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18 Abstract: 

19 The phosphatidylinositol (PI) cycle is central to eukaryotic cell signaling. Its complexity, due 

20 to the number of reactions and lipid and inositol phosphate intermediates involved makes it 

21 difficult to analyze experimentally. Computational modelling approaches are seen as a way 

22 forward to elucidate complex biological regulatory mechanisms when this cannot be achieved 

23 solely through experimental approaches. Whilst mathematical modelling is well established 

24 in informing biological systems, many models are often informed by data sourced from 

25 different cell types (mosaic data), to inform model parameters. For instance, kinetic rate 

26 constants are often determined from purified enzyme data in vitro or use experimental 

27 concentrations obtained from multiple unrelated cell types. Thus they do not represent any 

28 specific cell type nor fully capture cell specific behaviours. In this work, we develop a model 

29 of the PI cycle informed by in-vivo omics data taken from a single cell type, namely platelets. 

30 Our model recapitulates the known experimental dynamics before and after stimulation with 

31 different agonists and demonstrates the importance of lipid- and protein-binding proteins in 

32 regulating second messenger outputs. Furthermore, we were able to make a number of 

33 predictions regarding the regulation of PI cycle enzymes and the importance of the number of 

34 receptors required for successful GPCR signaling. We then consider how pathway behavior 

35 differs, when fully informed by data for HeLa cells and show that model predictions remain 

36 relatively consistent. However, when informed by mosaic experimental data model 

37 predictions greatly vary. Our work illustrates the risks of using mosaic datasets from 

38 unrelated cell types which leads to over 75% of outputs not fitting with expected behaviors. 

39

40 Authors summary

41 Computational models of cellular complexity offer much in terms of understanding cell 

42 behaviors and in informing experimental design, but their usefulness is limited in them being 
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43 built with mosaic data not representing specific cell types and tested against limited 

44 experimental outputs. In this work we demonstrate an approach using quantitative proteomic 

45 datasets and temporal experimental data from a single cell type (platelets) to inform kinetic 

46 rate constants and protein concentrations for a mathematical model of a key signaling 

47 pathway - the phosphatidylinositol (PI) cycle; known for its central role in numerous cell 

48 functions and diseases. After using our model to make novel predictions regarding how 

49 aspects of the pathway are regulated, we demonstrate its versatile nature by utilising 

50 proteomic data from other cell types to generate similar predictions for those cells while 

51 highlighting the pitfalls of using mosaic data when constructing computational models. 

52

53

54 Introduction

55 The phosphatidylinositol (PI) cycle is a key component of the signaling machinery 

56 downstream of receptor protein-tyrosine kinases (RTK) and G protein-coupled receptors 

57 (GPCR). The cycle can be found in all eukaryotic cells, is the source of multiple second 

58 messengers through the actions of phospholipase C (PLC) and phosphoinositide 3-kinase 

59 (PI3K) and is assumed to function the same way in different cell types. The universal nature 

60 of the pathway means it is of wide interest, but its multiple components are technically 

61 difficult to measure, making it a good candidate to explore using mathematical modelling 

62 approaches. There has been a number of prior attempts to model aspects of the PI cycle 

63 looking at portions of the signaling cascade using ordinary differential equations (ODEs), 

64 informed to a large degree by data from different cell types [1–3]. We have been unable, 

65 however, to combine them into a single model of the complete pathway and recapitulate the 

66 different published biological outputs. This issue applies to a number of cell signaling 

67 models, with their development being hampered by a lack of cell type specific biological data 
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68 to inform kinetic rate constants and protein concentrations. In particular, we note current cell 

69 signaling pathway models often lack in-vivo cell-specific time course data to inform model 

70 parameter values. They also usually incorporate purified enzyme kinetic data which may bear 

71 little resemblance to the in-vivo kinetics [4], or experimental values obtained from multiple, 

72 unrelated, cell types, with reactant concentrations often estimated. Signaling can be cell 

73 context dependent producing specific responses to stimuli and “mosaic” models. Although 

74 useful in investigating and informing the general biological processes involved, models 

75 informed in these ways may not necessarily recapitulate cell specific dynamic behaviors.

76

77 We postulate that cell-type specific datasets generated by omics approaches coupled to time-

78 course analysis of the gene expression or protein modifications would provide a more 

79 consistent approach to informing mathematical models. This would allow us to focus on 

80 determining in-situ reaction kinetic rate constants which once obtained should be possible to 

81 use for other cell types as long as specific quantitative proteomic data are available. Here we 

82 describe a PI cycle model making use of a quantitative proteomic dataset [5] and 

83 experimental phospholipid (PL) and inositol phosphate (IP) time-course data produced in 

84 platelets, under similar conditions (Fig 1A) [6–11]. We use the model to demonstrate the 

85 importance of lipid-binding proteins in regulating homeostasis and to inform the regulation of 

86 several key proteins in platelets. We next investigate how the model can be used to simulate 

87 the PI cycle in other cell types. In doing so we leave our rates unchanged but inform the 

88 model with specific cell-type proteomic data (Fig 1B). Finally, we demonstrate the pitfalls of 

89 using mosaic data to inform such a model and how it can lead to erroneous conclusions. We 

90 discuss how this limits the use of combining cell signaling models and directing the design of 

91 future experiments. 

