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Abstract 27 

 28 

The Xo1 locus in the heirloom rice variety Carolina Gold Select confers resistance to 29 

bacterial leaf streak and bacterial blight, caused by Xanthomonas oryzae pvs. oryzicola 30 

and oryzae, respectively. Resistance is triggered by pathogen-delivered transcription 31 

activator-like effectors (TALEs) independent of their ability to activate transcription, and 32 

is suppressed by variants called truncTALEs common among Asian strains. By 33 

transformation of the susceptible variety Nipponbare, we show that one of 14 34 

nucleotide-binding, leucine-rich repeat (NLR) protein genes at the locus, with a zfBED 35 

domain, is the Xo1 gene. Analyses of published transcriptomes revealed that the Xo1-36 

mediated response is similar to those of NLR resistance genes Pia and Rxo1 and 37 

distinct from that associated with induction of the executor resistance gene Xa23, and 38 

that a truncTALE dampens or abolishes activation of defense-associated genes by Xo1. 39 

In Nicotiana benthamiana leaves, fluorescently-tagged Xo1 protein, like TALEs and 40 

truncTALEs, localized to the nucleus. And, endogenous Xo1 specifically co-41 

immunoprecipitated from rice leaves with a pathogen-delivered, epitope-tagged 42 

truncTALE. These observations suggest that suppression of Xo1-function by 43 

truncTALEs occurs through direct or indirect physical interaction. They further suggest 44 
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that effector co-immunoprecipitation may be effective for identifying or characterizing 45 

other resistance genes. 46 

 47 

 48 

Bacterial leaf streak of rice, caused by Xanthomonas oryzae pv. oryzicola (Xoc), is an 49 

increasing threat to production in many parts of the world, especially in Africa. Bacterial 50 

blight of rice, caused by X. oryzae pv. oryzae (Xoo) has long been a major constraint in 51 

Asia and is becoming prevalent in Africa. The purified American heirloom rice variety 52 

Carolina Gold Select  (hereafter Carolina Gold; McClung and Fjellstrom, 2010) is 53 

resistant to all tested African strains of Xoc and some tested strains of Xoo (Read et al., 54 

2016). Using an African strain of Xoc, the resistance was mapped to chromosome 4 and 55 

designated as Xo1 (Triplett et al., 2016). Both Xoc and Xoo deploy multiple type III-56 

secreted transcription activator-like effectors (TALEs) during infection. TALEs enter the 57 

plant nucleus and bind to promoters, each with different sequence specificity, to 58 

transcriptionally activate effector-specific target genes (Perez-Quintero and Szurek, 59 

2019). Some of these genes, called susceptibility genes, contribute to disease 60 

development (Hutin et al., 2015). In some host genotypes, a TALE may activate a so-61 

called executor resistance gene, leading to host cell death that stops the infection 62 

(Bogdanove et al., 2010). Most of the cloned resistance genes for bacterial blight are in 63 

fact executor genes (Zhang et al., 2015). Xo1 is different. It mediates resistance in 64 

response to TALEs non-specifically, independent of their ability to activate transcription 65 

(Triplett et al., 2016). Also, unlike executor genes, Xo1 function is suppressed by a 66 
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variant class of these effectors known as truncTALEs (also called iTALEs), which 67 

nuclear localize (Ji et al., 2016) but do not bind DNA (Read et al., 2016).   68 

Xo1 maps to a region that in the reference rice genome (cv. Nipponbare) 69 

contains seven nucleotide-binding, leucine-rich repeat protein genes (“NLR” genes) 70 

(Triplett et al., 2016). NLR genes are the largest class of plant disease resistance genes. 71 

NLR proteins recognize specific, corresponding pathogen effector proteins typically 72 

through direct or indirect protein-protein interactions, and mediate downstream defense 73 

signaling that leads to expression of defense genes and a programmed localized cell 74 

death, the hypersensitive reaction (HR) (Lolle et al., 2020). Recently, by whole genome 75 

sequencing, we determined that the Xo1 locus in Carolina Gold comprises 14 NLR 76 

genes. We identified one of these, Xo111, as a strong candidate based on its structural 77 

similarity to the previously cloned and only known NLR resistance gene for bacterial 78 

blight, Xa1 (Read et al., 2020). Xa1, originally identified in the rice variety Kogyoku, 79 

