaAntibody relies on BLAST to select 419

structural templates for query sequences for the various structural regions of an antibody 420

(Table 1). However, most structural regions are small while BLAST is not optimized for 421

aligning short sequences. Thus going forward we must consider alternative approaches 422

to alignment such as custom PSSMs or machine-learning-based approaches [10,11]. 423

Conclusion 424

The role of computational modeling will grow as the throughput of experimental 425

techniques continues to increase. To enable the continued development of the 426

RosettaAntibody and SnugDock protocols, we have simplified their usage, robustified 427

their performance on varied targets, and developed scientific benchmarks. By 428

simplifying the usage of these protocols, future developers can focus on improving the 429

underlying algorithms rather than fiddling with extraneous options. Increasing the 430

utility of these protocols will ensure their longevity as increasingly diverse and 431

challenging pathogens lead to the development and discovery of atypical antibodies. 432

Finally, the availability and regular assessment of scientific benchmarks will encourage a 433

more rapid developmental cycle. 434
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Supporting information 435

Appendix S1. List of antibodies used in the grafting benchmark. 436

437

1dlf ,1fns ,1gig ,1jfq ,1jpt ,1mfa ,1mlb ,1mqk ,1nlb ,1oaq ,1seq ,1x9q ,2adf , 438

2d7t ,2e27 ,2fb4 ,2fbj ,2r8s ,2v17 ,2vxv ,2w60 ,2xwt ,2ypv ,3e8u ,3eo9 ,3g5y , 439

3giz ,3gnm ,3go1 ,3hc4 ,3hnt ,3i9g ,3ifl ,3liz ,3lmj ,3m8o ,3mlr ,3mxw ,3nps , 440

3oz9 ,3p0y ,3t65 ,3umt ,3v0w ,4f57 ,4h0h ,4h20 ,4hpy ,4nzu 441
442

Appendix S2. RosettaAntibody command line. Note constraints are now 443

automatically enabled, to disable constraints, use -antibody:constrain vlvh qq 444

false, -antibody:h3 loop csts lr false and -antibody:h3 loop csts hr false. 445

446

antibody_H3.linuxgccrelease 447

-s model.relaxed.pdb 448

-nstruct 1000 449

-ex1 450

-ex2 451

-extrachi_cutoff 0 452
453

Appendix S3. RosettaAntibody command line with fragments. Note 454

constraints are now automatically enabled, to disable constraints, use 455

-antibody:constrain vlvh qq false, -antibody:h3 loop csts lr false and 456

-antibody:h3 loop csts hr false. 457

458

antibody_H3.linuxgccrelease 459

-s model.relaxed.pdb 460

-nstruct 1000 461

-ex1 462

-ex2 463

-extrachi_cutoff 0 464

-loops:frag_sizes 9 3 1 465

-loops:frag_files 9mers 3mers none 466
467

Appendix S4. SnugDock command line. Note constraints are now automatically 468

enabled, to disable constraints, use -antibody:constrain vlvh qq false, 469

-antibody:h3 loop csts lr false and -antibody:h3 loop csts hr false. 470

471

snugdock.linuxgccrelease 472

-s input.pdb 473

-partners A_HL 474

-nstruct 1000 475

-spin 476

-dock_pert 3 8 477

-detect_disulf false 478

-ex1 479

-ex2aro 480
481
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Appendix S5. SnugDock command line with an ensemble of structures. 482

Note constraints are now automatically enabled, to disable constraints, use 483

-antibody:constrain vlvh qq false, -antibody:h3 loop csts lr false and 484

-antibody:h3 loop csts hr false. Furthermore, structures must be prepared for 485

ensemble docking by docking prepack protocol see (below). 486

487

snugdock.linuxgccrelease 488

-s initial_conformation.pdb 489

-partners A_HL 490

-ensemble1 antigen.list 491

-ensemble2 antibody.list 492

-nstruct 1000 493

-spin 494

-dock_pert 3 8 495

-detect_disulf false 496

-ex1 497

-ex2aro 498
499

Appendix S6. Prepack protocol command line. This will alter the 500

antigen.list and antibody.list files in place. Please note that the chain order in 501

the -partners flag must match the order of chains in the PDB passed by the -s flag 502

and -ensemble1 and -ensemble2. That is to say in the example below the 503

initial conformation.pdb file has the “A” chain first followed by “H” and “L” while 504

the first ensemble is a list of antigen only structures and the second ensemble is a list of 505

antibody only structures. All structures must have matching numbers of residues. 506