92
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93 Fig 1. Graphical summary of the different modelling steps. A: The core model was 

94 produced using proteomics and signaling data (obtained with a single GPCR ligand, 

95 Thrombin) obtained for human platelets and used to generate predictions regarding PI cycle 

96 driven cell signaling. B: mouse platelet and nucleated cell proteomic data (Cell type B) were 

97 used to populate our Core Model, generate output predictions and analyse the impact of using 

98 data from different origins in a single model. 

99

100 Results

101 We first sought to combine previously published mathematical models of the PI pathway in 

102 order to construct a model of the pathway in platelets. Whilst the structure of the pathways 

103 and their respective mathematical formulations were generally similar, how the respective 

104 reaction rate constants and concentrations were informed varied greatly. For instance, values 

105 were not consistently reported both in terms of their magnitude and units, it was not always 

106 clear how all values had been informed and values to inform cell type specific models had 

107 been obtained from data related to different cell types. We also sought to consider a previous 

108 model of PI signaling in platelets [1], which we could extend to account for our needs. We 

109 found that whilst the model had been useful in informing platelet biology, it was informed 

110 using a range of different cell type data and could not meet our needs.

111

112 In light of these points and knowing that considerable biological data for informing platelet 

113 biology is now available, we thus decided to formulate a complete model of the PI cycle in 

114 platelets, exclusively using specific parameters for PI cycle pathway proteins, phospholipid 

115 substrates and resulting second messengers (Fig 2). In respect of platelet specific data, 

116 literature mining revealed three quantitative proteomes for human and mouse platelets and 

117 HeLa cells that contained data on all the key proteins required for the PI cycle to function 
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118 [5,12,13]. Further literature mining revealed that detailed sets of time-resolved data on 

119 complexes formed in the PI cycle pathway were also available for human platelets (Fig 3A, 

120 3C, S1 Fig). Using this information, we first developed a human platelet “Core Model” that 

121 focuses on G protein-coupled receptor (GPCR) signaling through Gq, leading to PLC 

122 activation and production of inositol 1,4,5-trisphosphate (IP3) second messenger. 

123 Phosphatidylinositol (3,4,5)-trisphosphate (PIP3), produced via Gi and PI3K, and other 

124 PIP3-derived PL were also monitored, but their highest levels were systematically two orders 

125 of magnitude lower than PL and Inositol (Ins) [9,14], (Fig 2A, S1 Fig,  S1Table). As such we 

126 assumed they are unlikely to significantly alter the PLC results and conclusions and 

127 subsequently were excluded in the model we developed. 

128

129 Fig 2. Schematic illustration of the PI cycle in mammalian cells and model iterations. A: 

130 Schematic of the GPCR ligands and reactions in platelets covered by our model (blue). PI3K-

131 dependent (green) and G13-dependent (grey) reactions were not included in the core model. 

132 Abbreviations: Phosphatidylinositol (PI), Inositol (Ins), Phosphatidylinositol-3,4,5-

133 trisphosphate (PIP3), Phosphatidylinositol-4,5-bisphosphate (PI45P2), Phosphatidylinositol-

134 3,4-bisphosphate (PI34P2), Phosphatidylinositol-4-phosphate (PI4P), Inositol trisphosphate 

135 (IP3), Diacylglycerol (DAG), Phosphatidic Acid (PA). B: Early iterations used a simplified 

136 Core Model to estimate the phospholipids synthesis rates in inactivated cells (+PLC) and 

137 activated cells (+PLCa). Rate labels are indicated as either basal rates (k) or activated rates 

138 (k’). C: The completed Core Model schematic including lipid binding proteins.  

139

140 Fig 3. Comparison of experimental results and model simulations. A: PI and Ins 

141 experimental results (orange dots with SD) and simulations (blue curves) after Thrombin 

142 stimulation. Secondary signaling by other, secreted, GPCR ligands is taken into account and 
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143 assumed to happen immediately. B: Early model iterations simulations showing the 

144 stabilizing impact of lipid binding proteins (BP) on the dynamics of PI45P2, PI4P and PA 

145 before and after activation with Thrombin. The numbers of BP and the ON/OFF rates of their 

146 binding to their relevant PL were determined using parameter scans. C: The final simulations 

147 in our completed core model are shown together with the experimental results. Experimental 

148 results are shown with standard deviations when available. (References, SD and model 

149 parametisation procedures in Methods and Supplementary Informations). Experimental data: 

150 n=10, SEM are shown. Activation is indicated by arrow. 

