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ABSTRACT. Here, we introduce a new strategy to estimate free energies using single end-state 

molecular dynamics simulation trajectories. The method is adopted from ANI-1ccx neural 

network potentials (Machine Learning) for the Atomic Simulation Environment (ASE) and 

predicts the single point energies at the accuracy of CCSD(T)/CBS level for the entire 

configurational space that is sampled by Molecular Dynamics (MD) simulations. Our 

preliminary results show that the method can be as accurate as Bennet-Acceptance-Ration (BAR) 

with much reduced computational cost. Not only does it enable to calculate solvation free 

energies of small organic compounds, but it is also possible to predict absolute and relative 

binding free energies in ligand-protein complex systems. Rapid calculation also enables to screen 

small organic molecules from databases as potent inhibitors to any drug targets.  
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1. Introduction 

The novel coronavirus, SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) is 

a 

 causative agent of Coronavirus Disease 2019 (COVID-19).1 COVID-19 is now a global 

pandemic with unbearable economic burden and puts life of millions at risk around the world. 

The life cycle of the virus as many other viruses has an essential proteolytic auto-processing 

step.2 3-4 The 3CL-protease takes an important role in freeing individual functional proteins from 

single-chain polyprotein that has been translated by the host cell translation machinery.5 

Interfering to this step has been shown to have capability of inhibiting virus replication.6 

Therefore, 3CL-protease is one of the valid and most attractive drug targets for Covid-19 

treatment. 

Developing a drug molecule from scratch for curing a disease is quite expensive and time 

consuming. Instead, repurposing an FDA approved drug is a much faster and less expensive 

strategy since the time is very critical parameter in controlling such invasive viruses. Even 

testing all FDA approved drugs experimentally one by one may cause intolerable waste of the 

time. To help to ease the problem, computational calculations can be very handy. There have 

already been several computational studies about predicting an efficient FDA approved drugs 

that can be repurposed for COVID-19.7-17 

In searching for drug candidates as inhibitors, there are two core questions that can be 

addressed: (a) what is the binding mode? (i.e. where does it bind from the enzyme?) (b) what is 

the binding affinity? (binding free energy).18 Inhibition of an enzyme can be involved in various 

mechanisms. For instance, an inhibitor can bind to the enzyme from the active site in the absence 

of substrate (competitive inhibition) forming an additional or it can bind in the presence of the 
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substrate (i.e. enzyme-substrate complexed) from the allosteric site (uncompetitive inhibition). 

Alternatively, it can reduce the activity of the enzyme by binding from allosteric site of the 

enzyme either free or complex (non-competitive inhibition).19 

In all these mechanisms the equilibrium constant, Ks belonging to the reaction between the 

enzyme and substrate is shifted towards the reactants by existing inhibitor in the media. Kinetic 

studies to understand the activity loss of the enzyme on substrate by the inhibitor report values 

such as inhibition equilibrium constant, Ki or half maximal inhibitory concentration, IC50. Both 

these experimental parameters are proportional (they are equal in special cases). Thermodynamic 

equilibrium constant Ki is related to the standard binding Gibbs free energy of the system by: 

ΔGo=-RTln(Ki) 

The ΔGo can also be calculated from the thermodynamic potentials. Thus, it is possible to 

compare experimental ΔGo determined from Ki and theoretical ΔGo predicted by thermodynamic 

potentials using computational methods. However, logarithmic relation between the Ki and ΔGo 

complicates the reliability of the calculations. An error of 3-4 kcal is acceptable for the most 

computations, but this makes thousands of times less efficient inhibitor. Therefore, most 

computational methods fail to estimate the experimental binding affinity trend (relative binding 

free energies) among the inhibitors. Reproducing the absolute standard free energies of binding 

is even more difficult for the computational methods. Moreover, a trade-off between the 

computational accuracy and speed must be made. 

