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Abstract: 14 
The Cambrian Period (541-485 Mya) represents a major stage in the development of metazoan-dominated 15 
assemblages with complex community structure and species interactions. Exceptionally preserved fossil 16 
sites have allowed specimen-based identification of putative trophic interactions to which network 17 
analyses have been applied. However, network analyses of the fossil record suffer from incomplete and 18 
indirect data, time averaging that obscures species coexistence, and biases in preservation. Here, we 19 
present a novel high-resolution fossil dataset from the Raymond Quarry (RQ) member of the mid-20 
Cambrian Burgess Shale (7549 specimens, 61 taxa, ~510 Mya) affording new perspectives on these 21 
challenging issues. Further, we formulate a new measure of ‘preservation bias’ that aids identification of 22 
those assemblage subsets to which network analyses can be reliably applied. For sections with sufficiently 23 
low bias, abundance correlation network analyses predicted longitudinally consistent trophic and 24 
competitive interactions. Our correlation network analyses predicted previously postulated trophic 25 
interactions with 83.5% accuracy and demonstrated a shift from specialist interaction-dominated 26 
assemblages to ones dominated by generalist and competitive interactions. This approach provides a 27 
robust, taphonomically corrected framework to explore and predict in detail the existence and ecological 28 
character of putative interactions in fossil datasets, offering new windows on ancient food-webs. 29 
 30 
Significance Statement: 31 
Understanding interactions in paleo-ecosystems has been a difficult task due to biases in collection and 32 
preservation of taxa, as well as low time resolution of data. In this work, we use network science tools and 33 
a fine scale dataset from the Cambrian period to explore: (i) preservation bias due to ecological/physical 34 
characteristics of taxa; (ii) evidence that the magnitude and sign of pairwise abundance correlations 35 
between two fossil taxa yields information concerning the ecological character about the interaction. All 36 
results in our work derive from using complex system approaches to analyze abundance data, without 37 
assuming any prior knowledge about species interactions – thereby providing a novel general framework 38 
to assess and explore fossil datasets. 39 
 40 
Introduction 41 
 42 
Evolutionarily, the Cambrian Period (541-485 Mya) is unique because it witnessed the emergence and 43 
rapid diversification of phylum-level extant animal body plans and featured the highest morphological 44 
and genetic rates of animal evolution (Erwin et al., 2011; Lee et al., 2013). Morphological disparity and 45 
behavioral complexity increased (Carbone and Narbonne, 2014; Seilacher et al., 2005), prompting 46 
hypotheses about major shifts in ecological interactions and trophic structure during this period, due to 47 
major changes such as widespread predation and active (vertical) burrowing, which may have facilitated 48 
the first complex ‘modern’ food-webs (Dunne et al., 2008; Conway-Morris, 1986; Vannier and Chen, 49 
2005, Erwin and Valentine, 2013; Mángano and Buatois, 2014). ‘Conservation lagerstätten’ sedimentary 50 
deposits, featuring exceptional fossil preservation of both ‘soft’ and ‘hard’ body features (Orr et al., 51 
2003), permit detailed studies from which species interactions can be deduced (Butterfield, 2003).  52 
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 53 
Network-based studies provide critical insight on the structure and function of ecological systems 54 
(Delmas et al., 2018, Posiot et al., 2016; Ings et al., 2008), but paleo-assemblages often suffer from 55 
incomplete and indirect data (Roopnarine, 2010), time-averaging across large stratigraphic sections that 56 
obscure species coexistence (Kidwell and Bosence, 1991; Dunne et al., 2008; Roopnarine, 2010; 57 
Muscente et al., 2018), and biases in preservation, collection, and identification of both specimens and 58 
interactions (Koch, 1978; Smith, 2001; Dunne et al., 2008). Although some previous network studies 59 
have been performed on almost census preserved communities, such as in the Ediacaran (Mitchell et al., 60 
2019; Mitchell and Butterfield, 2018; Muscente et al., 2019)  Here, we report a new, extensive mid-61 
Cambrian fossil abundance dataset featuring excellent preservation with high stratigraphic resolution, 62 
consistent taxa presence, and low biases in collection and identification. Using correlation network 63 
analyses of fossil abundance data and agent-based models, we find novel statistical evidence 64 
recapitulating 71 of 85 previously known or suspected species interactions, propose 117 previously 65 
unknown putative interactions, and identify a shift from assemblages dominated by specialist interactions 66 
to ones dominated by competition and generalized interactions. All results derive directly from fossil 67 
abundance data, without assuming any prior knowledge about species interactions. 68 
 69 
Employing classic tools of network analysis in novel ways, we characterize fine-scale structure and 70 
dynamics of the paleo-ecological system represented by a novel 7549 specimen dataset from the 71 
Raymond Quarry (RQ) of the Middle Cambrian Burgess Shale of SE British Columbia, Canada (~510 72 
Mya, Figure 1(a); S1). This dataset, which represents one of the most complete views of early animal 73 
assemblages, consists of species-wise abundance for 61 taxa in 10 cm levels across 9.3 m of shale. 74 
Previous network studies of paleontological data (e.g., Dunne et al., 2008) have focused on the Walcott 75 
Quarry, which is from the same geological period and has much higher species diversity than RQ, but 76 
unlike RQ lacks consistent species preservation across stratigraphic slices (Devereux, 2001). Therefore, 77 
this new dataset’s fine-scale spatial resolution and the site’s exceptional, consistent preservation of soft-78 
bodied organisms offer advantages not available to most earlier paleo-assemblage network analyses 79 
(Dormann et al., 2017, Dunne et al., 2008). Moreover, in addition to unique usage of network methods, 80 
we utilized agent-based models to quantify and test key concerns, affording (a) a novel computational 81 
approach to understand preservation bias in fossil assemblages, (b) identification of putative interactions 82 
among taxa, (c) categorization of putative interactions into ecological roles, and (d) understanding of 83 
trophodynamics over time. 84 
 85 
Results and Discussion 86 
 87 
Based on consensus results from two statistical approaches commonly used to define boundaries between 88 
fossil assemblages—SHEBI (Buzas and Hayek, 1998) and ANOSIM (Clark and Warwick, 1994) 89 
(methods, Fig 1(b); S2) —we identified four distinct sub-assemblages (named A-D in decreasing order of 90 
age), which match previous biofacies identification based on paleontologically defined trophic nuclei 91 
(Devereux, 2001). Based on these results, we calculated statistically corrected pairwise correlation of 92 
abundance for all taxa in each of the four sub-assemblages, and each of the 46 groupings of 20 cm levels 93 
organized to facilitate analyses at a finer depth scale (hereafter referred to as the running time-frame 94 
analysis) (methods). These correlations, with relevant regularization, were then used to construct 95 
correlation networks, for each sub-assemblage and each component of the running time-frame analysis. In 96 
these networks, each node was a taxon and each edge between a node pair represented significant 97 
correlation and thus possible interaction (methods).  98 
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 99 
Figure 1: (a) Location of Raymond Quarry (RQ) (Yoho National Park, British Columbia, Canada), 100 
denoted by red dot; yellow region denotes extent of major Burgess Shale localities; Samples were 101 
collected from the RQ member along the ‘fossil ridge’ connecting Mt. Field and Wapta Mountain. (Figure 102 
S1, methods) (b) ‘Preservation bias coefficient’ for body type (with respect to soft, intermediate and hard 103 
bodied categorization) (in red), habitat type (in black) and body size categories (in blue) calculated using 104 
networks in running timeframe analysis, plotted along with estimated boundaries for the distinct sub-105 
assemblages (A-D) in the 9.3 m shale section using variations of two different statistical approaches for 106 
biofacies detection: ANOSIM and SHEBI (Figure S2, methods) and the associated average bias 107 
coefficient for each sub-assemblage (in their respective index colors for each type of bias). The green 108 
dotted line depicts the bias threshold we adopted for inclusion versus exclusion of sample layers.  109 
Preservation bias coefficients exceeding 0.5 translate into substantial changes in the structure of 110 
interaction networks calculated from abundance correlations (Figure S3b). Note that the 10 cm layers 111 
comprising regions A’ and D’ were originally identified as belonging to sub-assemblages A and D, but 112 
fossils from A’ and D’ were not used in the analyses presented here because of evidence for high levels of 113 
preservation bias among taxa. 114 
 115 
Correlation networks can yield insights into possible interactions among taxa (Zhang, 2011; Carr et al., 116 
2019; Barberán et al., 2012), but network features can be obscured by preservation and collection biases 117 
(Dunne et al. 2008; Carr et al., 2019; Jordano, 2016). Intensive sampling and detailed annotation reduced 118 
collection bias in this dataset, but preservation bias can still yield altered patterns of abundance. Statistical 119 
corrections have addressed some issues of fossil preservation biases (Flannery Sutherland et al., 2019; 120 
Starrfelt and Liow, 2016; Mitchell, 2015), but these have not targeted applications involving network 121 
analyses.  122 
 123 
Preservation bias can occur for several reasons, most notably presence/absence of hard body 124 
parts/biomineralizable structures (which aid preservation), body size (which determines amount of 125 
preservable material and often the size of populations), and location/habitat (which provide differential 126 
conditions for preservation). If two taxa are both well preserved, their true abundance correlation is 127 
expected to exhibit less noise than correlations among pairs of taxa in which at least one taxon is not well-128 
preserved. Differential preservation biases among taxa could introduce subtle structuring in a correlation-129 
based network that would be biased towards more well-preserved taxa. The network-level consequences 130 
of such biases can be quantified by comparison with exponential random graph models (ERGMs), which 131 