maps to the same location (Yoshimura et al., 1998) and behaves similarly to Xo1: it 80 

responds to TALEs non-specifically (and thus confers resistance also to bacterial leaf 81 

streak), and its activity is suppressed by truncTALEs (Ji et al., 2016). Xo111 and Xa1 are 82 

members of a small subfamily of NLR genes that encode an unusual N-terminal domain 83 

comprising a zinc finger BED motif (Read et al., 2020). 84 

To ascertain whether Xo111 is the gene responsible for Xo1 resistance, we 85 

generated transgenic Nipponbare plants expressing it. We amplified the genomic Xo111 86 

coding sequence (5,882 bp) as well as the 993 bp promoter region upstream of the start 87 

codon and cloned them together into a binary vector with a 35S terminator to generate 88 

plasmid pAR902. Agrobacterium tumefaciens strain EHA101 carrying pAR902 was 89 
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used for the transformation, which was performed by the Cornell University Plant 90 

Transformation Facility. After rooting, regenerants from two independent events were 91 

moved to soil and maintained in a growth chamber. These T0 plants were inoculated by 92 

syringe infiltration with African Xoc strain CFBP7331, which has no truncTALE of its 93 

own, carrying either an empty vector (EV) or the plasmid-borne truncTALE gene tal2h 94 

(p2h) from the Asian Xoc strain BLS256 (Read et al., 2016). Inoculum was confirmed on 95 

untransformed Nipponbare and Carolina Gold plants (Fig. S1). Plants from both Xo1 96 

events displayed resistance to the strain with the EV, manifesting as HR (necrosis) and 97 

lack of water-soaking, and this was suppressed by Tal2h (Fig. 1), demonstrating that 98 

Xo111 is the Xo1 gene. 99 

NLR protein activation is characteristically followed by a suite of responses that 100 

includes massive transcriptional reprogramming leading both to HR and to activation of 101 

a large number of defense-associated genes (Cui et al., 2015). To gain insight into the 102 

nature of Xo1-mediated resistance, we compared the global profile of differentially 103 

expressed genes during Xo1-mediated defense to those of two other NLR genes in rice, 104 

and to the profile associated with an executor gene. We used our previously reported 105 

RNAseq data from Carolina Gold plants inoculated with CFBP7331(EV) or mock 106 

inoculum (Read et al., 2020), data for the NLR gene Pia for resistance to the rice blast 107 

pathogen Magnaporthe oryzae (Tanabe et al., 2014), data from rice resistant to 108 

bacterial leaf streak due to transgenic expression of the maize NLR gene Rxo1 (Xie et 109 

al., 2007; Zhou et al., 2010), and data for the transcriptomic response associated with 110 

induction of the executor resistance gene Xa23 by an Xoo strain with the corresponding 111 

TALE (Tariq et al., 2018). Differentially expressed genes (log2-fold change >1 or <-1; p-112 
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value >0.05) in the comparison between pathogen-inoculated and mock-inoculated 113 

plants were compared across the four datasets. The total number of DEGs ranged from 114 

10,050 for Xo1 to 628 for Xa23 (Fig. 2A, Table S1). For each resistance gene, there 115 

were a number of DEGs found only in the pathogen to mock comparison for that dataset, 116 

and this was highest for Xo1 (7,121 genes) (Fig. 2A, Table S1). These DEGs may be 117 

specific to the rice-genotype and pathogen combinations assayed, or they may be due 118 

to differences in the expression assay (RNAseq vs. microarray), annotation, or 119 

timepoints used. Overall, the DEG profile for Xo1 was more similar to those of Pia and 120 

Rxo1 than to the profile for Xa23 (Fig. 2A). This was even more apparent when the 121 

expression of 340 rice genes associated with plant defense response (gene ontology 122 

group 0006952) was examined (Fig. 2B). The Xo1 profile comprised the largest number 123 

of plant defense DEGs (99), and these included 16 of 26 total defense DEGs for Rxo1, 124 

26 of 46 for Pia, and 8 of only 14 for Xa23 (Fig. 2B and Table S2). 125 

 We also compared DEGs relative to mock in Carolina Gold plants inoculated with 126 

CFBP7331(EV) and Carolina Gold plants inoculated with CFBP7331(p2h) (Read et al., 127 