507

docking_prepack.linuxgccrelease 508

-s initial_conformation.pdb 509

-partners A_HL 510

-ensemble1 antigen.list 511

-ensemble2 antibody.list 512

-ex1 513

-ex2aro 514

-nstruct 1 515
516

Appendix S7. Sample list file. The ensemble of antibody sturctures in this case 517

comes from differ H3 models, but ensembles can also be generated by FastRelax, for 518

example. 519

520

antibody_h3_model_1.pdb 521

antibody_h3_model_2.pdb 522

antibody_h3_model_3.pdb 523

antibody_h3_model_4.pdb 524

antibody_h3_model_5.pdb 525
526

Appendix S8. Sample KofNConstraint file. This file only contains two 527

constraints as an example. A complete file would contain one KofNConstraint for each 528

antigen residue with HX-MS data. Each KofNConstraint would contain one flat 529

harmonic constraint for each CDR residue. 530

531

KofNConstraint 1 532

AtomPair CA 64A CA 24H FLAT_HARMONIC 9 2 1 533

AtomPair CA 64A CA 25H FLAT_HARMONIC 9 2 1 534

AtomPair CA 64A CA 26H FLAT_HARMONIC 9 2 1 535
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AtomPair CA 64A CA 27H FLAT_HARMONIC 9 2 1 536