However, almost all of the studies screen databases listing the FDA approved drugs at the 

molecular docking level, which is mostly based on geometrical alignment of a ligand into a 

binding pocket, namely the active site of 3C-like protease (3CLpro). Despite the speed of docking 
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approach, they are very coarse methods and almost never predict the correct experimental 

binding affinity trend among the inhibitors.7-17 

More sophisticated methods to calculate the potential binding free energy of inhibitor 

candidate to the protein ranges from post molecular dynamics simulations such as Molecular 

Mechanics Poisson-Boltzmann Surface Area (MMPBSA)20-23 to perturbation methods such as 

Bennett acceptance ratio (BAR),24-31 the latter being much more accurate.  

Although calculation of MMPBSA energies is quite fast as it requires only one MD simulation 

for each Protein-Ligand (PL) complex system and thus applicable to screen many drug 

candidates, it lacks of explicit water definition and uses the energies at the Molecular Mechanics 

(MM) level, very low level when compared to QM level definitions.  

Perturbation methods like BAR requires several intermediate lambda (λ-) states in which the 

ligand can be decoupled, annihilated, or pulled. It uses the explicit water definition and its 

prediction for solvation free energies is quite successful. However, it still uses MM energy terms, 

and requires non-physical intermediate states. There have been several attempts to correct the 

MM energy in the BAR calculation by re-weighting the end-states with QM-MM definitions. In 

these post-BAR methods such as NBB, BAR+TP, only part of the system could be defined at the 

QM level.26, 29, 32-36 It could bring very little improvements in to the solvation free energies 

estimated by BAR.  

In addition to BAR and post-BAR methods, others such as Free Energy Perturbation (FEP), 

Thermodynamic Integration (TI),25-26, 31, 37-41 Multistate BAR (MBAR)42-44 are also commonly 

used and proven to be sufficiently accurate in estimating solvation free energies along with 

relative and absolute binding free energies. However, all these methods require very high 

computational cost. Screening all the drug candidates using these methods may not be very 
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practical. For a typical free energy of binding, these methods require at least 30 λ-states for the 

decoupling of L from PL complex and another that many for decoupling L from water (i.e. 

solvation free energy of ligand), which increases the computational cost by 60-folds. 

Machine Learning (ML) techniques have attracted a great interest for the past decade due to 

their successful algorithms to scientific questions including but not limited to chemical 

reactions,45-46 potential energy surfaces,47-50 forces,51-53 atomization energies,54-55 and protein-

ligand complex scorings.56. One of the most promising aspects of the ML techniques is that the 

trained models can be applied to new systems (transferrable).57 Recently several models using 

active learning such as  ANI-1,58 ANI-1x59 and ANI-1cxx60 have been trained to calculate DFT 

and CCSD(T) energies of small organic compounds containing C, H, O and N atoms in non-

equilibrium conformations. It has been shown to reproduce the energies at the accuracy of the 

CCSD(T)/CBS level with billions of time faster than the actual QM calculations.57 

Here, we introduce a new strategy to estimate free energies of solvation of small organic 

compounds and binding to proteins in explicit solvent using single end-state MD simulations. 

The method is adopted from ANI-1ccx neural network potentials (Machine Learning) for the 

Atomic Simulation Environment (ASE) and predicts the single point energies of the entire 

system at the accuracy of the CCSD(T)/CBS level.  Our results show the method can be 

sufficiently accurate to measure solvation/binding free energies and fast making it applicable to 

screen FDA approved drugs. 
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Theory 

Linear Response Approximation 

The insertion of the ligand to an environment of solvent (solvation free energy) or receptor 

(binding free energy) can be defined by a coupling parameter, λ.61 At each λ-state, the potential 

energy of the system would be: 

���� � �� � �. � 

where V is the interaction energy between the ligand and environment. �� is the reference 

potential energy, which includes all energy terms except for the ligand-environment interaction. 