151

152 The Core Model – The human platelet model

153 We constructed an ODE model of the PI cycle in human platelets based on the model shown 

154 in Figure 2A, which was solved in COPASI (v4) [15]. Full details on how the model was 

155 developed, parameterized and solved are presented in the Supplementary Information. 

156 Briefly, in order to accurately inform the full model parameterization and given the full 

157 model consisted of 35 parameter values, we decided to use an iterative approach of reduced 

158 models to both decrease the size of the parameter space being determined, whilst increasing 

159 confidence in the parameter values determined. We started with the most simplified model 

160 shown in figure 2B, and via model-data fitting using the parameter estimation algorithm 

161 available in COPASI, used this to inform the relevant parameter values. This model was then 

162 extended in the next iteration with a number of additional reactions, which were chosen so as 

163 to not greatly increase the size of the undetermined parameter set. Each model was informed 

164 where possible with the previously determined values, whilst new unknown parameter values 

165 were again determined. Iterative steps in building up the complexity of our model in this way, 

166 allowed us to inform the full model pathway as detailed in Table S5, S1 Fig and the 

167 Supplementary Information.
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168

169 Phospholipid binding proteins stabilize phospholipids variations

170 An important point that arose during the development of the Core Model, was that solely 

171 adapting the rates of production or recycling of different PL to switch from non-actived to 

172 activated states, and back again did not lead to a biologically realistic solution. We concluded 

173 that the problem was linked to the availability of PL to the enzymes in addition to the rates at 

174 which they were being used in the cycle. It is known that PI4P and PI45P2 do not alter 

175 dramatically upon stimulation from their homeostatic levels [2,6,16,17]. We hypothesized 

176 that this might be due to the presence of PL binding proteins that would sequester membrane 

177 phospholipids through protein-lipid interactions, which have been shown to be important for 

178 numerous cell functions [18].

179

180 We first focused on PI45P2-binding proteins and added these to our model with reversible 

181 binding reactions with PL to control its use by PLC (Fig 2C, S1 and S2 Figs.). Parameter 

182 scans of the amount of binding proteins and their binding rates predicted that to correctly 

183 simulate temporal PI45P2 changes, the number of binding proteins should be around 1.3 x106 

184 per cell. A detailed search for known PI45P2-binding proteins in the proteome dataset [5] 

185 revealed, in close agreement with our prediction, a value of 1.12 x106 per cell (S2 Table). 

186 Similar methodologies were used for PA, PI4P and DAG, and led to model results matching 

187 the experimental data (Fig 3B-C, S2 Fig).

188

189 Model predictions of the regulation of PI cycle enzymes

190 PI45P2 and PI4P homeostatic levels in human platelets are similar, at around 1.2-1.8 x 106 

191 molecules per cell respectively, while the estimated amount of plasma membrane PI is 

192 around 6 x 106 molecules per cell (S1 Table). This suggests unbalanced phosphorylation 
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193 /dephosphorylation reactions between PI and PI4P and balanced reactions between PI4P and 

194 PI45P2 in inactivate cells. The addition of PI4P, its binding proteins and its metabolizing 

195 enzymes PI4K, OCRL1 and SAC1, could only achieve the correct dynamics of PI4P, PI45P2 

196 and PI observed both before and after activation when the rates of the PI4K and OCRL1 were 

197 regulated in a manner similar to PIP5K i.e. all three enzymes have similar low kinetic levels 

198 before activation, which are increased upon GPCR activation.  In contrast, the SAC1 kinetic 

199 rate constant needed to remain unchanged after GPCR activation to recapitulate the correct 

200 PL dynamics. 

201

202 In conclusion, our results suggest that the regulation of the PI cycle in both inactive and 

203 activate cells is achieved by mechanisms differentially controlling the enzymes involved. 

204 PI4K and PIP5K have been suggested to be scaffolded by proteins at the membrane, 

205 exchanging PL almost directly [19]. Our simulations suggest that OCRL1 is also part of this 

206 complex or co-localises in the plasma membrane, being then regulated in concert with the 

207 kinases. SAC1, however, is regulated differently than the other PI cycle enzymes which leads 

208 to the hypothesis that it may not co-localize with them.

209

210 The final step of our model development was to reintroduce PLC products, IP3 and DAG, 

211 as intermediates for Ins and PA. While DAG and PA levels, regulated by two simple 

212 reactions and their respective binding proteins could be easily modeled, cytosolic IP3 and Ins 

213 levels could not be correctly simulated by a single direct reaction. We were only able to 

214 match their respective dynamics by adding an intermediate step which removes IP3 rapidly, 

215 reflecting the production of IP4 by the kinase IP3Kb and IP2 by the PL phosphatase INPP5. 