AtomPair CA 64A CA 28H FLAT_HARMONIC 9 2 1 537

AtomPair CA 64A CA 29H FLAT_HARMONIC 9 2 1 538

AtomPair CA 64A CA 30H FLAT_HARMONIC 9 2 1 539

AtomPair CA 64A CA 31H FLAT_HARMONIC 9 2 1 540

AtomPair CA 64A CA 32H FLAT_HARMONIC 9 2 1 541

AtomPair CA 64A CA 39H FLAT_HARMONIC 9 2 1 542

AtomPair CA 64A CA 40H FLAT_HARMONIC 9 2 1 543

AtomPair CA 64A CA 41H FLAT_HARMONIC 9 2 1 544

AtomPair CA 64A CA 42H FLAT_HARMONIC 9 2 1 545

AtomPair CA 64A CA 57H FLAT_HARMONIC 9 2 1 546

AtomPair CA 64A CA 58H FLAT_HARMONIC 9 2 1 547

AtomPair CA 64A CA 59H FLAT_HARMONIC 9 2 1 548

AtomPair CA 64A CA 60H FLAT_HARMONIC 9 2 1 549

AtomPair CA 64A CA 64H FLAT_HARMONIC 9 2 1 550

AtomPair CA 64A CA 65H FLAT_HARMONIC 9 2 1 551

AtomPair CA 64A CA 66H FLAT_HARMONIC 9 2 1 552

AtomPair CA 64A CA 67H FLAT_HARMONIC 9 2 1 553

AtomPair CA 64A CA 68H FLAT_HARMONIC 9 2 1 554

AtomPair CA 64A CA 69H FLAT_HARMONIC 9 2 1 555

AtomPair CA 64A CA 107H FLAT_HARMONIC 9 2 1 556

AtomPair CA 64A CA 108H FLAT_HARMONIC 9 2 1 557

AtomPair CA 64A CA 109H FLAT_HARMONIC 9 2 1 558

AtomPair CA 64A CA 110H FLAT_HARMONIC 9 2 1 559

AtomPair CA 64A CA 111H FLAT_HARMONIC 9 2 1 560

AtomPair CA 64A CA 112H FLAT_HARMONIC 9 2 1 561

AtomPair CA 64A CA 113H FLAT_HARMONIC 9 2 1 562

AtomPair CA 64A CA 114H FLAT_HARMONIC 9 2 1 563

AtomPair CA 64A CA 115H FLAT_HARMONIC 9 2 1 564

AtomPair CA 64A CA 116H FLAT_HARMONIC 9 2 1 565

AtomPair CA 64A CA 117H FLAT_HARMONIC 9 2 1 566

AtomPair CA 64A CA 118H FLAT_HARMONIC 9 2 1 567

AtomPair CA 64A CA 119H FLAT_HARMONIC 9 2 1 568

AtomPair CA 64A CA 120H FLAT_HARMONIC 9 2 1 569

AtomPair CA 64A CA 121H FLAT_HARMONIC 9 2 1 570

AtomPair CA 64A CA 122H FLAT_HARMONIC 9 2 1 571

AtomPair CA 64A CA 123H FLAT_HARMONIC 9 2 1 572

AtomPair CA 64A CA 137H FLAT_HARMONIC 9 2 1 573

AtomPair CA 64A CA 138H FLAT_HARMONIC 9 2 1 574

END 575

KofNConstraint 1 576

AtomPair CA 65A CA 24H FLAT_HARMONIC 9 2 1 577

AtomPair CA 65A CA 25H FLAT_HARMONIC 9 2 1 578

AtomPair CA 65A CA 26H FLAT_HARMONIC 9 2 1 579

AtomPair CA 65A CA 27H FLAT_HARMONIC 9 2 1 580

AtomPair CA 65A CA 28H FLAT_HARMONIC 9 2 1 581

AtomPair CA 65A CA 29H FLAT_HARMONIC 9 2 1 582

AtomPair CA 65A CA 30H FLAT_HARMONIC 9 2 1 583

AtomPair CA 65A CA 31H FLAT_HARMONIC 9 2 1 584

AtomPair CA 65A CA 32H FLAT_HARMONIC 9 2 1 585

AtomPair CA 65A CA 39H FLAT_HARMONIC 9 2 1 586

AtomPair CA 65A CA 40H FLAT_HARMONIC 9 2 1 587

AtomPair CA 65A CA 41H FLAT_HARMONIC 9 2 1 588

AtomPair CA 65A CA 42H FLAT_HARMONIC 9 2 1 589

AtomPair CA 65A CA 57H FLAT_HARMONIC 9 2 1 590

AtomPair CA 65A CA 58H FLAT_HARMONIC 9 2 1 591

AtomPair CA 65A CA 59H FLAT_HARMONIC 9 2 1 592
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AtomPair CA 65A CA 60H FLAT_HARMONIC 9 2 1 593

AtomPair CA 65A CA 64H FLAT_HARMONIC 9 2 1 594

AtomPair CA 65A CA 65H FLAT_HARMONIC 9 2 1 595

AtomPair CA 65A CA 66H FLAT_HARMONIC 9 2 1 596

AtomPair CA 65A CA 67H FLAT_HARMONIC 9 2 1 597

AtomPair CA 65A CA 68H FLAT_HARMONIC 9 2 1 598

AtomPair CA 65A CA 69H FLAT_HARMONIC 9 2 1 599

AtomPair CA 65A CA 107H FLAT_HARMONIC 9 2 1 600

AtomPair CA 65A CA 108H FLAT_HARMONIC 9 2 1 601

AtomPair CA 65A CA 109H FLAT_HARMONIC 9 2 1 602

AtomPair CA 65A CA 110H FLAT_HARMONIC 9 2 1 603

AtomPair CA 65A CA 111H FLAT_HARMONIC 9 2 1 604

AtomPair CA 65A CA 112H FLAT_HARMONIC 9 2 1 605

AtomPair CA 65A CA 113H FLAT_HARMONIC 9 2 1 606

AtomPair CA 65A CA 114H FLAT_HARMONIC 9 2 1 607

AtomPair CA 65A CA 115H FLAT_HARMONIC 9 2 1 608

AtomPair CA 65A CA 116H FLAT_HARMONIC 9 2 1 609

AtomPair CA 65A CA 117H FLAT_HARMONIC 9 2 1 610

AtomPair CA 65A CA 118H FLAT_HARMONIC 9 2 1 611

AtomPair CA 65A CA 119H FLAT_HARMONIC 9 2 1 612

AtomPair CA 65A CA 120H FLAT_HARMONIC 9 2 1 613

AtomPair CA 65A CA 121H FLAT_HARMONIC 9 2 1 614

AtomPair CA 65A CA 122H FLAT_HARMONIC 9 2 1 615

AtomPair CA 65A CA 123H FLAT_HARMONIC 9 2 1 616

AtomPair CA 65A CA 137H FLAT_HARMONIC 9 2 1 617

AtomPair CA 65A CA 138H FLAT_HARMONIC 9 2 1 618

END 619
620

Appendix S9. SnugDock command line with constraints and motif dock 621

score (MDS). Additional constraints can be added to both the low- and 622

high-resolution stages of SnugDock. MDS is a special score function for the 623

low-resolution stage of docking. It has been found to improve performance in 624

protein–protein complex docking. It can be used in SnugDock as well. 625

626

snugdock.linuxgccrelease 627

-s initial_conformation.pdb 628

-partners A_HL 629

-ensemble1 antigen.list 630

-ensemble2 antibody.list 631

-nstruct 1000 632

-spin 633

-dock_pert 3 8 634

-detect_disulf false 635

-ex1 636

-ex2aro 637

-constraints:cst_fa_file high -res.cst 638

-constraints:cst_file low -res.cst 639

-docking_low_res_score motif_dock_score 640

-mh:path:scores_BB_BB /path/to/motif_dock/score_data_ 641

-mh:score:use_ss1 false 642

-mh:score:use_ss2 false 643

-mh:score:use_aa1 true 644

-mh:score:use_aa2 true 645
646

Appendix S10. Global docking command line. Exemplary flags for global 647
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docking with constraints. 648

