
ANIPOSE:
A TOOLKIT FOR ROBUST MARKERLESS 3D POSE ESTIMATION

A PREPRINT

Pierre Karashchuk
Neuroscience Graduate Program

University of Washington, Seattle, WA

Katie L. Rupp
Department of Physiology and Biophysics

University of Washington, Seattle, WA

Evyn S. Dickinson
Department of Physiology and Biophysics

University of Washington, Seattle, WA

Sarah Walling-Bell
Department of Physiology and Biophysics

University of Washington, Seattle, WA

Elischa Sanders
Molecular Neurobiology Laboratory

The Salk Institute for Biological Studies, La Jolla, CA

Eiman Azim
Molecular Neurobiology Laboratory

The Salk Institute for Biological Studies, La Jolla, CA

Bingni W. Brunton∗
Department of Biology

University of Washington, Seattle, WA

John C. Tuthill∗
Department of Physiology and Biophysics

University of Washington, Seattle, WA

July 26, 2021

ABSTRACT

Quantifying movement is critical for understanding animal behavior. Advances in computer vision
now enable markerless tracking from 2D video, but most animals live and move in 3D. Here, we
introduce Anipose, a Python toolkit for robust markerless 3D pose estimation. Anipose is built on
the popular 2D tracking method DeepLabCut, so users can easily expand their existing experimental
setups to obtain accurate 3D tracking. It consists of four components: (1) a 3D calibration module,
(2) filters to resolve 2D tracking errors, (3) a triangulation module that integrates temporal and spatial
regularization, and (4) a pipeline to structure processing of large numbers of videos. We evaluate
Anipose on four datasets: a moving calibration board, fruit flies walking on a treadmill, mice reaching
for a pellet, and humans performing various actions. By analyzing 3D leg kinematics tracked with
Anipose, we identify a key role for joint rotation in motor control of fly walking. We believe this
open-source software and accompanying tutorials (anipose.org) will facilitate the analysis of 3D
animal behavior and the biology that underlies it.
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1 Introduction

Tracking body kinematics is key to answering questions in
many scientific disciplines. For example, neuroscientists
quantify animal movement to relate it to brain dynamics [1,
2], biomechanists quantify the movement of specific body
structures to understand their mechanical properties [3, 4],
social scientists quantify the motion of multiple individuals
to understand their interactions [5, 6], and rehabilitation
scientists quantify body movement to diagnose and treat
disorders [7, 8, 9]. In all of these disciplines, achieving
rapid and accurate quantification of animal pose is a major
bottleneck to scientific progress.

While it is possible for human observers to recognize
body movements, scoring behaviors by eye is laborious
and often fails to detect differences in the rapid, fine-scale
movements that characterize many behaviors. Methods for
automated tracking of body kinematics from video have
existed for many years, but they typically rely on the ad-
dition of markers to identify and disambiguate body parts.
Although such methods can achieve very precise pose
estimation [10], the use of markers is often impractical,
particularly when studying natural behaviors in complex
environments, tracking multiple body parts, or studying
small animals. Thus, there is a pressing need for meth-
ods that perform automated, markerless tracking of body
kinematics.

Recent advances in computer vision and machine learn-
ing have dramatically improved the speed and accuracy
of markerless body pose estimation [1]. There are now
a number of tools that apply these methods to track ani-
mal movement from 2D videos, such as DeepLabCut [11],
SLEAP [12], DeepPoseKit [13], among others [14, 15, 16].
These software packages allow users to label keypoints,
train convolutional neural networks, and apply them to
identify keypoints from new data; several toolkits also in-
clude auxiliary tools, such as visualizing and filtering the
tracked keypoints. Among them, DeepLabCut is the most
widely used [17].

While tracking of animal movement from 2D video is
useful for monitoring specific body parts, full body pose
estimation and measurement of complex or subtle behav-
iors require tracking in three dimensions. Multiple tools
have emerged for 3D tracking and body pose estimation,
including DANNCE [18], FreiPose [19], DeepFly3D [20],
and OpenMonkeyStudio [21]. However, these tools use
fundamentally distinct network architectures, workflows,
and user interfaces from popular 2D tracking methods. Out
of the existing 2D tracking tools, only DeepLabCut [22]
supports triangulation with up to 2 cameras. However,
three or more cameras are often required to resolve pose
ambiguities, such as when one body part occludes another.
Thus, there is a need for additional tools that allow users
to extend their existing 2D tracking setups to achieve ro-
bust 3D pose estimation while preserving their established
workflows.

Here, we introduce Anipose (a portmanteau of “animal”
and “pose”), a new toolkit to quantify 3D body kinematics
by integrating DeepLabCut tracking from multiple camera

views. Anipose consists of a robust calibration module, fil-
ters to further refine 2D and 3D tracking, and an interface
to visualize and annotate tracked videos (example here).
These features allow users to analyze 3D animal movement
by extracting behavior and kinematics from videos in a
unified software framework. Below, we demonstrate the
value of 3D tracking with Anipose for analysis of mice,
fly, and human body kinematics (Figure 1). Applying 3D
tracking to estimate joint angles of walking Drosophila, we
find that flies move their middle legs primarily by rotating
their coxa and femur, whereas the front and rear legs are
driven primarily by femur-tibia flexion. We then show how
Anipose can be used to quantify differences between suc-
cessful and unsuccessful trajectories in a mouse reaching
task. Finally, we visualize how specific leg joint angles
map onto a manifold of human walking.