have been used to understand the effects of bias and missing data (Robins et al., 2004).  132 
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 133 
To understand the influence of preservation bias on fossil correlation networks, we constructed an agent-134 
based simulation model (ABM) of a complex resource-prey-predator system (consisting of 17 prey, 8 135 
predators, and a common base resource for prey; methods). We ran 1 million simulations of this ABM 136 
that differed in various initial conditions, such as starting population size of each species and average 137 
resource density.  For each of the 1 million simulations, we then created 100 cases, where each of the 138 
component species was assigned independently to one of three categories differentiated by probability of 139 
preservation (methods), and also retained the corresponding base case in which each species had perfect 140 
preservation (i.e., the original abundance data). For all 101 million cases (100 million cases with modified 141 
preservation and the corresponding 1 million original cases with perfect preservation), we then calculated 142 
abundance correlations among species pairs and constructed regularized correlation networks.  We 143 
formulated a bias coefficient, using ERGMs and Hamming distance, to capture the effect of differential 144 
preservation on network structure through pairwise analyses of corresponding cases with modified and 145 
perfect preservation (Figure S3, methods). Higher bias coefficients corresponded to greater alterations of 146 
network structure.   147 
 148 
We then applied this bias coefficient to the fossil data in the running time-frame analysis (methods). We 149 
separately considered three factors that could map onto differences in preservation:  body type (hard-150 
bodied, partially hard-bodied, soft-bodied), body size (<15cm, 15-30 cm, and > 30 cm maximum size), 151 
and habitat usage (endobenthic/epibenthic, nektobenthic and nektonic/pelagic) (methods). Information on 152 
these factors were compiled from literature surveys: body type, maximum body size, and habitat usage 153 
(see supplementary data).  154 
 155 
For all three factors, we found evidence for significant differential preservation bias at the start and the 156 
end of the collected assemblage in regions A’ and D’ that were, respectively, originally part of sub-157 
assemblages A and D identified through biofacies detection (Figure 1(b)). Because of their heightened 158 
preservation bias, which was strong enough to substantially alter apparent network structure, data from 159 
regions A’ and D’ were excluded from further analyses. In contrast, we found low levels of preservation 160 
bias coefficients in each of the defined sub-assemblages (A-D), with respect to body type, body size, and 161 
habitat (Figure 1(b); bias coefficient was < 0.5 for all cases; methods). These preservation biases were 162 
low enough to have inconsequential effects on network structure (Fig. 1b, Fig. S3). One would expect 163 
heightened levels of preservation bias at the beginning and end of a fossil bed if the strata above and 164 
below the sampled assemblage did not allow proper preservation of organisms due to a change in 165 
environmental (preservation) conditions (Orr et al., 2003).  From a taphonomic viewpoint, factors such as 166 
differential transport experienced between taxa and between fossil beds, the degree of time averaging, and 167 
pre-burial transport distances may shape the preservation of discoverable assemblage contents as well 168 
(Olson et. al., 1980; Martin, 1999). Consequently, complete preservation of all ecological information is 169 
seldom expected (Flannery Sutherland et al., 2019; Saleh et. al., 2020). However, the consistency in low 170 
preservation bias coefficient with respect to body preservation type, habitat type, and body size 171 
throughout sub-assemblages A – D (with removal of A’ and D’ and corresponding running time frames) 172 
suggests that the net taphonomic effect resulted in an overall relatively homogeneous burial of a group of 173 
taxa across the whole assemblage (Figure 1(b)).  Nevertheless, some loss of taxa may not have been 174 
inferable from the fossil data using our methods, and small differences in preservation may still be present 175 
throughout the assemblage at the taxon level.  176 
 177 
Even though we report no significant preservation biases beyond those at the A’ and D’ ends of the RQ 178 
assemblage based on the predicted ‘in-situ’ preservation potential of the RQ taxa, the original interactions 179 
may still have been subjected to certain biases (Butterfield, 2003). However, these possibilities are not 180 
pertinently different than methodological biases affecting recent or extant ecological data (Dunne et al., 181 
2008; Armitage and Jones, 2019).  182 
 183 
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Both experimental and theoretical studies predict that prey-predator abundances should be correlated on 184 
long time scales (Liebhold et al., 2004; Tobin and Bjørnstad, 2003; Blasius et. al., 2019), and we found 185 
this to be true for our ABM simulations (Figure S4). This result supports the premise that fossil 186 
abundance correlations might correspond to potential species interactions, where the degree of 187 
preservation bias is low, such as in extremely well-preserved assemblages like the Burgess shale (Saleh et 188 
al., 2020), and census-like preservation of Ediacaran communities (Mitchell et al., 2019). Furthermore, 189 
the distribution of abundance correlations should characterize system-level interactions. For example, we 190 
might hypothesize that abundances of competitors should be negatively correlated whereas abundances of 191 
species engaged in highly specialized interactions should be strongly positively correlated, assuming 192 
homogeneous transport and burial. The shape and location of the distribution of fossil abundance 193 
correlations differed among sub-assemblages A-D (Figure 2 (a), (b)). In particular, the frequency of small 194 
magnitude correlations and of negative correlations increased over time from A to D.  195 
 196 
To explore if changes in correlational distributions represented a shift in the dominant mode of species 197 
interaction over time, we decomposed the corrected correlation distribution for each sub-assemblage A – 198 
D, which were used in network construction, into its respective basis functions using maximum likelihood 199 
(methods). In each sub-assemblage A – D, the distribution of abundance correlations was best fit by a 200 
sum of four Gaussian distributions (Figure S6, methods), and across sub-assemblages, the four Gaussians 201 
had similar means but different amplitudes and variances (Figure 2 (a)).  We found a similar result for the 202 
finer scale running timeframe analysis. To categorize these Gaussians in the correlations of fossil data 203 
into possible clusters, we calculated a pairwise similarity matrix of all the component Gaussians across 204 
the assemblage and then performed a spectral analysis with the ‘gap’ statistic (Tibshirani et al., 2000; 205 
methods) on it, which revealed four clusters of Gaussians (Figure 2 (a), (b); methods).  206 
 207 
To understand the origins and potential meaning of the four clusters/categories of Gaussians in the 208 
empirical data, we used the ABM to simulate the dynamics of hypothetical ecological communities that 209 
differed in the importance of prey-predator interactions and competition. We considered trophic-relation-210 
based ABM systems involving prey, specialist predators, and generalist predators, which implicitly also 211 
allow for competition and apparent competition (or, intra-guild competition). We compared where the 212 
abundance correlations associated with specialist, generalist, and competitive pairwise interactions from 213 
the simulated ABM communities fell relative to the four categories obtained via clustering from the fossil 214 
correlation distributions. Fully 86% of all correlations derived from interactions in the ABM fell within 215 
the intervals of the four empirically defined categories (Figure 2 (a), (b), (c)).  In support of our initial 216 
ideas about the relationship between abundance correlation and interaction type, we found that ABM 217 
interactions involving competition and apparent competition dominate Category 1, generalist prey-218 
predator interactions dominate Categories 2 and 3, and specialist prey-predator interactions dominate 219 
Category 4 (Figure 2 (c)). To explore, we used a second ABM in which each prey-predator interaction 220 
was weighted by the predator’s preference for that prey. From these simulations, we recovered the 221 
specialist-generalist spectrum of interactions, and further, identified a non-linear relation between a 222 
predator’s preferences for prey and the abundance correlations recovered from the ABM. The abundance 223 
correlation between a predator and its lower preference prey was weaker than that expected for the same 224 
prey unweighted by preference (Figure S4).  225 
 226 
With reference to the ABM results, we can interpret that ‘Category 1’ (grey) involves negative 227 
correlations suggesting competition and apparent competition interactions among taxa (Fig. 2(c), leftmost 228 
column). Alternatively, such negative correlations can also arise if species have different habitat 229 
preferences and the relative availability of different habitats changes over time.  Similarly, correlations in 230 
Categories 2 (blue) and 3 (light orange) likely involve generalist consumers. If a consumer is not 231 
specializing on one resource but eats many, it will be only loosely correlated with its prey (Fig. 2c, middle 232 
columns). A weak positive correlation could also mean that both members of a species pair use similar 233 
resources. Category 4 (purple) would derive from component Gaussians that feature consistently strong, 234 
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positive correlations. This category likely represents specialist predation in which a predator depends 235 
solely or very strongly on a particular prey species (Fig. 2c, rightmost column). Alternatively, if two 236 
interacting species are strong mutualists or exhibit a strong joint dependence on environmental conditions, 237 
similarly strong positive correlations could emerge. Please note that throughout our work, we will refer to 238 
interactions as specialist or generalist (or competitive) without ascribing roles to particular taxa as we 239 
cannot ascertain which species are the prey and the predator in a given pair on the basis of abundance 240 
only.  Therefore, our network is undirected. 241 
 242 
 243 