216 This is followed by slower production of Ins by a complex set of reversible reactions which 

217 we simplified in our model and wrote as a single reaction (Fig 2A and 2C, S1F Fig) [20]. 
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218

219 Gq-coupled receptor number governs the strength of IP3 production.

220 We chose to model the PI cycle because of its central role in signalling cascades triggered by 

221 a variety of GPCR agonists. One issue with this approach is that the strength of the signalling 

222 is highly variable depending on the type of receptor involved, with some researchers arguing 

223 that differences in molecular identity, biological activation processes and post-activation 

224 recycling of the receptors are responsible for this variability. Kinetic studies, however, 

225 demonstrate that GPCR signalling is primarily and rapidly down-regulated at the level of the 

226 receptors by phosphorylation, and by inactivation of their direct partners, the G proteins, and 

227 the RGS and PLC proteins [21,22]. Together the evidence suggests that the strength of the 

228 GPCR signalling is actually a function of receptor abundance [1,23].

229

230 The experimental data we used to inform our model kinetic rate constants were obtained after 

231 Thrombin activation of the platelets. However, the experimental methodologies used by the 

232 different authors suggest that secondary GPCR signalling through secreted ADP and TxA2 

233 release was also activated [6–11,16]. We originally designed our Core Model to account for 

234 the activation of all their respective Gq-coupled receptors, namely PAR1/4 for Thrombin, 

235 P2Y1 for ADP and TP for Thromboxane (Fig 4A-B, RGq =5000, S4 Table). By solely 

236 reducing the receptor numbers to simulate only ADP activation via the P2Y1 receptor (Fig 

237 4B, RGq =150), we were able to simulate the experimentally observed IP3 output supporting 

238 the claim that, in the case of G-coupled receptors, the strength of the signalling is indeed 

239 related to the number of receptors being activated [24] (Fig 4B, S4 Table). 

240

241 Fig 4. IP3 simulations with differential receptor numbers. A: IP3 experimental results 

242 (orange dots with SD) and simulations (blue curves) after Thrombin stimulation. B: 
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243 simulations of the impact of Gq-coupled receptor numbers (RGq) on IP3 production. RGq 

244 numbers reflect primary and secondary GPCR ligand activation (Thrombin followed by 

245 TxA2 and ADP: RGq = 5000; TxA2 followed by secreted ADP: RGq= 1650; ADP alone: 

246 RG1=150). C: comparison of known IP3 and calcium mobilization results in platelets. in 

247 absence of experimental data on IP3 production after TxA2 activation, we are using known 

248 cytosolic calcium concentrations as a proxy [25]. The simulations of IP3 release from a 

249 receptor number corresponding to a TxA2/ ADP activation (RGq = 1650) show an 

250 intermediate response as is also seen for calcium mobilization experimental data.

251

252 We could not find data regarding IP3 levels after TxA2 activation, however, IP3 triggers 

253 calcium cellular mobilization and both experimental and mathematical models have shown a 

254 relationship between cytosolic IP3 and calcium levels [17,26]. Quantification of calcium in 

255 platelets shows that TxA2-mediated activation leads to half of calcium being mobilized 

256 compared to Thrombin. ADP activation only triggers a fraction of IP3 and calcium release 

257 compared to Thrombin and TxA2 [25,27] (Fig 4C). Interestingly, the number of TP and 

258 P2Y1 receptors which would be involved in a TxA2 primary activation followed by the 

259 secreted ADP secondary activation is just under half the number of the full Gq-coupled 

260 receptor complement (S4 Table). When modeling the likely IP3 output following the 

261 activation of TP and P2Y1 receptors, we obtained a predicted peak value for IP3 roughly 

262 half that obtained with Thrombin (Fig 4B, RGq=1650). This supports the hypothesis that IP3 

263 levels regulate the intensity of calcium release in a GPCR receptor number dependent 

264 manner. 

265

266 Applying the Core Model to other cell types
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267 Given the universality of GPCR signaling and the PI cycle in mammalian cells we assume 

268 that the network structure and kinetic rate constants do not vary greatly between platelets and 

269 other cell types. In addition, IP3 dynamics and PIP2 stability have been described in other 

270 cell types and show comparable behaviors to those observed in platelets [2,17]. We thus 

271 hypothesised that we should be able to simulate the PI cycle and IP3 production in other cells 

272 and obtain similar output dynamic patterns by using cell specific protein initial concentration 

273 values, whilst leaving our model structure and kinetic rates unchanged (Fig 1B). 

274

275 Application to the mouse platelet using proteome data. Before proceeding to consider how 

276 applicable our model was in nucleated cells, we first used data from the mouse platelet 

277 proteome, to check the model behavior [12]. We corrected for the difference in size of the 

278 reaction compartments (25% of those in human platelets, S4 Table) but left the ODEs 

279 untouched. Despite the protein concentrations being sometimes very different from their 

280 human counterparts, the simulations show almost identical temporal behaviors of the 

281 different PL and IP as for human platelets and levels in line with the initial PL abundancy 

282 (S3A Fig).