We designed Anipose to make 3D tracking accessible
for a broad community of scientists. Because it is built
on DeepLabCut, Anipose allows users to easily upgrade
from 2D to 3D tracking, as well as take advantage of the
DeepLabCut community, documentation, and continued
support. To help new users get started, we provide in-depth
tutorials and documentation at http://anipose.org.
The release of Anipose as free and open-source Python soft-
ware facilitates adoption, promotes ongoing contributions
by community developers, and supports open science.

2 Results
We implement 3D tracking in a series of steps: estimation
of calibration parameters from calibration videos, detec-
tion and refinement of 2D joint keypoints, triangulation and
refinement of keypoints to obtain 3D joint positions, and
computation of joint angles (Figure 2). In addition to the
processing pipeline, the key innovations of Anipose are a
robust 3D calibration module, spatiotemporal filters that re-
fine pose estimation in both 2D and 3D, and a visualization
incorporating videos, tracked keypoints, and behavioral an-
notations in one interface. We evaluated the calibration and
triangulation modules without filters by testing their ability
to accurately estimate lengths and angles of a calibration
board with known dimensions (Figure 1A) and to track the
hand of a mouse reaching for a food pellet (Figure 1B).
We then evaluated how filtering improves estimation in
3D of position and time derivative of walking flies (Fig-
ure 1C) and humans (Figure 1D). Representative examples
of tracking from each dataset are shown in Video 1.

2.1 Robust calibration of multiple camera views
An essential step in accurate 3D pose estimation is precise
camera calibration, which determines the relative location
and parameters of each camera (i.e., the focal length and
distortions). We implemented an automated procedure
that calibrates the cameras from simultaneously acquired
videos of a standard calibration board (e.g., checkerboard
or ChArUco board) moved by hand through the cameras’
fields of view (Figure 2A). We recommend the ChArUco
board because its keypoints may be detected even with par-
tial occlusion and its rotation can be determined uniquely
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Figure 1: Four experimental datasets were used for evaluating 3D calibration and tracking with Anipose. (A) To evaluate
tracking errors, a 2× 2mm precision manufactured ChArUco board was simultaneously filmed from 6 cameras focused
on the same point in space. We manually annotated and tracked 9 keypoints on the ChArUco board, a subset of the
points that can be detected automatically with OpenCV. (B) Adult mice were trained to reach for food pellets through
an opening in a clear acrylic box. After training, reach attempts were captured from 2 cameras. To quantify reach
kinematics, we labeled and tracked 3 keypoints on each hand. (C) Fruit flies were tethered and positioned on a spherical
treadmill, where they were able to walk, groom, etc. Fly behavior was filmed from 6 cameras evenly distributed around
the treadmill. We labeled and tracked 5 keypoints on each of the 6 legs, one keypoint for each of the major leg joints.
(D) As part of the Human 3.6M dataset, professional actors performing a range of actions were filmed from 4 cameras.
We tracked 17 joints on each human, covering the major joints of the human body. (The images were anonymized to
comply with bioRxiv guidelines.)
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Figure 2: Overview of the Anipose 3D tracking pipeline. (A) The user collects simultaneous video of a calibration
board from multiple cameras. (B) Calibration board keypoints are detected from calibration videos and processed to
calculate intrinsic and extrinsic parameters for each camera using iterative bundle adjustment (Figure 3). (C) With the
same hardware setup as in A, the user collects behavior videos. (D) Behavior videos are processed by a neural network
(e.g., DeepLabCut) to detect 2D keypoints. (E) 2D keypoints are refined with 2D filters to obtain refined 2D detections
(Figure 6). (F) The filtered 2D keypoints are triangulated to estimate 3D poses. (G) The estimated 3D poses are passed
through an additional spatiotemporal filtering step to obtain refined 3D poses (Figure 7). (H) Joint angles are extracted
from the refined 3D poses for further analysis.
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Figure 3: (A) Illustration of the camera parameter initialization procedure. We build a graph with each camera as a
node and edge weights computed by the number of frames the calibration board is simultaneously detected by pairs of
cameras. To initialize the camera calibration, we trim this graph to be a minimal, fully connected tree using a greedy
approach. (B) On calibration videos from the fly dataset, bundle adjustment improves the initial calibration estimate, as
measured by a reduction in reprojection error.

from multiple views. The pipeline starts by detecting
keypoints on the calibration board automatically using
OpenCV [23], based on the board’s geometric regularities
(e.g., checkerboard grid pattern, specific black and white
markers). These board detections are used first to initial-
ize camera calibration parameters from arbitrary positions
through a greedy algorithm which adds edges between
cameras one by one until it reaches a fully connected tree
(Figure 3A).