The partition function is; 

	��� � 
�����/�	 � �
��
/�	
���/�	  

where F is the free energy depending on λ-state. Re-organizing the above equation, 

���� � 
 �



���	���� where � � �

�	
 

Thus, 

��
�� � ���� 

The equation above is only valid when the ligand-environment interaction is proportional to 

coupling term λ. This results in; 

∆� � �. ���� 

In the limiting case, this equation yields as; 

∆�

�
��
� 1/2 if ���� � ���

���
 .61 

The equation implies that the free energy change is nearly half-the potential between the 

ligand-environment interaction in the complex configurational ensemble.20 So for the de-

coupling process; 
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∆� � 1
2 ���� 

Here, we replaced the ML estimated CCSD(T)/CBS energies with MM energies at the λ=0 

(i.e. coupled/bound) configurations. For each MD frame, three different energies were calculated 

ΔUcomplex , the ligand is complexed with environment (solvent or protein), ΔUlig, bare ligand that 

is extracted from the MD frame, ΔUenv, the environment that is also extracted from the same MD 

frame which included the parts of either solvent (in the case of solvation free energy) or protein 

+ solvent (in the case of binding free energy). And combining these three enrgy terms by 

ΔU= ΔUcomplex – (ΔUlig +ΔUenv). Finally, the averaged ensemble for the free energy was 

calculated by the standard methods introduced above using only one-endstate simulations. 

Interestingly, we found that experimental free energy (of solvation or binding) is approximately 

half of our calculated free energy. One should note that the energies calculated are of single point 

energies at the ML estimated CCSD(T)/CBS level in the clasical MD configurations. It does not 

include the Zero Point Vibrational Energy (ZPVE), entropy and PV terms. 

. 

Methods 

System Preparation 

For the binding studies, the crystal structures of 3CLpro of SARS-CoV-2 of which the IC50 

values are known were retrieved from Protein Data Bank (PDB). PDB IDs: 2GZ7, 4YOJ, 4MDS, 

2ALV, 4WY3. Monomer structures were aligned and H-atoms were added using PyMol. The 

pKa values were calculated using Propka 3.1. The ligands were scanned for conformers. For the 

solvation free energies, we calculated molecules that have extensively available data in 

literature34 in order for a comparison. Using Gaussian 16 software, the ligands were first 

optimized at the B3LYP/6-31G* and ESP charges belonging to the conformer with the minimum 
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energy for each ligand were generated at the HF/6-31G* level. Using Antechamber, RESP 

charges and GAFF force field atom types were generated. Acypype was used to convert Amber 

type input files to Gromacs. 

MD Simulations 

The molecular dynamics simulations were carried out using Gromacs 2018 software package 

62 with all-atom model of Amber ff99SB-ILDN force field 63 implemented in Gromacs. 

For the binding studies, the protein-ligand complex (~4700 atoms) was placed in the center of a 

dodecahedron box. For the solvation studies, the ligand was placed in the center of a cubic box. 

Each system was solvated in the TIP3P model type water 64 with a cell margin distance of 

10 Å for each dimension. The protein-ligand systems with ~70,000 atoms were neutralized 

and salted by 0.15 M NaCl. The neutral ligand only systems were not salted. Classical harmonic 

motions of all bonds were constrained to their equilibrium values with LINCS algorithm.  

Energy minimization was carried out to a maximum 100 kJ.mol-1.nm-1 force using Verlet 

cutoff scheme. For both long range electrostatic and Van der Waals interactions, a cutoff length 

of 12 Å was used with the Particle Mesh Ewald method (PME) (6th order interpolation).65 The 

neighbor list update frequency was set to 1 ps-1. As with our earlier studies,66-67 

a stepwise energy minimization and equilibration schemes were used. Each minimization step 

consisted of a 5000 cycle of Steepest Descent and a subsequent 5000 cycles of l-bfgs integrators. 

After minimization, each system was equilibrated within three steps using Langevin 

Dynamics. The first step consisted of a 1 ns of NVT ensemble. Experimental studies reported the 

solvation free energies at 298.15 K and binding free energies at 310 K. We have adjusted our 

simulations accordingly. The next steps consisted of NPT ensembles in which the systems were 

equilibrated to the 1 atm pressure by Berendsen for 200 ps and followed by Parrinello-
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Rahman isotropic pressure coupling for 1 ns to a reference pressure of 1 atm. When systems 

were reached to the equilibrium, an MD simulation of ~10 ns were carried out. 