2020), to gain insight into how Xo1-mediated resistance is overcome by a pathogen 128 

delivering a truncTALE. In contrast to the 99 defense response genes differentially 129 

expressed in response to CFBP7331(EV), only 18 defense genes were differentially 130 

expressed in response to CFBP7331(p2h) (Fig. 2C). Of these 18 genes, 7 were 131 

differentially expressed only in the response to the strain with tal2h, 4 up and 3 down. 132 

Of the remaining 11, 3 were up and 2 were down in both responses, but each less so in 133 

the response to the strain with tal2h. The other 6 moved in opposite directions entirely, 134 

up in the absence but repressed in the presence of tal2h, relative to mock. This 135 
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expression profile during suppression of Xo1-mediated resistance is consistent with 136 

Tal2h functioning early in the defense cascade. Interestingly, the Xoc susceptibility gene 137 

OsSULTR3;6 is strongly induced by both CFBP7331(EV) and CFBP7331(p2h), 138 

indicating that TALE function is not compromised by Xo1 or by Tal2h. 139 

The observation that Xo1 reprograms transcription in a manner consistent with 140 

other rice NLR proteins upon recognition of the cognate pathogen effector and that 141 

reprogramming by Xo1 is essentially blocked by Tal2h led us to explore whether Xo1 142 

localizes to the same subcellular location as TALEs and truncTALEs. Some, but not all, 143 

NLR proteins nuclear localize (Shen et al., 2007; Wirthmueller et al., 2007; Caplan et al., 144 

2008; Cheng et al., 2009), and we previously identified putative nuclear localization 145 

signals (NLSs) in Xo111 (Read et al., 2020). We generated expression constructs for a 146 

green fluorescent protein (GFP) fusion to the N-terminus of Xo1 as well as an N-147 

terminal monomeric red fluorescent protein (mRFP) fusion both to a TALE (Tal1c of Xoc 148 

BLS256) and to Tal2h. These constructs were delivered into Nicotiana benthamiana 149 

leaves using A. tumefaciens strain GV3101, and the leaves imaged with a Zeiss 710 150 

confocal microscope (Fig. 3). GFP-Xo1 in the absence of either effector but with free 151 

mRFP localized to foci that appeared to be nuclei. Co-expression with mRFP-Tal1c or 152 

with mRFP-Tal2h confirmed that these foci were nuclei.  153 

The localization of Xo1, the TALE, and the truncTALE to the nucleus when 154 

transiently expressed in N. benthamiana led us to pursue the hypothesis that Xo1 155 

physically interacts with one or both of these proteins in the native context. We 156 

generated plasmid constructs that add a 3x FLAG tag to the C-terminus of Tal1c or 157 

Tal2h (Tal1c-FLAG and Tal2h-FLAG) and introduced them individually into the TALE-158 
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deficient X. oryzae strain X11-5A (Triplett et al., 2011) for co-immunoprecipitation from 159 

inoculated Carolina Gold leaves (Fig. 4). We included also a plasmid for expression of a 160 

second, untagged TALE (Tal3c from BLS256) and a plasmid for untagged Tal2h. By 161 

pairing the X11-5A transformants with each other or with the untransformed control 162 

strain, we were able to probe for Carolina Gold proteins interacting with the tagged 163 

TALE or truncTALE, and for interactions of these proteins with each other or with the 164 

second TALE. Select combinations were inoculated to Nipponbare leaves for 165 

comparison. Inoculation was done by syringe infiltration, in 30-40 contiguous spots on 166 

each side of the leaf midrib. For each co-inoculation, tissue was harvested at 48 hours 167 

and ground in liquid N2, then soluble extract was incubated with anti-FLAG agarose 168 

beads and washed to immunopurify the tagged and interacting proteins. 169 

Immunoprecipitates were eluted, and an aliquot of each was subjected to western 170 

blotting with anti-TALE antibody (Fig. S2). The remainders were then resolved on a 4-171 

20% SDS-PAGE and eluates from gel slices containing proteins between approximately 172 

60 and 300 kDa (Fig. S3) were digested and the peptides analyzed by mass 173 

spectrometry. Proteins were considered present in a sample if at least three peptides 174 

mapped uniquely to any of the pertinent annotated genomes searched: the X. oryzae 175 

strain X11-5A genome (Triplett et al., 2011) plus the TALE(s) or TruncTALE being 176 

expressed, the Nipponbare genome (MSU 7; Kawahara et al., 2013), and the Carolina 177 