283

284 Application to nucleated cells using cell-specific data. To demonstrate the wider utility of 

285 our model we next created a generic simulated nucleated cell, using an average volume of 

286 2000 fl and calculated the size of the reaction compartments as described earlier. PL, IP and 

287 lipid-binding protein numbers were adapted from the human platelet data (S4 Table). We first 

288 simulated the behavior of an enlarged platelet by populated our nucleated PI cycle model 

289 with the protein copy numbers of a human platelet scaled to match the new reaction volumes 

290 (labelled pltx17). Next, protein copy numbers from the epithelial adenocarcinoma HeLa 

291 human cell line proteome dataset were used to populate the same model [13]. In order to 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.26.116251doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.26.116251
http://creativecommons.org/licenses/by/4.0/


13

292 compare the results and in the absence of common data regarding GPCRs, the activation in 

293 these simulations were performed using 85000 molecules of GPCRs, i.e. corresponding to the 

294 same concentration of receptors for a normal human platelet. Given that HeLa cell protein 

295 numbers are drastically different from the enlarged platelet simulation, we expected a 

296 radically different series of outputs. HeLa cell simulations did indeed show some differences 

297 in the peak concentrations of the PLs and IPs we surveyed compared to the large platelet 

298 simulation, but overall the temporal dynamics were similar (Fig 5), suggesting our model 

299 solutions are robust to changes in protein concentration and exhibit the correct PLC-

300 dependent IP3 signaling response.

301

302 Fig 5. Application to other cell types. A: GPCR-PLC simulations using Hela proteome 

303 dataset (dashed line, (12)) and compared to a hypothetical large platelet (pltx17, continuous 

304 line). Reactions and kinetic parameters are unchanged from the original core model; reaction 

305 volumes, initial PL numbers and their binding proteins were adapted as described in Methods 

306 and Table S4. Simulations are run for 5000 seconds with activation occurring at 1000 sec 

307 (arrows). 

308

309 The effect of using mosaic proteomic datasets for informing model parameters. 

310 After demonstrating the portability of our PI cycle pathway model to other cell types and its 

311 robustness when parameterised with cell specific protein numbers, we wanted to investigate 

312 its response when informed by a mosaic dataset. Using our nucleated cell model, we used a 

313 proteomic dataset from the bone osteosarcoma epithelial U2OS human cell lines with only 

314 partial data regarding the PI cycle enzymes and missing the concentration of Gq, IP3 

315 processing enzymes (IP3Kb and INPP5), OCRL1, PI4K and cPLA2 proteins [28] (S4 Table). 

316 HeLa protein concentrations were used to inform the missing values. The resulting 
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317 simulations led to PI, Ins and PA concentration profiles similar to the Hela simulations 

318 although the concentration of PI45P2, PI4P and IP3 were much lower than expected for a cell 

319 of this size. IP3 production is significantly affected and unlikely to lead to a realistic outcome 

320 (Fig 6). We then utilised a series of parameters scans, to inform those protein concentrations 

321 for which values were not available. Whilst we were able to find protein copy numbers which 

322 meant Core Model simulations could replicate the previously modelled HeLa cell behaviour 

323 (S4 Table, Fig 6), the use of partial data from a different cell type would not necessarily 

324 provide the correct outputs.

325

326 Fig 6. Simulations with mosaic proteome datasets. The values for PI4K, OCRL1, Gq, 

327 cPLA2 and IP3 modifying enzymes are missing from the U2OS proteome. We performed a 

328 series of scans to estimate the missing protein numbers (“scanned”) that allow results similar 

329 to those obtained with the HeLa dataset (“HeLa”) and compared them to a mosaic dataset 

330 created by using HeLa protein numbers to replace the missing U2OS numbers (“mosaic”). 

331 The results show that the mosaic dataset generates outputs for PI45P2 (PIP2), PI4P and IP3 

332 are unlikely to lead to a cell signaling response.

333

334 We then considered random combinations of all the protein concentrations from the U2OS 

335 and HeLa datasets. The simulations showed no consistency for any PL or IP we surveyed, 

336 with 75% leading to incorrect behaviours (Fig 7). Whilst 25% of the results produced the 

337 correct behaviour for IP3, these simulations did not always lead to correct outputs for the 

338 other PLs we surveyed such as PI4P or PA. Ultimately this suggests that combinations of 

339 protein concentration values may lead to incorrect model approximations of the underlying 

340 protein concentrations. 

341
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342 Fig 7. Simulation results of systematic “mix-and-match” of protein numbers between 

343 HeLa and U2OS cells proteomic data. The copy numbers of the 12 key proteins surveyed 

344 in our model (Gq, smG, PLC, the combined IP3 modifying enzymes, DGK, LPP, CDIPT, 

345 OCRL1, PI4K, PIP5K, SAC1 and cPLA2) were taken from either the HeLa or U2OS 

346 proteome (12, 34), or from the calculated numbers for U2OS missing data and leading to the 

347 simulations shown in figure S4A, and systematically mixed using Parameter Scans. 75% of 

348 the 4096 simulations obtained lead to incorrect dynamic behaviours for the outputs monitored 

349 with our model. Simulations are run for 5000 seconds with activation occurring at 1000 sec 

350 (arrows), #: molecules per cell, s: seconds. 