Although some tracking tools (e.g., [14, 18]) stop at the
initial estimate of camera parameters based on estimated
calibration board orientation from different cameras, we
found that this is often not sufficient to obtain accurate
camera calibrations, especially when there are few boards
detected. To resolve this issue, we implemented proce-
dures that optimize the camera calibration parameters to
minimize the reprojection error of the calibration board
keypoints, referred to as bundle adjustment in the camera
registration literature [24]. We implemented bundle ad-
justment with standard (least-squares) as well as robust
losses (Huber and soft L1). Furthermore, we developed an
iterative procedure we term "iterative bundle adjustment",
which performs bundle adjustment in multiple stages, us-
ing only a random subsample of detected keypoints points
in each stage (see Methods for a detailed description). This
procedure automatically tunes the outlier thresholds and
minimizes the impact of erroneous keypoint detections and
bad camera initialization. Each of these bundle adjustment
procedures improves the reprojection error from the initial
estimate (Figure 3B). Iterative bundle adjustment produced
marginally better results, but with no parameter tuning, so
we use this as the default in Anipose.

2.2 Accurate reconstruction of physical lengths and
angles in 3D

An important test of any calibration method is whether it
can accurately reconstruct an object with known dimen-
sions. We evaluated the Anipose calibration and trian-
gulation toolkit by asking whether it could estimate the
lengths and angles of a precisely manufactured ChArUco
board [25].

We first compared the accuracy of tracking the 9 cor-
ners of the ChArUco board (Figure 4A) with three meth-
ods: manual annotation, neural network detections, and
OpenCV detections (example detections in Figure 4B).
Although manual annotations are typically assumed to
be the ground truth in tracking animal kinematics, we
started by assessing the reliability of manual annotations
relative to high-precision, sub-pixel resolution keypoint
detection based on the geometry of the ChArUco board
with OpenCV [23, 25]. Relative to the OpenCV points, the
manual keypoint annotations had a mean error of (0.52,
−0.75) pixels and standard deviation of (2.57, 2.39) pixels,
in the (x, y) directions, respectively (Figure 4C). These ob-
servations provide a useful baseline of manual annotation
accuracy.

We evaluated the accuracy of reconstructing ChArUco
board lengths and angles as estimated by three methods:
manual keypoint annotations, OpenCV keypoint detec-
tions, and neural network keypoint detections (see Meth-
ods for detailed descriptions). As our ground-truth dataset,
we chose the known physical lengths and angles between
all pairs of 9 corners on the ChArUco board. The ChArUco
board was manufactured with precise tolerance (< 2 µm),
which allowed us to evaluate the accuracy of lengths and
angles from manual keypoint annotations and OpenCV
keypoint detections, which are commonly taken to be the
ground truth. As expected, OpenCV detections had the
lowest error in length and angle, as they leveraged prior
knowledge of the ChArUco board geometry to make high-
precision corner estimates (Figure 4D). Surprisingly, neu-
ral network (trained with DeepLabCut) predictions had a
lower error than manual annotations, despite the network
itself being trained on manual annotations. More than
90% of poses estimated by Anipose had an error of less
than 20 µm in length and 1 degree in angle, relative to
the true dimensions of the ChArUco board (Figure 4D).
These results demonstrate the efficacy of camera calibra-
tion with Anipose and serve as useful bounds of expected
performance.

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 26, 2021. ; https://doi.org/10.1101/2020.05.26.117325doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.26.117325
http://creativecommons.org/licenses/by-nc-nd/4.0/


ANIPOSE

A

D

C

10 0 10
10

0

10

x error (pixels)

y 
er

ro
r 

(p
ix

el
s)

0 5 10
0

1
C

D
F

Manual annotation error
(pixels)

0 25 50 75 100

Error in length estimation (μm)

0

1

C
D

F
C

D
F

0 2 4

0

1

Error in angle estimation (degrees)

OpenCV
Neural network
Manual annotations

10 pixels (~75 μm)

OpenCV

Neural network

Manual annotations

B

Figure 4: Anipose reliably estimates edge lengths and
angles of a precision manufactured ChArUco calibration
board. (A) We identified 9 corners as keypoints on the
ChArUco board in 200 frames from each of 6 cameras. (B)
For comparison, we used manual annotation of the same
ChArUco board dataset to train a neural network. We
then compared tracking errors of the manual annotations,
the neural network, and OpenCV. (C) Error in manually
annotated keypoints relative to the sub-pixel precision of
OpenCV detections. Manually annotated keypoints had a
mean error of (0.52, -0.75) pixels and standard deviation of
(2.57, 2.39) pixels. (D) Lengths between all possible pairs
of keypoints were computed and compared to the physical
lengths. Similarly, all possible angles between triplets of
keypoints were computed and compared to known physical
angles. OpenCV keypoints provided the most reliable
estimates, followed by neural network predictions, then
manual annotations. Note that OpenCV generally detected
only a small fraction of the keypoints detected by the neural
network or through manual annotation (19.3% of keypoints
detected by OpenCV, compared to 78.1% by the neural
network and 75% by manual annotations).

2.3 Animal tracking in 3D
We evaluated the triangulation of markerless tracking on
three different animal datasets (Figure 5). For each dataset,
we computed the error of estimated joint positions and
angles on labeled animals withheld from the training data.
The error in estimated joint angles was <16◦ in over 90%
of frames, and <10◦ in over 75% of frames. Furthermore,
the error in the estimated joint position was <18 pixels
(approximately 1.6mm, 0.14mm, 86mm for mouse, fly,
and human datasets respectively) in over 90% of frames
and <12 pixels (approximately 1mm, 0.09mm, 57mm for
mouse, fly, and human datasets respectively) in over 75%
of frames. Importantly, the position error in units of camera
pixels is roughly comparable across these three datasets,
spanning more than 3 orders-of-magnitude in spatial scale.
Therefore, we believe these errors are representative of
what can currently be expected for accuracy of 3D marker-
less tracking.