Gold genome (Read et al., 2020). For the Carolina Gold genome, we re-annotated 178 

using the RNAseq data from CFBP7331(EV), CFBP7331(p2h), and mock-inoculated 179 

plants cited earlier. We carried out the experiment twice. 180 
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 In the western blot for each experiment (Fig. S2), we detected the tagged TALE 181 

or truncTALE in each corresponding sample, with the exception of a Tal1c-182 

FLAG/Tal3c/Nipponbare sample in the first experiment. No Tal3c or untagged Tal2h 183 

was detected in any sample. The mass spectrometry confirmed these observations, 184 

suggesting that neither TALEs with truncTALEs nor TALEs with other TALEs interact 185 

appreciably  (Fig. 4). Xo1 was consistently detected in the Carolina Gold/Tal2h-FLAG 186 

samples, irrespective of any co-delivered Tal1c or Tal3c, and not in any other sample 187 

(Fig. 4). No other protein consistently co-purified with Tal2h-FLAG or Tal1c-FLAG in 188 

either Carolina Gold or Nipponbare samples (Dataset S1).  189 

In summary, we have shown that 1) an NLR protein gene at the Xo1 locus, 190 

harboring an integrated zfBED domain, is Xo1; 2) the Xo1-mediated response is similar 191 

to those mediated by two other NLR resistance genes and distinct from that associated 192 

with TALE-specific transcriptional activation of an executor resistance gene; 3) a 193 

truncTALE abolishes or dampens activation of defense-associated genes by Xo1; 4) the 194 

Xo1 protein, like TALEs and truncTALEs, localizes to the nucleus, and 5) Xo1 195 

specifically co-immunoprecipitates from rice leaves with a pathogen-delivered, epitope-196 

tagged truncTALE. Thus, Xo1 is an allele or paralog of Xa1, and suppression of Xo1 197 

function by a truncTALE is likely the result of physical interaction between the 198 

resistance protein and the effector. 199 

Whether the interaction is direct or indirect is not certain, but that fact that no 200 

other protein was detected consistently that co-immunoprecipitated with Tal2h and Xo1 201 

suggests the interaction is direct. It is tempting to speculate that TALEs trigger Xo1-202 

mediated resistance also by direct interaction with the protein and that truncTALEs 203 
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function by disrupting the association. This is consistent with the results of our 204 

comparative analysis of the Xo1 DEG profile during TALE-triggered HR, which showed 205 

it to be a typical NLR protein-mediated response and thus plausibly the result of direct 206 

interaction with the TALE. And it is consistent with the Xo1 DEG profile during 207 

suppression by Tal2h, which suggested that Tal2h functions early in the defense 208 

cascade, perhaps by blocking TALE recognition. While tagged Tal1c did not detectably 209 

pull down Xo1, it is possible that the interaction might be weak, or transient, or that any 210 

complex of the proteins in the plant cells had begun to degrade with the developing HR 211 

at the 48 hour time point sampled. An alternative hypothesis is that Tal2h interacts with 212 

TALEs and masks them from the resistance protein, but both our co-213 

immunoprecipitation results and the fact that Tal2h did not impact TALE activation of the 214 

OsSULTR3;6 susceptibility suggest that this is not the case. 215 

The results presented constitute an important step toward understanding how 216 

Xo1 works, and how its function can be suppressed by the pathogen. An immediate 217 

next step might be to determine the portion(s) of Xo1 involved in its interaction with 218 

Tal2h. Our previous comparison of the motifs present in Xo111, Xa1, and the closest 219 

Nipponbare homolog (Nb-xo15, which is expressed) revealed that the zfBED and CC 220 

domains are identical and the NB-ARC domains nearly so (Read et al., 2020). In 221 

contrast, the leucine rich repeat domain of Nb-xo15 differs markedly from those of Xo1 222 

and Xa1, which, with the exception of an additional repeat in Xa1, are very similar. Thus, 223 

the LRR may be the determinative interacting domain. Supporting this hypothesis, 224 

differences in the LRR determine the pathogen race specificities of some flax rust 225 

resistance genes (Ellis et al., 1999). More broadly, the ability of tagged Tal2h to pull 226 
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down Xo1 suggests that effector co-immunoprecipitation may be an effective approach 227 

to characterizing pathogen recognition mechanisms of other resistance proteins, or for 228 

identifying a resistance gene de novo. 229 

 230 

 231 

Figure legends 232 

 233 

Fig. 1. Transgenic Nipponbare plants expressing Xo111 are resistant to African Xoc 234 

strain CFBP7331 and the resistance suppressed by a truncTALE. Susceptible cultivar 235 