351

352 Together these results suggest that combining data from different cell types does not 

353 necessarily lead to results that are consistent in simulating PI cycle dynamics. Indeed, it is 

354 highly likely that in the majority of cases, model simulations are unlikely to agree with 

355 experimentally observed results for specific cell types. To further test this result we 

356 undertook a sensitivity analysis to determine the influence of initial protein levels on the 

357 production of IP3. This revealed both commonalities and specific patterns for each cell type 

358 (S3B Fig). Specifically, similar changes in the concentration of PLC PIP5K and OCRL1 

359 lead to distinctive IP3 outputs in the different simulated cells.

360

361 Thus, we conclude that although our model can be populated with protein concentrations 

362 sourced from different cell types, to describe functional outputs, it can lead to erroneous 

363 conclusions.

364

365 Discussion 
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366 Conventionally, mathematical models of cell signalling pathways have been informed by data 

367 taken from a range of cell types. This is often a result of data not being available for a 

368 specific cell type to inform all kinetic rate constants and concentrations. Here we developed a 

369 biological model of the PI cycle entirely based on a single quantitative proteome and multiple 

370 sets of experimental data generated under the same conditions for a single cell type, the 

371 human platelet. This allowed us to focus on determining in situ kinetic rate parameters of the 

372 reactions governed by Gq-coupled receptors. In addition, and in contrast to most other 

373 published cell signalling models, we have considered how the system behaviour varies from 

374 an inactive to active state. This has allowed us to reveal a number of mechanisms involved in 

375 the maintenance of the observed steady-state before activation. 

376

377 Previous mathematical models have largely ignored the cyclic generation of PI, assuming 

378 instead that it was available at all times  [1–3]. We postulated that signalling events lead to 

379 the depletion of PI on the plasma membrane and termination of the signalling, while leaving 

380 a pool of PI on ER and Golgi membranes. Using our model, we were able to show that while 

381 there is a constant exchange of PI between the different membranes, the rate of plasma 

382 membrane PI replenishment does not seem to be modified by activation events. This leads to 

383 the conclusion that PI distribution on the different cell membranes, and the rate at which it 

384 can be replenished at the plasma membrane, is a major way of regulating the duration of cell 

385 signalling. 

386

387 While it has been suggested that sequestering of membrane lipids by binding proteins is an 

388 integral part of cell homeostasis and activation [18,18,29,30], the involvement of PL-binding 

389 proteins in cell signalling regulation is, however, usually considered only after cell 

390 stimulation. We demonstrated that PL-binding proteins also play a stabilising role prior to 
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391 signalling events, functioning as cellular sinks and limiting the availability of lipids to 

392 modifying enzymes such as PLC and PI3K; effectively inhibiting signalling processes. After 

393 signalling is triggered, PL-binding proteins also regulate the maximum amount of available 

394 PL for reactions leading to intermediates such as IP3 and DAG. Simulations of PI45P2-

395 binding proteins correspond to the peak quantity of PI45P2 monitored experimentally and we 

396 predict that this is likely to be true for all other PL-binding proteins.

397

398 Next, our model, formulated using thrombin-stimulated platelet data, was able to recapitulate 

399 known IP3 outputs for other GPCR ligands by simply replacing the receptor numbers for 

400 each ligand with their respective known values. These results support the still-debated 

401 hypothesis that the number of GPCRs, rather than their molecular identity, regulates the 

402 intensity of this type of signalling [1,23]. 

403

404 We also used our model to produce a series of predictions regarding the regulation of the 

405 major enzymes involved in the central PI45P2 -PI4P -PI axis of the PI cycle. We predicted 

406 that three out of the four enzymes, namely PI4K, PIP5K and OCRL1 have their activities up- 

407 and down-regulated in concert. The co-location of PI4K and PIP5K has already been shown 

408 to occur experimentally [19] and we suggest adding OCRL1 to this complex. In contrast, to 

409 explain the differential abundancy of PI and PI4P/PI45P2 as well as the distinct response of 

410 the phosphatase SAC1 to the activation signal, we predict this enzyme to be isolated from its 

411 counterparts. SAC1 has been shown to be restricted to discrete regions of contact between the 

412 plasma and ER membranes [31]. Interestingly, CDPIT, otherwise known as PI-synthase, is 

413 also shows a lack of up-regulation after signalling [32], and  is known to be located at cell 

414 membrane contact points between the ER and plasma membranes. It is likely that the PI4K-

415 PIP5K-OCRL1 complex is recruited by either the receptors or some of their downstream 
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416 effectors. There is no physical connection between the location of the complex and the 

417 membrane contact regions containing the different enzymes regulating the regeneration of PI 

418 and its location on the different membranes. 

