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Abstract 
Motivation: One major goal of single-cell RNA sequencing (scRNAseq) experiments is to 
identify novel cell types. With increasingly large scRNAseq datasets, unsupervised 
clustering methods can now produce detailed catalogues of transcriptionally distinct groups 
of cells in a sample. However, the interpretation of these clusters is challenging for both 
technical and biological reasons. Popular clustering algorithms are sensitive to parameter 
choices, and can produce different clustering solutions with even small changes in the 
number of principal components used, the k nearest neighbor, and the resolution 
parameters, among others. 
Results: Here, we present a set of tools to evaluate cluster stability by subsampling, which 
can guide parameter choice and aid in biological interpretation. The R package scclusteval 
and the accompanying Snakemake workflow implement all steps of the pipeline: 
subsampling the cells, repeating the clustering with Seurat, and estimation of cluster 
stability using the Jaccard similarity index. The Snakemake workflow takes advantage of 
high-performance computing clusters and dispatches jobs in parallel to available CPUs to 
speed up the analysis. The scclusteval package provides functions to facilitate the analysis 
of the output, including a series of rich visualizations. 
Availability: R package scclusteval: https://github.com/crazyhottommy/scclusteval 
Snakemake workflow: https://github.com/crazyhottommy/pyflow_seuratv3_parameter 
 
Contact: tsackton@g.harvard.edu, tangming2005@gmail.com   
Supplementary information: Supplementary data are available at Bioinformatics online. 

1 Introduction  

One of the most powerful applications of single-cell 
RNAseq is to define cell types based on the 
transcriptional profiles of the cells. A number of 
tools such as Seurat (Macosko et al. 2015), scanpy 
(Wolf, Angerer, and Theis 2018), and SINCERA 
(Guo et al. 2015) have implemented unsupervised 
clustering methods for single-cell RNAseq data.  

 
Although benchmarking studies have examined the 
performance of different clustering algorithms (Duo 
et al 2018), less attention has been given to 
optimizing clustering algorithms for a particular 
dataset. Two main questions exist in this perspective. 
First, given a set of selected parameters, how robust 
is each cluster? To answer these questions, a “cluster 
robustness score” was proposed (Kanter, Dalerba, 
and Kalisky 2019). A robust cluster is defined as one 
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that does not mix with neighboring clusters after 
introducing noise to the scRNAseq data. More 
recently, Liu et.al presented an entropy-based 
universal metric to measure the purity of a given 
single cell population (Liu et al., n.d.).  
 
Second, what is the best way to select parameters for 
a specific dataset? A partial way to address this 
problem is clustree (Zappia and Oshlack 2018), 
which plots the clusters as a tree structure to 
visualize the relationship among clusters with 
different resolutions and aid in the determination of 
cluster numbers and appropriate parameters. 
However, when the cluster number is large, the tree 
becomes hard to interpret. Furthermore, it does not 
provide any quantitative assessment and requires 
manual inspections of the trees. An alternative, 
scClustViz (Innes and Bader 2018) is a Shiny app for 
assessing and visualizing single-cell clustering 
results, which  uses silhouette width as a measure 
and the number of differential expressed genes as a 
rule to fine tune clustering granularity. The rationale 
is that the more similar clusters are, the fewer 
differentially expressed genes exist between them.  
 
While these methods have begun to approach the 
problem, there remains an urgent need for a data-
driven evaluation of the cluster stability. 

2 Methods 

To address part of the challenges of evaluating the 
clustering results, we deployed a re-sampling method 
in which we re-sample a subset of the cells from the 
population and repeat clustering. The cell identity is 
recorded for each re-sampling, and for each cluster a 
Jaccard index is calculated to evaluate cluster 
similarity before and after re-clustering. We then 
repeat the re-clustering for a number of times and 
use the mean or median of the jaccard indices as a 
metric to evaluate the stability of the cluster. While 
the theory behind this method has been extensively 
developed  (Hennig 2007) (Lun, n.d.), practical 
implementations are lacking.  The main existing 
option, the function clusterboot in the R package fpc, 
does not support clustering on a shared nearest 
neighbor (SNN) graph and is not easy to integrate 
with the Seurat R package. In addition, clusterboot is 
not parallelized, so it can take a very long time to re-
cluster large datasets.  
 