649

docking_protocol.linuxgccrelease 650

-s initial_complex.pdb 651

-nstruct 1000 652

-spin 653

-partners H_A 654

-randomize1 655

-randomize2 656

-use_ellipsoidal_randomization true 657

-detect_disulf true 658

-rebuild_disulf true 659

-ex1 660

-ex2aro 661

-constraints:cst_file low -res.cst 662

-constraints:cst_fa_file high -res.cst 663
664

Table S1 Target antibody CDR-H3 loops for the antibody modeling 665

scientific benchmark.

PDB ID CDR-H3 Length Difficulty
1DLF 12 Easy
4HPY 13 Easy
2VXV 14 Medium
3M8O 10 Medium
1SEQ 16 Hard
4HPY 18 Hard

666

Table S2 Target antibody–antigen complexes for the docking scientific 667

benchmark.

PDB ID CDR-H3 Length Difficulty
1JPS 8 Easy
1MLC 7 Easy
1AHW 8 Medium
1ZTX 10 Medium
2AEP 9 Hard
2JEL 9 Hard

668

Figure S1 Q–Q hydrogen bond distances observed in the 669

RosettaAntibody database. Left: The histogram depicts the observed distances 670

between the oxygen and nitrogen atoms of light chain residue Q38 and heavy chain 671

residue Q39. The distribution was fit by kernel density estimate using Gaussian kernels. 672

Right: The negative logarithm of the probability is proportional to the energy. A 673

harmonic function was fit in the range of 2.5 Å to 3.1 Å.

674

May 8, 2020 17/21

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.26.116210doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.26.116210
http://creativecommons.org/licenses/by/4.0/


Figure S2 Proline filter has minimal effect on grafted model RMSDs. 675

Comparison of the non-H3 CDR loop RMSDs before and after the application of a 676

proline filter. The filter prevents the use of a template when there is a mismatched 677

proline residue with the query. The differences show that most loops are unaffected. In 678

one case for the CDR H2 loop, the loop is model is worse following the application of 679

the filer (moving 2 Å further from the native). This is exclusively due to the presence of 680

an glycine at the start of the target loop (PDB ID: 3LMJ). In the initial model (PDB 681

ID 6EIK, no proline filter), the template also has a glycine, correctly modeling the 682

initial loop structure, whereas the proline-filter-selected template (PDB ID 5LSP) lacks 683

this initial glycine and cannot accurately model the loop start resulting in a cascading 684

worsening of the loop model. All other loops show minor variations within 1 Å.

685

Figure S3 The Q–Q constraint increases the fraction of models that form 686

hydrogen bonds. We generated 500 decoys of 6 antibodies with solved structures 687

(Table S1) either without or with a flat harmonic constraint between the relevant Gln 688

residues. Left: The distances between the nitrogen and oxygen atoms of residues Q38 of 689

the light chain and Q39 of the heavy chain were measured and compared to the native 690

distributions in our antibody database. Right: Each decoy was analyzed for presence of 691

the two possible hydrogen bonds using PyRosetta’s get hbonds() function. The fraction 692

of decoys forming both hydrogen bonds is shown for each antibody (color-coded).

693

Figure S4 The Q–Q constraint does not appear to have a strong effect on 694

CDR-H3 loop modeling. A funnel plot (total score versus CDR-H3 loop RMSD) 695

comparison of RosettaAntibody on six benchmark antibodies does not show a 696

significant difference after the incorporation of a flat harmonic. The constraint 697

seemingly improves performance on targets 2VXV and 4F57, but worsens it on 3M8O.

698
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36. López-Blanco JR, Chacón P. KORP: knowledge-based 6D potential for fast
protein and loop modeling, Bioinformatics 2019;35: 3013-–3019.

37. Ruffolo JA, Guerra C, Mahajan SP, Sulam J, Gray JJ. Geometric Potentials from
Deep Learning Improve Prediction of CDR H3 Loop Structures. bioRxiv
https://doi.org/10.1101/2020.02.09.940254 (2020).

May 8, 2020 21/21

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.26.116210doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.26.116210
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.26.116210doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.26.116210
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.26.116210doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.26.116210
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.26.116210doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.26.116210
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.26.116210doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.26.116210
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.26.116210doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.26.116210
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.26.116210doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.26.116210
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.26.116210doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.26.116210
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.26.116210doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.26.116210
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.26.116210doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.26.116210
http://creativecommons.org/licenses/by/4.0/