Although triangulation usually resulted in accurate es-
timates of joint positions and angles, there were still some
frames where it failed due to missing keypoint detections
(as in Figure 5A). In other cases, incorrect keypoint detec-
tions led to erroneous 3D joint position estimates (as in
Figure 5B). Even though these issues occurred in a small
minority of frames, tracking errors are especially prob-
lematic for analyzing movement trajectories. For instance,
missing estimates complicate the estimation of derivatives,
whereas erroneous estimates bias the distribution of sum-
mary statistics. To minimize these issues, we leveraged
complementary temporal and spatial information within
each dataset to refine tracking performance in 3D.

2.4 Addition of filters to improve tracking accuracy
Naturally behaving animals present unique challenges for
3D pose estimation. Animals can contort their bodies
into many different configurations, which means that each
behavioral session may include unique poses that have
not been previously encountered, even across multiple
animals. Our approach to tackling these challenges is
to leverage prior knowledge that animal movements are
usually smooth and continuous, and that rigid limbs do not
change in length over short timescales. In particular, we
developed and implemented a set of 2D and 3D filters that
refine keypoints, remove errors in keypoint detections, and
constrain the set of reconstructed kinematic trajectories.
We demonstrate that both sets of filters work together to
significantly improve pose estimation. Here we focus on
detailed quantification of these filters in tracking flies and
humans, where our datasets included keypoints at every
limb joint tracked with at least 4 camera views.

2.4.1 Refining keypoints in 2D
We implemented three distinct algorithms to remove or
correct errors in 2D keypoint detection: a median filter, a
Viterbi filter, and an autoencoder filter. The median and
Viterbi filters operate on each tracked joint across frames,
and the autoencoder filter refines keypoints using learned
correlates among all joints. The median filter removes any
point that deviates from a median filtered trajectory of user-
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Figure 5: Anipose can consistently estimate positions and angles of joints across three different datasets. In each dataset,
the position error is below 12 pixels for 75% of the frames, and below 18 pixels for 90% of the frames. At this stage,
prior to filtering, outlier and missing keypoint detections are apparent. (A) Shown at left is an example trace of the
tracked 3D position of the base of the mouse hand, projected onto the direction of the reach. On the right, we quantified
the distribution of errors when estimating all joint positions and angles, relative to manual annotations. For the mouse
dataset, 1 pixel corresponds to approximately 0.09 mm. (B) Same layout as A, but for 3D position of the fly hind-leg
tibia-tarsus joint, projected onto the longitudinal axis of the fruit fly. For the fly dataset, 1 pixel ≈.0075 mm. (C) Same
layout as A, but for tracked 3D position of a human wrist, projected onto an arbitrary axis. Note that the human (and
their wrist) is moving throughout the room. For the human dataset, 1 pixel ≈4.8 mm.

specified length, then interpolates the missing data. The
Viterbi filter finds the most likely path of keypoint detec-
tions for each joint across frames from a set of top (e.g., 20)
detections per frame, given the expected standard deviation
of joint movement in pixels as a prior. Finally, the autoen-
coder filter corrects the estimated score of each joint based
on the scores of the other joints, with no parameters set
by the user. Where errors in tracking cannot be corrected
by filtering, the keypoint is removed altogether, since the
missing joint can be inferred from other camera views,
but an erroneous keypoint can produce large discrepancies
in triangulation. We document the parameters we used
to produce results across the paper in Table S1. Anipose
users are encouraged to evaluate the effect these filtering
parameters may have on their analyses. Depending on the
particulars of the experimental setup, including the spatial
and temporal resolution of the videos, the parameters may
need to be adjusted.

The addition of each filtering step noticeably improved
the tracking of fly leg joints (Figure 6A). The median and
Viterbi filters both reduced spurious jumps in keypoint
position, which may occur if the neural network detects a
similar keypoint on a different limb or at another location
in the frame. The Viterbi filter is able to remove small
erroneous jumps in detected keypoint trajectories while
also preserving high frequency dynamics, whereas the
median filter may mistakenly identify fast movements as
an error and remove them. The autoencoder filter removed
detections for keypoints which were typically not visible

from a given view, which improved 3D position estimates
after triangulation (Figure S3).