 244 
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Figure 2: Characterization of interactions: (a) Distribution of pairwise correlations across A-D; dotted 245 
lines indicate the means of the basis Gaussians in each sub-assemblage calculated using maximum 246 
likelihood analysis for decomposing the abundance correlation distributions; colored bands indicate the 247 
four interaction categories 1-4, which represent the range of the Gaussian means for each interaction type, 248 
clustered from the basis Gaussians of the running timeframe analysis using spectral analysis with gap 249 
statistics (see methods). (b) Summary of the four categories of interactions, calculated from spectral 250 
analysis, on the smoothened density distributions of pairwise correlation of fossils in the four sub-251 
assemblages A-D; dotted lines indicate the means of Gaussian basis distributions from A-D;  (c) 252 
Proportion of different feeding types in the ABM whose abundance correlations fall in the colored bands 253 
identified in (a), suggesting, for example, that the negative correlations in category 1 (grey) are dominated 254 
by competition and apparent competition interactions whereas the strongly positive correlations in 255 
category 4 (purple) derive from specialized interactions.  256 

 257 
We acknowledge that correlations may exist based on similar habitat/environment, and attempted to 258 
address this concern in three steps. First, we calculated the preservation bias for habitat (Figure 1(b)) and 259 
did not find any significant effect of habitat on the network structure. Next, to support our trophic ABM 260 
analysis as a benchmark for categorization, we tested whether two alternative reasons for correlations 261 
(i.e., habitat specializations for negative correlations, and habitat/environment sharing for positive 262 
correlations) impacted our analysis of the fossil data. To do this, we used a stochastic block model (SBM) 263 
on the sub-assemblages and on the running-time-frame data to see if the clustered distributions of 264 
interactions could be explained instead by habitat/environment and motility data hypothesized in literature 265 
(see Figure S10). 266 
 267 
SBMs find community structure in networks (i.e., blocks of nodes which interact more among themselves 268 
than with others outside the block), and in this application would indicate clustering of interactions based 269 
on similar habitat or motility (Karrer and Newman, 2011). To implement the SBMs, we first computed 270 
the Shannon’s equitability index of each block in a given network and then calculated the weighted 271 
average of this index across blocks. An index value of 1 implies equal distribution of habitat or motility 272 
types across blocks, while a 0 indicates complete dominance of one type in a block. The SBM analyses 273 
revealed no strong dependence of the empirical correlations on either habitat or motility (Figure S10(c)).  274 
 275 
Lastly, to explore whether negative correlations can arise from species specializing on different habitats, 276 
we compared the frequency of negative correlations within the same habitat, to the corresponding values 277 
for different habitats. For the running time scale data, there were no more negative interactions among 278 
taxa from different habitats than from the same habitats (Pearson’s C 2 with Yates’ continuity correction: 279 
mean p-value (across the entire running time frame analysis) = 0.89, range = [0.68,0.93]), thereby 280 
excluding any strong effect of habitat exclusivity. We found similar results for positive correlations, again 281 
finding an absence of association between interactions and species’ habitat types (Pearson’s C 2 with 282 
Yates’ continuity correction: mean p-value (for all time frame analysis) = 0.26, range = [0.19,0.35]). 283 
Collectively, these results suggest that habitat did not play a significant role in the structure, value and 284 
distribution of correlations in our network and that these correlations instead likely stem from species 285 
interactions.  286 
 287 
Refocusing on the distributions of correlations, we observe that across fossil sub-assemblages A-D, 288 
negative interactions increase in relative frequency over time (Figure 2 (a), (b)). Similarly, specialist and 289 
generalist interactions increased from sub-assemblage A to B, but specialist interactions are largely absent 290 
in D, and occur only infrequently in C. Systematic change in the fossil transport regime could explain 291 
this, but this seems unlikely given the consistency of pairwise correlation signals over time (see fig S9). 292 
Alternatively, long term environmental change could have decreased regional productivity and made 293 
resources rare in the area of fossilization. Such long-term loss of productivity could have led to an 294 
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increase in competitive interactions and loss of specialist interactions (including both mutualists and 295 
trophic interactions), which are more prone to extinctions (or extirpations) (Colles et al., 2009; Ryall and 296 
Fahrig, 2006). These results contrast with previous food-web based studies, where generalists dominate 297 
early structuring of food webs, followed by specialists (Piechnik et al., 2008). As such, instead of 298 
representing colonization of new habitats, our dataset may provide a window into fluctuating ecological 299 
abundances transported locally in a near-shore habitat, which were fossilized during intermittent episodes 300 
of exceptional preservation. Although we do not know the timeframe of deposition of RQ exactly—and it 301 
might be fairly long—there are no anatomical changes observable in the fossil taxa, which are 302 
consistently present throughout the assemblage. This suggests that the assemblage remains within an 303 
ecological regime rather than reflecting evolutionary time. 304 
 305 
Analyses of abundance correlation networks recovered many proposed prey-predator interactions. We 306 
used the term ‘consensus interactions’ to refer to those species pairs whose abundance correlation yielded 307 
the same interaction categorization for more than 50% of the strata where the two taxa co-occurred. For 308 
species whose trophic interactions have been described or suggested in past literature and whose 309 
abundance in this dataset was sufficient for correlation analysis (Figure 3, innermost region), fully 83.5% 310 
(71 of 85) of consensus interactions predicted through our correlational analyses have been independently 311 
proposed in paleontological literature (Dunne et al., 2008; Erwin and Valentine, 2013; see methods). Our 312 
analyses supplement these expert propositions by assigning pairwise interactions into categories of prey 313 
specialization or preference by reference to correlation categories (Fig. 2). Furthermore, we propose 117 314 
new possible pairwise trophic interactions based on abundance correlations identified here. These include 315 
75 putative interactions for species whose trophic interactions were previously only partially known 316 
(Figure 3, innermost submatrix), and another 42 putative interactions involving species whose trophic 317 
interactions were not previously reported. Lastly, 18 pairwise interactions previously known from the 318 
literature could not be recovered here because the taxa involved were represented at very low densities in 319 
the fossil dataset (Fig. 3, submatrix with red background). Results in Fig. 3 only considered trophic 320 
interactions. Our correlational analyses also identified 137 possible competitive interactions for which 321 
there is no reference set because competitive interactions are more difficult to deduce from paleo-322 
biological data (Figure S7). Certain high correlation interactions may have been mutualisms, or based on 323 
shared environmental preference, common habitat patterns, or indirect interactions, rather than being 324 
trophic in nature (Freilich et. al., 2018). We searched, unsuccessfully, for a strong habitat dependence in 325 
the fossil data, but still cannot rule out any of these alternative possibilities with current data.  Direct 326 
fossil evidence and further paleontological knowledge is needed to verify or explore these points. 327 
 328 
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 329 
 330 