Free Energy Calculations 

For the BAR calculations, 10 equal decoupling steps (i.e. decoupling the ligand from the 

environment) of each coulombic and van der waals interactions, respectively (total 21 λ-

windows) were used. For the BAR calculations of protein-ligand complex, a separate decoupling 

of the ligand from ligand+water system with the same parameters were performed and subtracted 

from the decoupling of ligand from protein+ligand+water complex system.67 

MM-PBSA calculations were performed using g_mmpbsa script by Kumari et al.21, 68. For the 

calculations of protein-ligand complexes, we used the l=0 simulations of protein+ligand+water 

complexes. Only protein+ligand complex part from the trajectories were extracted and default 

parameters of implicit water with ε=80 and solute with ε=4 were used. Non-linear Poisson-

Boltzmann equation with SASA model were used. 

ML-QM calculations were performed using our custom build python scripts. For the 

calculations of solvation free energies, we used λ=0 simulations of ligand+water complexes 

whereas for the binding free energy calculations, we used λ=0 simulations of 

protein+ligand+water complexes. 

∆����� � �������� 
 ����� 
 ������������ 
∆����� � ��������� 
 ����� 
 �������������� 

Results and discussion 

Solvation Free Energies 

In order to test the ML-QM method, we run 10-ns MD simulations for the molecules whose 

solvation free energies have been extensively studied. We first built a system in which the ligand 
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is replaced in the center of box and the box is solvated with just single water molecule. The

ligands studied are given in Figure 1. 

 

Figure 1 Molecules studied in this work for their solvation free energies 

All the sampled configurations by the classical MD simulations were calculated for the single

point energies using ML-QM method. Although the individual frames have very large energy

fluctuations, the average energy of the system goes smoothly (Figure X) 

 

Figure 2 The ML-QM interaction energy calculated from the trajectory of MD simulation of

M19 with 100 water molecules.  

Since the degree of freedom for the water molecule is much more in the case of unbound state

in which water molecule is too far from the ligand and thus not interacting with the ligand, the

MD could sample only unbound state. Therefore, ML-QM energy for the binding was almost 0.
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We prepared other independent simulations in which we increased the number water molecules 

(nH2O) in the box. Each time the average ML-QM energies were almost 0. This has been the 

case until nH2O=100. Figure 3a shows the interaction energy between the ligand and water 

molecules calculated by ML-QM energy difference: ∆���� � � ���� �����!�" 
  ���� ���� �

���� �!�" !. Here, ���� �����!�"  is the total energy of the system including ligand and water. ���� ����  

and ���� ���� � ���� �!�"  are the energies of free ligand and free water molecules, respectively, 

which have been calculated by extracting from the trajectory of complex structure. When we 

kept adding more water in the system and running other MD simulations, we found that starting 

from nH2O=100, the system undergoes from the unbound state to bound state by a drastic energy 

jump after ~9.5 ns. The degree of freedom for the water molecules in the bound state must be 

limited by the apparent interaction with the ligand. The same jump occurred for all of the other 

MD runs with increased amount of water molecules up to 200 (Figure 3b) but in the earlier time. 

Further addition of water molecules in the system causes the system to stay in the bound state all 

the time (Figure 3c). It is very apparent that the unbound states and bound states have the same 

averaged ensembles (Figure 3d). 
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Figure 3. ML-QM interaction energy of M19 with different number of water molecules. Each 

data consists of the moving average of 100 points over 10,000 data set. (a) no interaction energy 

when the number of water molecules are much less than the configurational degree of freedom 

(b) the shift of the jump to an earlier time from unbound to bound state by addition of water 

molecules. (c) the system to stay in the bound state all the time when more than sufficient water 

molecules available. (d) the average energies of bound states to be all the same. 

The average ML-QM energy of the entire MD simulation time can also be compared for each 

of the simulations with different number of water molecules. As in the case of simulations where 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2020. ; https://doi.org/10.1101/2020.05.26.116459doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.26.116459
http://creativecommons.org/licenses/by-nd/4.0/


 13

bound-unbound state jump occurred, the energy profile of the average energies fit into a 

sigmoidal plot in which the inflection point corresponds to the experimental solvation free 

energies. The Figure 4 shows the average energies with respect to number of waters in each 

simulations. 