419

420 Due to the lack of detailed protein concentration and reaction rate constant values for 

421 individual cell types, the use of data obtained from multiple cell types is common in cell 

422 signalling models. Kinetic rates are often sourced from experiments performed with purified 

423 enzymes or adapted from previous modelling attempts. While mathematical models informed 

424 using ‘mosaic data’ have been crucial in understanding mechanisms that underlie processes 

425 within cells, combining data from different mathematical models of the same pathway are 

426 often difficult. This is because model formulations often differ, meaning parameter 

427 dimensions do as well. This is further compounded by the fact that data is not always 

428 available to inform all model parameters, meaning uninformed cell specific parameters are 

429 often determined using similar processes in other cell types or are simply estimated. We 

430 hypothesised that fully informing a mathematical model of a pathway using cell type-specific 

431 data would lead to more accurate predictions of the pathway dynamics. We demonstrated that 

432 our PI model of a human platelet demonstrated similar behaviour when informed by mouse 

433 platelet data, where the kinetics were assumed the same, but protein concentrations varied. In 

434 extending the model to that applicable to a nucleated HeLa mammalian cell, similar 

435 observations were made. However, maintaining the same kinetic rate constant values but 

436 using protein concentrations obtained from two different cell types led to widely varying 

437 dynamical predictions for PL and IP3. 

438

439 The long-term goal of biological modelling is to recapitulate processes that govern cell 

440 behaviour. Our experience in modelling the PI cycle was that there was too much variability 
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441 in kinetic reaction rate constants and protein concentration published from prior partial 

442 models to build a comprehensive model of the pathway. In order for parameterisation of 

443 mathematical models for specific cell-types to be more consistent, the collection of 

444 comprehensive experimental data informing the concentration of cellular components and 

445 their dynamic behaviour needs to occur. Currently, such values are generally informed by 

446 traditional methodologies such as western blotting or lipid chromatography, both of which 

447 are limited in the number of molecules they can simultaneously characterise. They also suffer 

448 from a lack of uniformity and reproducibility. Omics technologies are now available to 

449 process high numbers of molecules using highly standardised protocols, which should allow 

450 for such issues to be overcome [33]. Extensive quantitative proteomic, metabolomic and 

451 lipidomic datasets for commonly available cell lines already provide a valuable resource for 

452 modellers. Given the number of signalling pathways in eukaryotic cells that are being 

453 considered for mathematical modelling, the rapid expansion of cell-specific omics generated 

454 data sets, are likely to become a central part of ensuring mathematical models of signalling 

455 pathways are quantitatively well informed. 

456
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457 Methods

458 Further details of the biological rationale and of the description of the different iterations of 

459 the model are available in the Supplementary Information document.

460

461 Estimation of compartment sizes 

462 Our core model consists of 3 compartments: the plasma membrane, the cytosol and the 

463 organelles. The volume occupied by the platelet plasma membrane, including the open 

464 canicular system (OCS) inside the cytoplasm, was calculated to be around 1 fl. Based on 

465 published observations, the size of the cytoplasm was reduced as the observed volume of 

466 platelets is filled by organelles such as vesicles, ER remnant, mitochondria and the OCS 

467 estimated to occupy up to 40% of the internal volume. Most of the remaining volume 

468 contains cytoskeletal proteins and glycogen granules and is calculated to occupy around 1 to 

469 2 fl [35,38,39]. We estimated the mouse platelet plasma membrane and cytosol volumes to be 

470 around 0.25 fl each while the nucleated cells average plasma membrane and reaction cytosol 

471 volumes at around 17 fl each based on a 2000 fl overall cell volume. 

472

473 Initial parameters 

474 Our model takes into account the concentration of protein and lipids relevant for each 

475 reaction. Data for protein copy numbers were obtained from a human platelet proteome [5] 

476 (S2 and S3 Tables) while initial and post-activation time-resolved data for the Phospholipids 

477 (PL) and Inositol Phosphates (IP) were collated from several publications [6–10,14,16,24,40–

478 45] (S1 Table, Fig 3, S1 Fig). For collated pools of proteins, the UniProt database was first 

479 mined using the PL names, followed by a search of the quantitative proteome using the 

480 UniProt codes (S2 and S3 Tables). Although their binding affinities for the different PL are 
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481 likely to be variable, we parametised the different on/off rates on the assumption of average 

482 kinetics. 

483

484 Estimating kinetic rate constants

485 We used the free software COPASI v4 [15] to build our model starting from a reduced basic 

486 network of reactions. All molecules were considered as “well-mixed” inside each 

487 compartment. Mass Action kinetics were assumed in modelling the respective reactions. The 

488 governing equations were solved using the deterministic method (LSODA) solver. Reaction 

489 enzymes were not written as modifiers as their concentrations were important for our model. 

490 Activation by ligands were written as events after the start of the simulation. All enzymatic 

491 activations were terminated by either the production of an inactive protein (inactivation) or 

492 by the return to the initial basal activity state (reset). For each reaction the default rate was 

493 first selected then a series of parameter scans were performed, starting at +/- 4 orders of 

494 magnitude until the values were producing time-resolved curves for each and every PL and 

495 IP output in the model matching the experimental data using a fit-by-eye. Steady-state 

496 analysis and Time Series Sensitivity Analysis were performed on all reactions that occur 

497 before the activation event, and the protein and PL/IP concentrations adapted accordingly. 