Figure 3: Species interaction half-matrix showing consensus interactions from our analysis, as compared 331 
with known trophic interactions from literature (Butterfield., 2000; Dunne et al., 2008; Erwin and 332 
Valentine, 2013). Confirmed interactions were proposed in the literature and supported in the correlation 333 
analyses here. Missing interactions are reported elsewhere but did not obtain any support from our 334 
abundance correlation analyses. Proposed interactions are not currently known from the paleontological 335 
literature but are suggested by analyses here. The subset of species interactions inside the black triangle 336 
were posited in previous studies (Dunne et al., 2008). The species within the light orange area were 337 
numerically rare in our dataset and no statistically robust prediction could be made regarding their 338 
interactions. For classification of confirmed interactions, see figure S8, and for consistency of interaction, 339 
see figure S9. 340 
 341 
Detailed ecological analyses of correlation networks may suffer from overestimation problems (Carr et 342 
al., 2019; Freilich et al., 2018), but broader-brush categorization of interactions based on abundance 343 
correlations can provide novel insights into the functional characteristics of fossil assemblages. Predicted 344 
interactions can be supplemented with interactions proposed by paleontological literature, based on gut-345 
contents, morphology or other analyses, to weed out false positives. Other problems raised by earlier 346 
studies of paleo-ecological networks (Dunne et al., 2008; Roopnarine, 2010), such as whether correlations 347 
capture long term prey-predator and population dynamics, were also explored here. We found that 348 
abundance correlation analyses echo results concerning long-term correlations in prey-predator models 349 
(Carr et al., 2019) and provide a strong platform for predicting species interactions without reference to 350 
prior information concerning the incidence, intensity, or character of those interactions (Figure S4, S5).  351 
 352 
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Understanding ecological dynamics from fossil data has always been a major challenge, especially for 353 
older assemblages. The extraordinary fossil preservation of the Burgess Shale, including the novel 354 
Raymond Quarry dataset reported here, provides an exceptional window on possible ecological 355 
interactions during an era of major animal evolution. Past studies argued that many properties of modern 356 
ecosystem structure first emerged during the Cambrian (Bengston, 2002), and network analyses coupled 357 
with proposed trophic interactions highlighted aspects of food-web structure during this period (Dunne et 358 
al 2008). When sufficiently strong fossil data are available, analyses of abundance correlation networks, 359 
supplemented with models to characterize biases in preservation and interpret species interactions, can 360 
reveal unknown or difficult-to-ascertain links in fossilized ecosystems and shed light on trophodynamics 361 
over evolutionary time. 362 
 363 
Data and Methods 364 