 

Model Boltzmann 

Equation y = A2 + (A1-A2)/(1 + exp((x-
x0)/dx)) 

Reduced Chi-Sqr 0.05  

Adj. R-Square 0.99  

 Value Std Err. 

A1 -0.18 0.12 

A2 6.59 0.06 

x0 157.34 2.46 

dx 28.36 2.41 

span 6.78 0.14 

ΔG 3.39 0.18 
 

Figure 4 The ML-QM interacting energy depending on the number of water. The square marks 

show the average interaction energy over the entire MD simulations for each M19-nH2O 

complex (n=0, 10…, 30, 100, 120…200, 300…1000, 1200…1800, 1974) 

It is apparent that the ML-QM interaction energy is constant for the simulations with more 

than sufficient waters exist. The empirically determined linearity constant is α=1/2, thus the free 

energy change is approximately half of the interaction energy between the ligand and 

environment. 

Table 1 shows the experimental solvation free energies along with estimated by ML-QM and 

other techniques available in literature. ML-QM method significantly improve the results 

surpassing the conventional methods like BAR and MBAR. 
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Table 1 Experimental and calculated solvation free energies (kcal/mol). * values are from Ref.34 

Mol. ID Experiment ML-QM  BAR BAR* NBB*  BAR+TP* MBAR* 

19 −3.8±0.1 -3.39 -3.63 −3.2 −3.0 −2.9 −3.2 

20 −2.8±0.1 -3.35  −2.9 −1.1 −1.4 −2.9 

23 −9.3±0.6 -9.35 -10.25 −3.8 −5.6 −5.6 −3.8 

 

Absolute Binding Free Energies 

Using the limiting case, we could successfully calculate the binding of available inhibitors to 

3CLprotease of SARS-CoV-2, of which the IC50 values available on literature. We compared 

the success of the method with other two common computational methods. 

Table 2 Experimental inhibition profiles of the 3CL protease enzymes SARS-CoV-2 compared 
with absolute binding free energies. Experimental data were calculated by –RTln(IC50) at 310 
K. 

PDB ID Experimental BAR MMPBSA ML-QM 

2GZ7 -9.25 -9.78 -39.88  

4YOJ -9.06 -8.32 -37.25 -7.70 

4MDS -7.37 -11.15 -38.24 -6.31 

2ALV -5.89 -21.03 -72.58 -4.42 

4WY3 -5.13 -9.82 -56.63 -9.37 

 

It should be noted that the absolute binding free energy calculations may not directly reproduce 

experimental values, since experimental values are of IC50 values rather than the pKi values. 

However, considering the experimental conditions are more or less similar, the energy profile 
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(i.e. the trend among the inhibitors) should at least be reproduced. Here, we see that ML-QM is 

the most accurate method to yield the correct trend among the compared methods (Figure 5). 

 

Figure 5 Calculated vs experimental binding profiles of inhibitors. 

It should be noted that ML-QM and MMPBSA energies use single MD simulation trajectory, in 

which the ligand is fully interacting with the complex. The unbound states were created by 

removing the ligand from environment. Although the MMPBSA is as fast as ML-QM, the results 

are only meaningful in terms of relative binding energies. On the other hand, the BAR method 

uses 21 λ-states for the decoupling the ligand from the environment (protein and water) and 

another 21 λ -states for the solvation free energy of the ligand. The ML-QM surpasses both 

MMPBSA and BAR methods with increased speed and accuracy. 

Summary and Conclusions 
Here we applied the Machine Learning techniques to calculate the experimental solvation and 

binding energies with increased speed at the accuracy of CCSD(T)/CBS level. The results show 

that the predicted binding energies are half of the interaction energies, which is a limiting case of 

LIE and reproduce the experiments better that well known conventional methods like BAR and 
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MMPBSA. Since the method is fast and accurate, this method opens an area in the search of 

Covid-19 related inhibitors. 
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