498 Parameters sets that led to a deviation of more than 20% from the experimental data were 

499 rejected and the full analysis restarted. Schematic diagrams of the reactions and the 

500 parameters are shown in Table S7. The computed initial molecule numbers are listed in Table 

501 S6.  The model was deposited in the BioModel database [46]

502
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641 Supplementary Figure legends

642

643 S1 Fig. Core model development 

644 A: Collated graphs of experimental data used to inform the model, adapted from (5–10, 22). 

645 See Table S1 for details and Fig 2 for standard deviations. Activation occurs at t=0 sec. PIP3 

646 and PI34P2 results are shown but were not used in our model. B: Summary diagram of Model 

647 Iteration 1 reactions. Only key lipids were kept namely PI and PI45P2, Inositol (Ins) and 

648 Phosphatidic Acid (PA). The reactions in this diagram describe a PI cycle in a non-activated 

649 cell. C: Summary diagram of the Gq-protein coupled receptor activation cascade. See Table 

650 S5 for details and parameters. D: Summary diagram of Model 1 Iteration reactions in an 

651 activated cell. Reactions rates k2 and k3 are now replaced by k2’ and k3’ representing the 

652 activated rates of the respective enzymes. Coincidence detection leading to the change of rate 

653 k3 in k3’ is shown in green. The activation of cPLA2 leads to the removal of some of the PA 

654 from the plasma membrane to produce arachidonic acid (k5). k1 and k4 remain unchanged. E: 

655 Summary diagram of the addition of lipid binding proteins to regulate the availability of the 

656 phospholipids. Although only the activated state is shown in this diagram, the binding and 

657 release of the PL was assumed to be constant under both inactivated and activated states of 

658 the cell. F: Summary diagram showing the final iteration of the PI cycle model including the 

659 addition of PI4P, DAG and IP3, their respective modifying enzymes and binding proteins. 

660 Inactivation reactions not shown. See Table S5 for details and parameters.

661

662 S2 Fig. Description of the first iterations of the core model. A: Graphical summary of the 

663 reactions in the early iterations for either inactivated or activated states. Activated GPCRs 

664 (RGa) trigger the activation of the PIP5-kinase (PIP5Ka) together with PA. The levels of PA 

665 in the cells are also regulated by activated cPLA2 (PLA2a) which produces arachidonic acid 
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666 (AA), a precursor of Prostaglandin H2 (itself a precursor of TxA2 produced by the platelet as 

667 a secondary signaling molecule) and several eicosanoids. B: Table summarising the different 

668 steps in the early core model construction and the output for PI45P2 and PA. C-D: Graphs of 

669 the results shown in the table for the simulations 1A-B. E: Graphs of the results shown in the 

670 table for each simulation 1C., the results were virtually identical whether the activation of 

671 PIP5K was simulated directly via the activated GPCR or indirectly by the activated PLC 

672 (PLCa). Activation time points are indicated by arrows.

673

674 S3 Fig. Additional analyses of the Core Model in other cell types. A: Comparison of the 

675 core model outputs in human and mouse platelets. The volume of the mouse platelet, PL and 

676 IP initial concentrations have been modified as described in the material and methods. The 

677 numbers of GPCR receptors for each platelet type are listed in Table S4. The overall results 

678 for the PL, Ins and IP3 are virtually identical except for the overall levels which are related to 

679 the initial amounts in the two cell types. The simulations have been extended to 10000 

680 seconds to capture any late trend, with the activation occurring at 1000 sec (arrows). B: 

681 Comparison of Sensitivity Analyses for IP3 in nucleated cells simulations. Time series 

682 Sensitivity Analyses of the impact of some key protein initial concentrations on IP3 outputs 

683 were performed and compared when our model was populated with either human platelet, 

684 HeLa or U2OS proteomic data. We used protein numbers estimated via Parameter Scans for 

685 missing protein values in the U2OS proteomic dataset namely Gq, cPLA2, PI4K, OCRL1 

686 and IP3 modifying enzymes (IP3E). PIS = CDIPT. IP3 results for each protein initial 

687 concentration are shown in the table.

688

689 S1 Table: Summary table of published Phospholipids and Inositol Phosphates experimental 

690 data.
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691 S2 Table: Quantification of Lipid binding Proteins in human platelets.

692 S3 Table: Relevant protein number and UniProt codes.

693 S4 Table: A: Protein numbers in HeLa, U2OS, mouse platelets, compared to human 

694 platelets. All data from respective proteome datasets unless stated otherwise. B: reaction 

695 volumes and Gq-coupled receptor numbers for each cell type simulations. 

696 S5 Table: Schematic diagrams of the reactions and parameters.

697 S6 Table: Initial particle number and concentrations for human.
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