To address the aforementioned challenges, we
implemented a snakemake (Köster and Rahmann
2012) workflow to perform the subsampling and re
clustering steps while taking advantage of multiple
CPUs available in a high-performance computing
cluster. In addition, we developed a new R package
scclusteval to aid the analysis and visualization of
the output from the snakemake workflow.  
 
To facilitate the reproducibility of the workflow, we
have created a docker container for the snakemake
workflow which includes support for Seurat V3
respectively. The users only need to have a rds file
for a Seurat object and set up the config.ymal file for
the parameters they want to choose from and invoke
snakemake through the --use-singularity flag. A side
benefit is that the snakemake pipeline makes it easier
to run a subset of the workflow. One use case is to
recluster the full dataset using different parameters to
evaluate clustering quality using a conventiona
metric such as silhouette score. After setting up the
config.ymal for desired parameters to test, one can
invoke snakemake by:  
 
snakemake -j 100 --unti
gather_full_sample_preprocess.  
 
where the number after -j represents the number of
CPUs to use. 
 
The proportion of cells to be drawn at random in
each subsampling (default 80%), the number of
replicate samples (default 100) for the subsampling
and reclustering process, and the parameters space
can be configured inside the config.ymal file. The
snakemake workflow generates two rds objects: one
contains the cell identity (cluster id) information
before and after the reclustering for the subsampled
data and the other contains the cell identity
information for the full dataset for various
combinations of parameters. 
 
The accompanying R package relies extensively on
functions from the tidyverse packages. The
fundamental object the scclusteval package interacts
with is a tibble in a tidy format. The identity of each
cell for a given set of clustering parameters is kept in
a list. All the lists are kept inside the tibble as a list
column. The input of the R package is obtained
directly from the snakemake pipeline output. 
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To explore the cell identity changes across different 
parameters for the full dataset, one can use the 
PairWiseJaccardSetsHeatmap function to visualize 
the pairwise Jaccard index across clusters (Fig1 A). 
Alternatively, one can use the 
ClusterIdentityChordPlot function to visualize how 
the cells switch from one cluster to a different cluster 
(Fig 1B).  
 
For each subset of cells, we calculate pairwise 
Jaccard index of each cluster before and after 
reclustering and assign the highest jaccard as the 
stability score for each cluster. The distribution of 
the Jaccard indices across subsamples measures the 
robustness of the cluster. If a cluster is robust and 
stable, random subsetting and reclustering will keep 
the cell identities within the same cluster. The heart 
of the visualization is the raincloud plot (Allen et al. 
2019).  In the raincloud plot, a boxplot together with 
a half-side violin plot display the distribution of the 
Jaccard indices. The plot can be created using the 
JaccardRainCloudPlot function. The raincloud plot 
gives an intuitive sense of the stability of clusters 
(Fig1C).  
 
As a rule of thumb, clusters with a mean/median 
stability score less than 0.6 should be considered 
unstable. Scores between 0.6 and 0.75 indicate that 
the cluster is measuring a pattern in the data. 
Clusters with stability scores greater than 0.85 are 
highly stable (Zumel and Mount 2014). The 
AssignStableCluster function in our R package uses 
these tunable cutoffs to assign a stability level to 
each cluster. We observed for some datasets, the 
Jaccard index follows a bimodal distribution, so the 
mean or median may not be representative. As an 
alternative, we also calculate the percentage of 
subsampled datasets with a Jaccard index greater 
than a cutoff (e.g. 0.85 by default), which can be 
used to check stability assessments. 
 
Because increasing resolution always generates more 
clusters, we also use the percentage of cells in the 
stable clusters to evaluate a particular clustering. We 
want to maximize the number of clusters but also 
want the majority of the cells to be in stable clusters. 
The CalculatePercentCellInStable function can be 
used to calculate the percentage of cells in the stable 
clusters. 
 

Finally, a scatter plot to explore the relationship 
between the clustering parameters and the number of 
total clusters, total number of stable clusters, and 
percentage of cells in stable clusters can be made 
using the ParameterSetScatterPlot function (Fig 
1D). 
 
To demonstrate the usage of the scclusteval package, 
we analyzed two example public datasets: a mixture 
control dataset (Tian et al. 2019)  and a 5k pbmc 
dataset. These analyses are available at website 
https://crazyhottommy.github.io/EvaluateSingleCell
Clustering/index.htm, powered by the workflowr 
(Blischak, Carbonetto, and Stephens, n.d.) R 
package. We also run the snakemake workflow for a 
mouse brain dataset and the readers can follow the 
tutorial to explore it. All the processed datasets can 
be downloaded from https://osf.io/rfbcg/. 
 