Data Collection 365 

The primary data were collected from the Raymond Quarry in the main Burgess Shale site (Figure S1), 366 
located ~5 km north of Field, British Columbia, Canada, on a ridge connecting Mt. Field and Wapta 367 
Mountain ('Fossil Ridge') (figure S1, S2). Other exposures are known (Collins et al. 1983), including 368 
outcrops on Mt. Stephen that are lithologically and biostratigraphically equivalent to the Raymond Quarry 369 
Member (Fletcher and Collins 1998), such as the outcrops of equivalent strata and fossils across the 370 
Kicking Horse Valley on the shoulder of Mt. Stephen (Fletcher and Collins 1998). Consequently, the 371 
discussed fauna was not geographically isolated. Moreover, the Raymond Quarry fauna also appears to be 372 
autochthonous.  373 

Vertical bedding measurements were determined from an arbitrarily assigned RQ 10.0 m level (equivalent 374 
to 21.6 m above the base of C.D. Walcott's excavations in the Phyllopod Bed). All fossils were labelled 375 
according to the bed of occurrence, to the nearest 10cm. Specimens that occurred exactly between two 376 
measured levels were assigned to the higher level. 377 

Metadata for each taxon were collected using a literature survey (see references section in 378 
‘metadata_traits.csv’) for the following properties: taxonomic affiliation, habitat, size, motility and 379 
preservation potential. Taxonomic affiliation was noted only when there was a majority consensus for the 380 
affiliation across sources, otherwise these were omitted from the analysis. Size data were based on the 381 
maximum size of specimens found in literature. Motility and habitat were inferred from descriptions of 382 
each taxon’s anatomical characteristics. The preservation potential assignments were primarily based on 383 
literature descriptions. Hard-bodied taxa are those with biomineralized skeletons, heavily-sclerotized 384 
parts, or decay-resistant organic cuticle. Intermediate-group taxa are those with light sclerotization or 385 
unsclerotized cuticle.  Soft-bodied taxa are those with soft cellular outer layers and soft internal tissues. 386 
Enigmatic metazoans (i.e. for which we have no biomineralized/sclerotized preserved parts and have no 387 
phylum consensus) were assigned to the soft-bodied group.  388 

Identifying sub-assemblages  389 

We used ANOSIM (Analysis of Similarity: Clark, 1993; Clark and Warwick, 1994; Bonuso et al., 2002), 390 
and SHEBI (S (species richness)-H (information) -E (evenness) analysis for Biofacies Identification: 391 
Buzas and Hayek, 1998; Handley et al., 2009) to detect consensus biofacies or sub-assemblages in the 392 
sampled region. ANOSIM is a widely used non-parametric, distance-based clustering method. Based on 393 
the rank ordering of Bray-Curtis similarities (Clarke and Warwick, 1994), ANOSIM tests for differences 394 
in community structure by mixing permutation tests with a general Monte Carlo randomization approach 395 
(Hope, 1968; Clarke, 1993). SHEBI recognizes edges between samples of specimens along a (spatial or 396 
temporal) transect. It depends upon the anticipated behavior of the evenness metric, which is associated 397 
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with Shannon-Weaver information, as the number of samples within a single community rises (Handley 398 
et al., 2009). Here, each sample was a 10 cm layer of shale with abundance values for each taxon. Each 399 
method was conducted on 100 bootstrap simulations of abundance for each 10 cm shale layer. The 400 
consensus values from the runs, using both methods, were pooled together, and the mean was used to 401 
define the boundaries of the sub-assemblages (named A, B, C and D from oldest to youngest). ANOSIM 402 
and SHEBI were implemented using the vegan (Okasen et al., 2019) and foramsv2.0-5 (Aluizio, 2015) 403 
packages in R, respectively. 404 