For each of the 2D filters, we quantified the perfor-
mance improvement of estimating the joint position and
angle on manually annotated validation datasets. The
2D median filter significantly reduced error in joint po-
sition and angle estimation on the human dataset (t =
−14.8, p < 0.001 for position, t = −7.7, p < 0.001,
paired t-test) but not on the fly dataset (t = −1.2, p = 0.2
for position, t = −0.98, p = 0.3, paired t-test). The
Viterbi filter reduced error on both fly and human datasets
(t = −4.4 and t = −4.1 for fly position and angle,
t = −10.9 and t = −8.7 for human position, with
p < 0.001 for all, paired t-test). The autoencoder filter also
reduced error in joint positions and angles on the fly dataset
(t = −5.4, p < 0.001 for positions, t = −2.16, p = 0.03
for angles, paired t-test). We did not apply the autoen-
coder filter to human tracking, since all occluded points
are annotated in the training dataset. In the fly dataset,
applying the autoencoder filter after the Viterbi filter fur-
ther improved the joint position and angle estimates above
the autoencoder (t = −3.97, p < 0.001 for positions,
t = −3.44, p < 0.001 for angles, paired t-test). In sum-
mary, we found the addition of these three filters improved
the ability of Anipose to accurately estimate joint positions
and angles.
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Figure 6: 2D filters improve accuracy of 2D pose estimation by taking advantage of the temporal structure of animal
behavior. (A) An example trace of the x-coordinate of the 2D position of a fly’s tibia-tarsus joint before and after each
step in filtering. Filtering reduces spurious jumps while preserving correct keypoint detections. (B) Comparison of
error in joint position before and after filtering. The mean difference in error for the same tracked points is plotted,
along with the 95% confidence interval. Viterbi and autoencoder filters significantly improved the estimation of joint
position in flies (p < 0.001, paired t-test). The Viterbi filter significantly improved estimation of joint position in
humans (p < 0.001, paired t-test). For the fly dataset, 1 pixel ≈.0075 mm. For the human dataset, 1 pixel ≈4.8 mm.
The absolute error values are indicated in parentheses above the 0 tick mark for each dataset. (C) Comparison of angle
estimates before and after filtering. The mean difference is plotted as in B. Viterbi and autoencoder filters significantly
improved the estimation of angles in flies and humans (p < 0.001, paired t-test). The results in (B) and (C) are evaluated
on a validation dataset withheld from the training (1200 frames for the fly, 8608 frames for the humans).

2.4.2 Refining poses and trajectories in 3D

To further refine joint position and angle estimates in 3D,
we developed a novel triangulation optimization that takes
advantage of the spatiotemporal structure of animal pose
and behavior. Specifically, our optimization produces pose
estimates that are smooth in time using temporal regulariza-
tion, and limbs demarcated by adjacent keypoints that are
constant in length with spatial regularization. The length
for each limb is automatically estimated in the optimiza-
tion. The relative strengths of the temporal and spatial
regularization terms may be balanced and tuned indepen-
dently. As with the 2D filters, we empirically determined
default strengths that worked across multiple datasets. A

complete description of each filter, along with all the pa-
rameters, is detailed in the Methods. For illustration, we
compared the performance of these filters (Figure 7A) to
other commonly used methods from the literature (Ran-
dom sample consensus, or RANSAC, triangulation and
3D median filter) on the walking fly dataset. We applied
the 3D filters on kinematic trajectories partially corrected
with 2D filtering (Viterbi then autoencoder filters for the
fly dataset, and Viterbi filter only for the human dataset),
to evaluate how much the 3D filters improved the accu-
racy. Spatiotemporal regularization substantially improved
pose estimation. The temporal regularization noticeably
reduced jitter in the trajectory (Figure 7A), while the spa-

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 26, 2021. ; https://doi.org/10.1101/2020.05.26.117325doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.26.117325
http://creativecommons.org/licenses/by-nc-nd/4.0/


ANIPOSE

tial regularization stabilized the estimate of limb length
(Figure 7B). These improvements are also obvious in exam-
ple videos of reconstructed pose before and after filtering
(Video 2).

For each of the 3D filters, we quantified the im-
provement in position and angle error relative to track-
ing with 2D filters alone (Figure 7C and D). We found
that RANSAC triangulation did not improve position and
angle error. The 3D median filter significantly reduced
position and angle errors relative to only 2D filters for
the human dataset (t = −11.8 for position, t = −7.3 for
angle, p < 0.001 for both, paired t-test), but not for the
fly dataset. Spatial and temporal regularization applied
together provided the largest reduction in tracking error
(t = −18.7 and t = −6.1 for human positions and an-
gles, t = −10.8 and t = 5.8 for fly positions and angles,
p < 0.001 for all, paired t-test). Overall, we find that the
3D filters implemented in Anipose significantly improve
pose estimation.

2.4.3 Improving estimation of derivatives
In addition to tracking body pose, it is often valuable to
track the speed of body movements. We compared the
temporal derivative of 3D joint positions estimated with
Anipose to the derivative computed from manual annota-
tions (Figure 8) and found both qualitative and quantitative
improvements to estimation of body movement speed.

Filtered trajectories produced smoother derivatives,
due to the fact that tracking errors are corrected through 2D
and 3D filtering, and the temporal regularization explicitly
penalizes deviations from smoothness (Figure 8A). It is
challenging to evaluate the accuracy of Anipose derivative
estimates because computing finite difference derivatives
of manual annotations amplifies known errors in these an-
notations. Given that manual annotations deviate from
the ground truth tracking with a standard deviation of at
most 3.5 pixels in distance (Figure 4C), we expect comput-
ing the finite difference derivative of such annotations to
produce derivatives with error of 4.95 pixels (about 0.037
mm corresponding to 11.1 mm/s over one frame in the fly
dataset). Therefore, the manual annotations (dark green
trace in Figure 8A) do not represent the true derivative, but
rather a noisy approximation of the true derivative. The
temporally regularized trajectory resembles this estimate
of the derivative but is more smooth because of temporal
regularization. The strength of this regularization, and the
subsequent smoothness of the tracked keypoints, is a pa-
rameter that users may fine-tune (see [26] for a systematic
way to tune this parameter). We suggest some default val-
ues and provide guidance on choosing parameters in the
Discussion.