3. Discussion 
 
The graph-based clustering algorithm implemented 
in Seurat requires users to specify the “resolution” 
hyperparameter a priori. Changing it typically 
changes the number of clusters observed. In our 
analysis, increasing the resolution always produces 
more clusters. The set of parameters for the best 
resolution dependents on the biological questions 
under study. 
 
Choosing the right number of PCs used for 
clustering is also a fundamental problem in single-
cell studies. Not including a sufficient number of 
PCs will result in losing the true structure of the data 
while including too many PCs will introduce noise 
into the downstream analysis and may give a 
misleading result. A common approach is to identify 
the elbow point in the percentage of variance 
explained by successive PCs. However, this is quite 
subjective and not reliable. There are statistical ways 
to choose the number of PCs. For example, one can 
permutate the data matrix and calculate the 
eigenvalues and choose the PCs that have a higher 
eigenvalue than the permuted data. In general, the 
number of PCs scale with the complexity and 
heterogeneity of the data, but no general consensus 
on the appropriate approach to selecting PCs exists. 
 
The k.param defines the k in the k-nearest neighbor 
algorithm after which a SNN graph is constructed. 
This parameter determines the resolution of the 
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clustering, where a bigger k yields a more 
interconnected graph and larger clusters. In general, 
we see as the k.param goes up, the number of 
clusters goes down; as the resolution increases, the 
number of clusters goes up. The IKAP(Chen et al. 
2019) tool identifies clusters by exploring the 
parameter space of number of PCs and k.param.  The 
hypercluster python package uses a similar idea of 
exploring parameter space for clustering using 
Snakemake (Blumenberg and Ruggles 2020), but it 
is not designed specifically for scRNAseq data.   
 
Although our Snakemake workflow was written for 
choosing k.param, resolution and num.pc 
parameters, it is flexible to extend to test other 
parameters. One other advantage of the Snakemake 
workflow is that each job is dispatched to a different 
CPU running in parallel and can dramatically 
increase the speed when testing big and 
heterogeneous datasets. The resulting R objects 
output from the snakemake are in tidy tibble format 
utilizing list-columns, to facilitate downstream 
evaluation with the scclusteval R package for 
downstream exploration.  
 
While the snakemake workflow is designed to 
interact with Seurat objects, the scclusteval R 
package can be used independently of Seurat. The 
input of most of the functions in scclusteval is a list 
of cell identities for a set of parameters (e.g. 
k_param, resolution and number of PCs) before and 
after reclustering. As long as the users have that in 
hand, scclusteval can be used for visualization and 
exploration.  
 
We want to emphasize that finding clusters is 
science, but interpreting clusters is an art. There 
typically is not one correct clustering for any dataset, 
and no principled way to select a single best 
clustering. Note that even cell lines are not 
composed of pure populations of cells (Kinker et al., 
n.d.). There are usually cells in different cell cycle 
stages in typical cell cultures, and cells with different 
ploidies in cancer cell lines. Moreover, the concept 
of cell identity is evolving with the advance of the 
scRNAseq technology (Morris 2019; Xia and Yanai 
2019). The end cluster results need to be confirmed 
by our understanding of the biology, and making 
sense of the novel clusters/cell-types/cell states is 
important. Our new snakemake workflow and R 
package provide valuable guidance in choosing 
parameters for clustering and facilitate the biological 

interpretation of the clusters derived from scRNAseq
data.  
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Figure legend: 
 
Visualizations methods from the scclusteval R 
package. (A) A pairwise Jaccard index heatmap to 
visualize the clusters’ relationship between two sets 
of different clustering parameters for the full dataset. 
In this example, cluster 0 in the y-axis split into 
cluster 0 and 5 in the x-axis; cluster 4 in the y-axis 
split into cluster 4 and 6 in the x-axis. (B) A cluster 
Chord Diagram showing cell identity switching 
between two different clustering parameters with 
additional information of the cluster size compared 
to (A). (C) A Jaccard Raincloud plot showing the 
stability of each cluster. A boxplot with a half-side 
violin plot showing the distribution of the Jaccard 
indices before and after re-clustering across 100 
subsamples. (D) A line plot showing the relationship 
between different parameters, and the total number 
of clusters and number of stable clusters. 
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