Agent based models 405 

Agent based models (ABMs) provide an alternative to equation-based simulations for investigating 406 
ecological scenarios in a realistic way, along with providing an easy way to incorporate spatial 407 
dependence and heterogeneity. Properly implemented, ABMs provide results that match and complement 408 
existing ecological theories and experimental evidence (DeAngelis and Grimm, 2014; Karsai et al., 2016). 409 
This led to us to choose an ABM implementation over an equation-based implementation, for 410 
representing a simple toy model of multiple prey predator interactions. Given that we are dealing with a 411 
long term (averaged) ecological abundance dataset of multiple species, there are (i) no equivalent long 412 
term complex prey-predator census dynamics of equivalent settings, and (ii) actual prey-predator relations 413 
are can only hypothesized based on paleontological evidence (see Dunne et al., 2008), we decided to use a 414 
simple ABM implementation that would have as few assumptions as possible and at the same time, also 415 
been accepted to give dynamics that have been observed in theory and experiments of prey-predator 416 
interactions (Wilensky, 1997, Liebhold et al., 2004; Tobin and Bjørnstad, 2003; Blasius et. al., 2019).  417 

This led us to use the NetLogo language (Wilensky, 1997) and extend a Lotka-Volterra prey-predator 418 
(wolf-sheep) base model in the NetLogo library, which replicates simple ecological phenomena among 419 
prey and predators (Wilensky, 1997), to create ABMs for purposes of (a) quantifying the impacts of 420 
preservation biases, (b) calculating prey-predator correlations, and (c) categorizing interactions.  421 

The primary simulation involved 25 species, with 17 prey and 8 predators, and was based upon an 422 
extended implementation of the base Lotka-Volterra wolf-sheep model in the NetLogo library (Wilensky, 423 
1997). All prey fed upon a common resource, which had two parameters attached to it – rate of resource 424 
regrowth and initial density of resources (relative to the total area, which was a 500x500 grid). The 425 
resource featured an energy content, as did the prey (all prey had equal energy content for simplification). 426 
Predators were assigned either a generalist or specialist feeding style. Generalists could eat all types of 427 
prey whereas a specialist could only eat one type of prey. Energy was necessary for reproduction, and for 428 
simplicity, at each reproduction event we divided the energy between the mother and the offspring, 429 
provided that the organism had enough energy to reproduce. The rate of reproduction was controlled as a 430 
variable. One million runs of the model were conducted that involved sweeping all parameters throughout 431 
their ranges. Each model ran until it reached a stable state (only resource was left, all predators died, or all 432 
of the organisms died) or it reached 50,000 time points, whichever occurred first. Data were transferred to 433 
R for further processing using the package RNetLogo (Thiele, 2017). Each of these models were used as a 434 
dataset for (a) testing bias, (b) calculating prey-predator correlations, and (c) categorizing interactions. 435 

The second model was the same as the first/primary model except that each predator species was 436 
randomly assigned a different preference for each prey (between 0 and 1). This preference was the 437 
probability of a predator consuming a given prey when encountered. One million runs of the model were 438 
conducted that involved sweeping all parameters throughout their ranges. Each model ran until it reached 439 
a stable state (only resource was left, all predators died, or all of the organisms died) or it reached 50,000 440 
time points, whichever occurred first. Data were transferred to R for further processing using the package 441 
RNetLogo (Thiele, 2017). Each of these models was then used as a dataset for categorizing interactions. 442 
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Constructing networks 443 

Fossil count data from two adjacent 10 cm layers were combined in each sub-assemblage to increase 444 
species coverage for network construction. For each 20cm unit of each sub-assemblage (A through D, 445 
excluding A’ and D’ as in Figure 1 on the basis of preservation bias), we iteratively sampled fossils using 446 
bootstrap process for 1000 iterations. Using the data for each iteration, we calculated mean correlations 447 
between distinct 20 cm blocks for each sub-assemblage across all the bootstrap replicates. Given that 448 
some of these interactions can be spurious, we applied partial correlation corrections to the correlation 449 
matrices of each sub-assemblage. Next, we performed a Fisher Z-transform of the partial correlation 450 
matrices and calculated the probability of observing the estimated Z-scores by chance (based on a 451 
normally distributed null distribution). Finally, we used the Benjamini-Hochberg correction of p-values to 452 
eliminate those interactions whose corrected correlation p-values exceeded 0.01. This yielded the final set 453 
of high-fidelity interactions for each sub-assemblage. 454 

We also created networks on a running time-frame basis where we started at the beginning of the 455 
assemblage and repeated the process of network construction as described above for all possible 1.2 m 456 
sub-sections created by shifting the analysis frame in 20cm increments.  457 

Pair-wise correlations were calculated for each dataset of the agent-based model simulations and across 458 
differently sized time steps as slices for calculating correlations (data were aggregated for each slice) (see 459 
Figure S2). We took 100 time-steps as the benchmark for each time slice for constructing networks for all 460 
purposes as the correlation saturated at a high enough value and the effects of phase difference and noise 461 
were reduced at this time scale of simulations. 462 

Testing Preservation Bias using Exponential Random Graph Models 463 

Exponential Random Graph Models (ERGMs: Holland and Leinhardt, 1981) are a preferred tool for 464 
evaluating how individual variables shape network structures. ERGMs have been used in the past to look 465 
at missing data and bias (Robins et al., 2004). We used the ergm (Handcock et al., 2019) package in R.   466 

Using the trophic ABM datasets, we assigned each species in each simulated dataset to one of three 467 
preservation categories (α, β, or γ) to create a new ‘partially preserved’ dataset whose abundance values 468 
were adjusted downward by fixed preservation probabilities where  469 

1	 ≥ 	𝑃(𝛼) 	≥ 	𝑃(𝛽) 	≥ 	𝑃(𝛾) 	≥ 	0 470 

These three categories can be thought of differential preservation categories: for example, in case of body 471 
type: hard bodied (preserves well like 𝛼), intermediate bodied (preserves decently but less than hard body, 472 
like 𝛽) and soft bodied (preserves poorly as compared to other body types; can be denoted by 𝛾). 473 

We repeated this procedure 100 times each for all 1 million simulated datasets and then constructed 474 
corresponding networks for each of the original and partially preserved datasets. For each of these 475 
constructed networks (both altered/partially preserved and original), we calculated the dependence of the 476 
network structure on the preservation category (α, β or γ) using ERGMs. We calculated the p-value 477 
resulting from the ERGM model for both the altered (partially preserved) networks and the original 478 
(intact) networks, as well as their mutual Hamming distance. 479 