We found that the 2D filters (Viterbi and autoencoder
in fly, only Viterbi in human) improved the error in deriva-
tive by 2.78 mm/s for the fly dataset (t = −9.4, p < 0.001,
paired t-test) and by 30.0 mm/s on the human dataset
(t = −28.0, p < 0.001, paired t-test) relative to no fil-
ters. The 3D median filter improved the error in derivative
by 1.65 mm/s in the fly dataset (t = −4.8, p < 0.001,
paired t-test) and by 177.3 mm/s in the human dataset

(t = −324, p� 0.001, paired t-test) RANSAC improved
error in the derivative estimate by 2.16 mm/s in the fly
dataset (t = −7.07, p < 0.001, paired t-test) but did not
improve the error in the human dataset. The spatiotemporal
regularization improved the error in derivative by an addi-
tional 0.67 mm/s for the fly dataset (t = −4.10, p < 0.001,
paired t-test) and by 217.7 mm/s on the human dataset
(t = −213, p � 0.001, paired t-test) relative to the 2D
filters. Overall, we found that the filters implemented
in Anipose significantly improved the estimation of body
movement in the fly and human datasets.

2.5 Structured processing of videos

Animal behavior experiments are often high-throughput,
meaning that large numbers of videos are recorded over
many repeated sessions with different experimental condi-
tions. To make the process of 3D tracking scalable to large
datasets, we designed a specific file structure (Figure S7) to
organize and process behavior videos, configuration files,
and calibration data. This file structure also facilitates scal-
able analysis of body kinematics across individual animals
and experimental conditions. For example, the command
anipose analyze detects keypoints for each video in the
project folder, and anipose calibrate obtains calibra-
tion parameters for all the cameras in all calibration folders.
Each command operates on all videos in the project, cir-
cumventing the need to process each video individually. In
addition, this design allows the user to easily reanalyze the
same dataset using different filtering parameters or with
different 2D tracking libraries (e.g., to compare DeepLab-
Cut and SLEAP). For the users that prefer to set up their
own pipelines, we also package the calibration, triangu-
lation, and filtering functions in a separate library called
aniposelib.

2.6 Visualization of tracking

The large number of videos and keypoints tracked in many
behavior experiments make it challenging to visualize the
resulting data. In addition, the large files created with high-
speed video often make it impractical to store and visualize
an entire dataset on a laptop. To facilitate evaluation and
interpretation of data tracked with Anipose, we developed
a web-based visualization tool (Figure 9). The tool shows,
for a given trial, each camera view, 3D tracking, and 2D
projections of the tracked keypoints. The user can speed
up and slow down the speed at which the videos play and
rotate the tracked keypoints in 3D. By taking advantage
of the standardized file structure, the interface provides a
dropdown menu to navigate between trials and sessions.
The interface also allows the user to annotate the behaviors
in each video, which is particularly useful for isolating
specific behaviors for further analysis. As this tool is
web-based, it may be run on a server, allowing users to
preview videos and inspect tracking from any computer.
Furthermore, if the server is public, users may easily share
links to particular trials with collaborators to point out
specific behaviors (example here) .
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Figure 7: Spatiotemporal filters further improve 3D pose estimation. (A) An example trace of the tracked 3D position
of the fly tibia-tarsus joint, before and after filtering. To plot a single illustrative position value, the 3D x-y-z coordinate
is projected onto the longitudinal axis of the fly. Also included are comparisons with standard 3D filtering algorithms
RANSAC and a 3D median filter, along with manual annotations. Filtering leads to reduction of sudden jumps and
keypoint jitters, even compared to 2D filters alone. (B) Estimation of tibia length over time, before and after filtering.
Adding spatial regularization leads to a more stable estimate of the tibia length across frames. (C) Comparison of error
in joint position before and after filtering. The mean difference in error for the same tracked points is plotted, along
with the 95% confidence interval. The absolute error values are indicated in parentheses above the 0 tick mark for each
dataset. The 2D filters are the Viterbi filter followed by the autoencoder for the fly dataset and Viterbi filter alone for the
human dataset. Spatiotemporal regularization improves the estimation of joint position significantly above 2D filters in
both datasets (p < 0.001, paired t-test). The 3D median filter improves pose estimation on the human dataset (p < 0.001,
paired t-test) but not on the fly dataset. RANSAC triangulation does not improve pose estimation for either dataset.
For the fly dataset, 1 pixel corresponds to 0.0075 mm. For the human dataset, 1 pixel corresponds to 4.8 mm. (D)
Comparison of angle estimates before and after filtering. The mean difference and confidence intervals are plotted as in
C. Spatial and temporal regularization improve angle estimation above 2D filters on both datasets (p < 0.001, paired
t-test). The 3D median filter improves angle estimation on the human dataset (p < 0.001, paired t-test) but not on the fly
dataset (p > 0.8, paired t-test). RANSAC triangulation does not improve angle estimation for either dataset.
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Figure 8: Spatiotemporal filters improve 3D derivative estimation. (A) An example trace of the derivative of the 3D
position of the fly tibia-tarsus joint, before and after filtering. To plot a single illustrative derivative value, the 3D x-y-z
joint coordinates is projected onto the longitudinal axis of the fly. Spatiotemporal regularization produces smooth
derivative estimates, which are closer to the manual annotations compared to other filtering approaches. (B) Comparison
of error in joint position derivative before and after filtering. The mean difference in error for the same tracked points is
plotted, along with the 95% confidence interval. The absolute error values are indicated in parentheses above the 0 tick
mark for each dataset. The 2D filters are the Viterbi filter followed by the autoencoder for the fly dataset and Viterbi
filter alone for the human dataset. For the human dataset, due to the large number of labeled points, the confidence
intervals are smaller than the size of the points. Adding filters significantly improves the estimate of the derivative.