Nipponbare was transformed with pAR902, and leaves of T0 plants from two events 236 

were syringe-infiltrated with African Xoc strain CFBP7311 carrying either empty vector 237 

(EV) or tal2h (p2h) adjusted to OD600 0.4. Leaves were photographed on a light box at 4 238 

days after inoculation. Resistance is apparent as HR (necrosis) at the site of inoculation 239 

and disease as expanded, translucent watersoaking. 240 

 241 

Fig. 2. The Xo1-mediated transcriptomic response is similar to those of other NLR 242 

genes and is essentially eliminated by Tal2h. A, Expression heatmaps (columns) 243 

showing all differentially expressed genes (DEGs) in plants undergoing the resistant 244 

response compared to mock inoculated plants for Xo1, the NLR genes Pia and Rxo1, 245 

and the executor resistance gene Xa23. White numbers for each on the heatmap 246 

indicate the number of DEGs specific to each response (see Table S1). Total numbers 247 

of DEGs are indicated below. B, Heatmaps for the subset of DEGs from (A) that belong 248 

to gene ontology group 0006952, defense response, with totals displayed at bottom. C, 249 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 29, 2020. ; https://doi.org/10.1101/2020.05.26.116731doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.26.116731
http://creativecommons.org/licenses/by-nd/4.0/


Read 12 of 19  MPMI 

Heatmaps for the 18 defense response DEGs identified in the comparison of Carolina 250 

Gold plants inoculated with CFBP7331(p2h) to mock inoculated plants. The “EV” 251 

heatmap shows their expression relative to mock in Carolina Gold plants inoculated with 252 

CFBP7331(EV) (resistance), and the “p2h” column shows their expression relative to 253 

mock in the presence of Tal2h (disease).  The DEGs have been divided into five 254 

categories: I, induced in both; II, down-regulated in both; III, down-regulated in 255 

resistance and induced in disease; IV, not differentially expressed in resistance and 256 

down-regulated in disease; and V, not differentially expressed in resistance and induced 257 

in disease.  258 

 259 

Fig. 3. Xo1 localizes to the nucleus. Using Agrobacterium co-infiltrations, an expression 260 

construct for Xo1 with GFP at the N-terminus (GFP-Xo1) together with a p19 silencing 261 

suppressor construct were introduced into Nicotiana benthamiana leaves alone or with 262 

a construct for mRFP, mRFP fused to TALE Tal1c (mRFP-Tal1c), or mRFP fused to the 263 

truncTALE Tal2h (mRFP-Tal2h). Confocal image stacks were taken at 3 days after 264 

inoculation and are presented as maximum intensity projections. Insets are 265 

magnifications of individual nuclei. The scale bars represent 50 µm. 266 

 267 

Fig. 4. Xo1 co-immunoprecipitates with Tal2h. Top, strategy used for co-268 

immunoprecipitation (Co-IP) of truncTALE Tal2h or TALE Tal1c and any interactors. 269 

Plasmid borne expression constructs for Tal2h or Tal1c with a C-terminal 3x FLAG tag, 270 

as well as untagged Tal2h and a second TALE,Tal3c were introduced into 271 

Xanthomonas oryzae strain X11-5. Paired combinations of the transformants with each 272 
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other or with the untransformed control strain, or the control strain alone, were co-273 

infiltrated into leaves of rice varieties Carolina Gold and Nipponbare at a final OD600 0.5 274 

for each transformant. Samples were collected 48 hours after inoculation, ground, and 275 

sonicated before Co-IP using anti-FLAG agarose beads. After elution and SDS-PAGE 276 

separation, proteins between approximately 60 and 300 kDa were eluted, digested and 277 

analyzed by mass spectrometry. The experiment was conducted twice. Bottom, co-IP 278 

results. For each immunoprecipitate, the numbers of unique peptides detected that 279 

matched Tal2h, Tal3c, Tal1c, or Xo1 in each experiment are shown. “-” indicates that ≤ 280 

2 unique peptides were detected. 281 

 282 
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