The bias coefficient (B) is measured in terms of these ERGM p-values of the original and partially 480 
preserved networks (𝑝!"#$#%&' and 𝑝(&")#&''*	(",-,".,/ respectively) as 481 
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𝐵 =
𝑝!"#$#%&' − 𝑝(&")#&''*	(",-,".,/

𝑝!"#$#%&'
 482 

B > 0.5 on this scale corresponds to a change of ~0.2 of Hamming distance (Figure S3). Note that the 483 
ABM simulations were used to validate this statistical method before we applied it to the fossil data. 484 

Moreover, this framework can detect biases in network structure based on categorizations, even when the 485 
relative preservation potentials among the categories is unknown, but only the categorizations are known. 486 
This is a useful property because, although we can assign relative ease of preservation in categorizations 487 
of say, body type – assigning the same for habitat and body size might be more complex (see 488 
supplementary file ‘metadata_traits.csv’). 489 

Using this framework, we calculated ERGM p-values for each of the networks from the running time-490 
frame analysis, as well as the four sub-assemblages (A-D) of the fossil data. Because we do not have the 491 
structure for the unaltered network of the fossil data (i.e. the actual abundance correlation networks from 492 
when the burial happened), we assume 𝑝!"#$#%&' = 1.0 for these analyses, in order to calculate the bias 493 
coefficient. This assumption gives an upper bound on the bias coefficient for our data, as the minimum 494 
possible ERGM p-value would be represented by 𝑝!"#$#%&' = 1.0  scenario (i.e. no dependence of 495 
network structure on any factor), but the actual p-value would usually be lower than this assumed value. 496 
As, all reported bias coefficients for the fossil data is based on this assumption, they represent the ‘worst-497 
case’ values. 498 

We performed three sets of analysis in this regard: body type, body size, and habitat affiliation. In each 499 
set, there were three categories, which were pre-determined (see supplementary file ‘metadata_traits.csv’ 500 
for details), according to available paleontological evidence. The body type categorizations were based on 501 
preservation or fossilization potential, as described in ‘Data collection’ sub-section of Methods – namely, 502 
hard bodied, soft bodied and intermediate, based on literature descriptions. Body size categorizations 503 
were <15 cm, 15 - 30 cm, > 30 cm maximum size. Habitat types were categorized into 504 
endobenthic/epibenthic, nektobenthic, nektonic/pelagic, based on literature survey (see references section 505 
in ‘metadata_traits.csv’).  506 

Categorization of interactions and comparison with ABM 507 

We subjected the distributions of abundance correlations to a maximum likelihood analysis to identify 508 
appropriate Gaussian basis functions. The mean, and standard deviation for a pre-defined number of 509 
Gaussian basis functions were determined using a general simplex-based optimization algorithm (Nelder 510 
and Mead 1965). We compared results assuming 1 through 6 possible Gaussian basis functions and 511 
identified the optimal number of such functions for the correlation data using the likelihood-ratio test. All 512 
the scripts were implemented in R. 513 

Once the number and nature of the Gaussians were estimated (for sub-assemblages A-D and for the 514 
running time-frame analysis), we used pairwise Kolmogorov-Smirnov (KS) tests between basis Gaussians 515 
to obtain a pairwise similarity matrix. The number of clusters of Gaussian basis functions was determined 516 
using spectral analysis based on the pairwise similarity matrix obtained from KS analysis and the gap 517 
statistic (Tibshirani et al., 2000). An advantage of using the gap statistic is that it does not pre-assume the 518 
number of required clusters (Tibshirani et al., 2000). All scripts were implemented in R using the package 519 
cluster. Four zones of clustering were determined using this method and are termed categories of 520 
interactions. Each category is shown in Figure 2 (a) using the range of all associated Gaussian means.  521 
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Next, from the ABM datasets, we identified the nature (i.e., generalist-prey, specialist-prey, competition, 522 
apparent competition) of all interactions whose partial correlations fell within ranges of the Gaussian 523 
mean clusters and plotted their relative occurrences in Figure 2c.  524 

Consensus interactions were calculated from the running time-frame analysis and were defined as the 525 
high-fidelity interactions (or statistically corrected correlations) that stayed in the same interaction 526 
category for more than 50% of the time it occurred for a given pair of taxa. These results have been 527 
plotted in figures 3, S8 and S9. 528 
 529 

Stochastic Block Models (SBMs) and Equitability analysis 530 

The stochastic block model (SBM) is a tool, used to detect community structure in a network, where 531 
communities can be defined as multi-node subcomponents (or, blocks) of the network in which edges are 532 
more common within than between communities (Karrer and Newman, 2011). 533 

We applied the framework of SBMs to the networks constructed from fossil data to understand the 534 
associations among species. In particular, we sought to understand whether the correlations on which 535 
those networks were built represented shared motility or habitat variables rather than species interactions.  536 
At each network level (which were calculated at a sub-assemblage level A-D and also at a fine time scale 537 
level), we used integrated classification likelihood (ICL) to calculate the number of clusters/blocks. On 538 
each block/cluster, we annotated the taxa in those blocks using the metadata on habitat and motility 539 
(separately; see supplementary file ‘metadata_traits.csv’ for details) and used the mixer package 540 
(Latouche et al., 2012) to find the distribution of annotated categories across blocks at a given network 541 
level. In order to numerically represent it, we calculated Shannon’s equitability index (SEI), which is the 542 
normalized Shannon’s diversity coefficient, based on the categories of habitat/motility for each 543 
block/cluster – and to estimate a network level (for a sub-assemblage/fine time scale analysis) average – 544 
we found the weighted average (on basis on number of taxa in each block/cluster) of SEI over all the 545 
blocks/clusters in the given network. We then plotted this average network SEI value at the fine scale 546 
analysis level in Figure S10(c). 547 

SEI points at the dominance of a specific type of say, habitat/motility, on the taxa involved in interactions 548 
within a calculated cluster. If a given cluster is highly dominated by a single type of habitat/motility, SEI 549 
would be very low and would be 0 if it is only type. As SEI is normalized diversity index, the highest 550 
possible value of 1 occurs when all the types are equally probable. This is not the case with our fossil data 551 
– and hence, we calculated the maximum empirical value possible with the data (Figure S10(c)) for both 552 
habitat and motility separately. In addition, to make sense of how biased the correlational values are, we 553 
calculated the SEIs, for both habitat and motility, where a dominant type is equal to 95% of a given 554 
cluster and others are equally distributed in the remaining fraction (Figure S10(c)). 555 