2.7 3D tracking with Anipose provides new insights
into motor control of Drosophila walking

We first used 3D tracking with Anipose to analyze the leg
joint kinematics of fruit flies walking on a spherical tread-
mill. Although fly walking has been studied in great detail
from a 2D perspective [27, 28, 29], 3D joint kinematics
of walking flies have not previously been analyzed. Thus,
it was not clear how fly leg joints move during walking.
Specifically, we sought to understand the relative contribu-
tions of leg joint flexion and rotation.

Some limb joints are not restricted to movement in a
single plane, but can also rotate around the long axis of a
limb segment. Whereas the importance of rotation angles
has long been recognized for human gait analysis [30],
rotation angles have been comparatively understudied in
other animals. This gap exists largely because estimating
rotation angles requires precise tracking of joint kinematics
in 3D.

The fly leg consists of five segments, whose move-
ments are defined by 8 angles (1 abduction, 3 rotation, 4
flexion). We observed significant rotations between the

coxa and femur segments during walking. Figure 10A
shows trajectories of coxa rotation, femur rotation, and
femur-tibia flexion angles for one walking bout.

Interestingly, the magnitude of joint rotation varied
across different legs. Although the femur-tibia flexion
angle has a high range of motion in the front and back
legs, the femur-tibia flexion angle has a comparatively
smaller range of motion in the middle legs (Figure 10B).
In contrast, the middle legs are primarily driven by coxa
and femur rotation. Furthermore, the coxa joints of con-
tralateral legs rotate in opposing directions. These results
suggest that the circuitry that coordinates walking (e.g.,
the central pattern generator) cannot be the same for all six
legs. Rather, walking circuits must control different motor
neurons and muscles to generate unique joint kinematics
for each leg.

In addition to comparing joint angle distributions
across legs, we analyzed trajectories of 3D leg kinematics
across flies. We used the UMAP nonlinear embedding
method [31] to embed coxa rotation, femur rotation, and
femur-tibia flexion angles and their derivatives of all legs
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Figure 9: A web tool for visualizing 3D kinematics tracked with Anipose. The videos from all views are displayed
synchronously, with overlaid projections of 3D keypoints from Anipose. To the right of the videos, a dynamic 3D
visualization allows the user to interact with the 3D keypoints by rotating or zooming in. Above the videos, the user can
alter the playback speed or jump to different time points in the video. The user can also annotate the behavior of the
animal for further analysis. Menus at the top allow the user to select specific recording dates, experimental trials, or
filter trials by a specific behavior.

(Figure 10C). The three-dimensional embedding of joint
kinematics formed a mushroom-shaped manifold. Indi-
vidual flies reside at specific regions of the manifold, but
for all flies, step phase is distributed along the circumfer-
ence of the cap (Figure 10D). These results are consistent
with the existence of a continuum of walking gaits across
flies [27], but also suggest that different flies have slightly
distinct walking kinematics. This analysis also demon-
strates how 3D tracking can be used to dissect the con-
tributions of specific joints to complex motor behaviors.
Visualizing a manifold of 3D joint kinematics provides
a means to understand how joint kinematics vary within
the high-dimensional space of a motor control task (Fig-
ure 10E, Figure S8B).

2.8 Analysis of 3D mouse reaching and human
walking kinematics

To illustrate the value of 3D tracking with Anipose for
studying other animal species, we analyzed data from
reaching mice and walking humans. Joint positions and
angles have long been used to quantify movement in both
healthy and impaired animals [32, 33, 34]. However, previ-
ous quantification has relied primarily on laborious manual
tracking or marker-based tracking with extensive manual
corrections. Here we demonstrate analysis of mouse and
human behavior using fully automated 3D tracking with
the Anipose toolkit.

We first analyzed 3D hand trajectories from mice
trained to reach for and grasp a pellet. This task has been
extensively used to study neural circuits for sensorimotor
control underlying skilled limb movements [35, 36, 37, 38,
39, 40]. Using the Anipose visualization tool, we labeled
the reach outcome and start/end frame for each trial. We
labeled the trial a “hit” if the mouse successfully grasped
the pellet, a “miss” if the mouse missed the pellet holder,

and a “bump” if the mouse bumped into the pellet holder
or the pellet but failed to grasp the pellet. Each of the
four mice in the dataset had multiple instances of each
outcome. Figure 11A shows example 3D reaching trajec-
tories, which demonstrate that reaching movements vary
significantly from trial to trial (see also Figure S9A). Al-
though reaching is a challenging behavior to track, due to
its speed and variability, Anipose was able to accurately
reconstruct forelimb reaching trajectories. The trajectory
of each movement was variable, but plotting the distance
to the pellet holder as a function of time to contact re-
vealed that each reach type has a stereotyped trajectory
(Figures 11B and S9B). Interestingly, the hit/bump and
miss trajectories diverged around 50 ms prior to pellet
contact, suggesting that mice are unable to correct their
reaching trajectories in this period.