 556 

Data availability 557 

All relevant data needed to recreate the results are provided as supplementary material. Abundance values 558 
for all the taxa at 10 cm resolution in RQ can be found in ‘abundance_data.csv’; ecological habits, 559 
taxonomic affinity, body type categorization and size metadata for all the taxa can be found in 560 
‘metadata_traits.csv’. Relevant final data are also provided for reference – 561 
‘trophic_interaction_matrix.csv’ contains the consensus trophic interactions, and 562 
‘competitive_interaction_matrix.csv’ contains the consensus competitive/negative interactions. Simplified 563 
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ABM simulation and network analysis code can be found at: github.com/anshuman21111/cambrian-564 
fossil-networks. 565 
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Supplementary Materials 729 
 730 

 731 
Figure S1: Schematic of excavations in the Raymond Quarry Member. The original Raymond Quarry was 732 
located within Pit #5. The northernmost extent of Pit # l is 23 m south of the Cathedral Escarpment. 733 
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 735 
Figure S2: Biofacies detected using consensus of statistical methods ANOSIM and SHEBI for the 736 
boundaries between the Raymond Quarry sub-assemblages A-B, B-C, and C-D. 737 
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 740 

 741 
Figure S3: Preservation Bias: (a) Plot of bias coefficient as measured from the agent-based model for 742 
three categories of preservation probability: α, β and γ; (b) Differences between networks quantified using 743 
the Hamming distance (larger values imply greater deviation) as a function of the bias coefficient. The 744 
plot compares unaltered ABM networks with ABM networks whose structure was obscured by 745 
preservation biases; standard errors are calculated across alternative ABM simulations. Note the nonlinear 746 
dependence of Hamming distance on bias that increases steeply beyond bias coefficient of ~0.50. 747 
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 749 
 750 
Figure S4: Correlation between a prey and its specialist predator in ABM output based on 10 sampled 751 
population sizes separated by the specified time steps. The cloud of standard error values was calculated 752 
using all the ABM runs with different initial conditions. Each ABM simulation was taken as a separate 753 
dataset and the correlation was calculated for each pair of prey and specialist predators in all the datasets. 754 
Increasing the number of sampled counts used to calculate the correlation substantially decreases the 755 
width of the error cloud.   756 
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 758 
Figure S5: Correlation change and preference/affinity for prey in an ABM with standard error (run for 759 
10,000 different ABM scenarios). Mapped onto the correlation axis are the three trophic interaction 760 
categories 2, 3, and 4 from the spectral analysis. 761 
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 763 
Figure S6: p-values from chi-square test of likelihood ratio tests for nested models that differ in the 764 
number of Gaussians (N) as compared with a model with 4 Gaussians (for sub-assemblages A-D). The 765 
areas highlighted in light blue signify where the model with four Gaussians performs significantly better. 766 
All the points for all sub-assemblages lie in the region implying that a model with four basis Gaussians is 767 
the best model to pick. 768 
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 770 

 771 
Figure S7: Species interaction half-matrix representing competitive interactions among the fossil taxa 772 
proposed on the basis of abundance correlation network analyses. As it is more difficult to test 773 
competitive interactions through anatomical or other paleo-ecological evidence, we did not pursue these 774 
further, instead focused only on trophic interactions. 775 
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 777 
Figure S8: Species interaction matrix showing the results from the categorization analysis, as compared 778 
with known trophic interactions from literature (Butterfield., 2000; Dunne et al., 2008; Erwin and 779 
Valentine, 2013), along with breakdown of the confirmed trophic interactions into specialist and 780 
generalist categories. Confirmed interactions were proposed in the literature and supported in the 781 
correlation analyses here. Missing interactions are reported elsewhere but did not obtain any support from 782 
our abundance correlation analyses. Proposed interactions are not currently known from the 783 
paleontological literature but are suggested by analyses here. The subset of species interactions within the 784 
black triangle are known from previous studies (Dunne et al., 2008). The species within the light orange 785 
area were numerically rare in our dataset and no statistically robust prediction could be made regarding 786 
their interactions.  787 
 788 
 789 
  790 
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 791 
Figure S9: Heatmap showing the proportion of times high fidelity interactions were observed in the same 792 
categorization. 82.37% of the high-fidelity interactions are present consistently in the same interaction 793 
category more than 50% of the time (of co-occurrences of the pair of species) and are termed as 794 
consensus interactions. These consensus interactions are presented in the species interaction half-matrix 795 
in figure 3 and S8. 796 
 797 
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 799 

 800 
Figure S10: A stochastic block model of the overall network (sub-assemblages A-D) is shown here for 801 
representation purposes, which depicts four distinct blocks of taxa, estimated using integrated 802 
classification likelihood, that interact more within blocks than across blocks for motility classes (a) and 803 
habitat affinity classes (b). The lines between groups and their width denotes interaction between two 804 
blocks of taxa. Please note that the width of the self-loop here is not meaningful, other than the fact that 805 
the taxa within a block interact among themselves. The size of the block refers to the number of taxa in 806 
that block. The model has been overlaid here with (a) motility data, and (b) habitat data. Clearly, 807 
organisms belonging to particular motility or habitat classes do not fall consistently into SBM blocks. 808 
This, in turn, suggests that habitat/motility similarity does not transform into very strong associations 809 
through correlations. Please note that the number of blocks varied in different sub-assemblages and 810 
running time series analysis, as it is dependent on the structure of the network.  811 
In (c) we use this SBM model to estimate average Shannon’s equitability index (SEI) (methods) for the 812 
running timeframe analysis and for sub-assemblages (A-D). The grey horizontal dotted lines demarcate 813 
the sub-assemblages (A-D). The solid lines (separate for motility and habitat) depict the maximum 814 
theoretical value of SEI possible using our data and the dashed lines represent a theoretical SEI for 95% 815 
dominance by a single type of habitat/motility (Methods). One can see that, the SEI values depict no 816 
dependence of correlation network community structure on habitat or motility, except the start and end of 817 
the assemblage – where a weak dependence cannot be ruled out. This is in lines with the bias coefficient 818 
(methods, Figure 1(b)).  819 
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