We next analyzed 3D walking kinematics reconstructed
from the human dataset using methods similar to our anal-
ysis of fly walking. We extracted knee flexion, hip rotation,
and hip flexion angles from 3D joint positions tracked
with Anipose (Figures 11C and S10A). The distributions
of these joint angles are symmetric across the two legs
(Figures 11D and S10B) and match previous characteriza-
tions of human gait [34]. To characterize the structure of
walking across the subjects, we used the UMAP nonlinear
embedding method [31] to embed knee flexion, hip rota-
tion, hip flexion, and their derivatives into a 3D space, as
for the fly dataset above. The UMAP embedding reveals a
continuous manifold of angle coordination across subjects
(Figure 11E). The manifold forms a cylindrical structure
with the knee flexion angle mapping circularly along the
cylinder (Figure 11F). The two trials that are to the left
outside the main cylinder have lower variation of left leg
hip rotation (Figure S10C). These examples illustrate the
ease and utility of tracking and analyzing human walking
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Figure 10: 3D tracking of fly walking reveals difference in rotation and flexion angles across legs. (A) Representative
traces of coxa rotation, femur rotation, and femur-tibia flexion angles from tethered-walking flies. The median angle
value is indicated for each angle as a reference point. (B) Probability distribution functions of coxa rotation, femur
rotation, and femur-tibia flexion angles from 39 flies (1480 total seconds of walking). Only walking bouts are included.
The distribution of femur-tibia flexion angles is broader for the front and rear legs, whereas the distribution of femur
rotation angles is broader for the middle legs. (C) UMAP embedding of coxa rotation, femur rotation, femur-tibia
flexion angles across all legs, and their derivatives. Axis units are arbitrary. Although each fly has a characteristic gait,
there is a continuum across all flies. (D) UMAP embedding as in C, colored by the phase of the step cycle, revealing
the match between the circular structure of the embedding and the step phase. (E) UMAP embedding as in C, colored
by front-right leg femur-tibia flexion and femur rotation, and middle right leg femur-tibia flexion and femur rotation.
Across multiple flies, the dynamics of the middle legs are dominated by femur rotation, whereas the dynamics of the
front legs are dominated by femur-tibia flexion.

behavior with Anipose. In the future, this approach could
be used to automatically identify individuals with distinct
walking gaits or other motor patterns.

3 Discussion

In this paper, we introduce Anipose, a new open-source
toolkit to accurately track animal movement in 3D. Ani-
pose is designed to augment DeepLabCut, a toolkit for
2D markerless tracking [11], with calibration, filters, and

a visualization tool to facilitate robust 3D tracking and
analysis. Current users of DeepLabCut can easily upgrade
to 3D tracking with Anipose by adding and calibrating
additional cameras to an existing behavioral setup. Al-
though we designed Anipose to leverage 2D tracking with
DeepLabCut [11], it can be made compatible with other
2D markerless tracking methods, including SLEAP [12]
and DeepPoseKit [13] by modifying a single file. We vali-
dated each new optimization module and the full pipeline
against ground truth data from four different experimen-
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Figure 11: 3D tracking with Anipose facilitates analysis
of mouse and human kinematics. (A) Example 3D trajec-
tories of a mouse reaching for a food pellet. The pellet
is indicated as a black dot. (B) Mean distance to pellet
holder as a function of time across all 4 mice (88 hits,
69 bumps, 28 misses). Shaded areas are 95% confidence
intervals. When reaches are aligned to the grasp attempt
(0 ms), the hand is farther from the pellet holder on miss
trials compared to hit or bump trials. Averaging across
all mice reveals a clear difference between reach types.
(C) Representative trace of knee flexion from a walking
human, tracked with Anipose. Data is from the Human
3.6M dataset. The median angle value is indicated at left
as a reference point. (D) Probability distribution function
of knee flexion angle from 7 humans. Only sessions that
include walking are included. (E) UMAP embedding of
knee flexion, hip rotation, and hip flexion angles across
all legs, and their derivatives. Axis units are arbitrary. Al-
though each human subject has a characteristic gait, there
is a continuum across all subjects. (F) UMAP embedding
as in E but colored by knee flexion for each leg. Coloring
by knee flexion angle reveals the common phase alignment
of the circles across subjects.

tal datasets and three organisms, demonstrating accurate
reconstruction of 3D joint positions and angles.

The Anipose tracking pipeline is designed to stream-
line structured processing of videos recorded in high-
throughput experiments. Users do not need to know Python
to use the Anipose pipeline. All that is required to get
started is editing a small configuration file and running
the provided commands from a terminal. We also pro-
vide access to individual functions via a separate library,
aniposelib. To help new users get started, we developed de-
tailed tutorials for both the Anipose pipeline and aniposelib
at anipose.org.

3.1 Impact of robust markerless 3D tracking

A key technical advantage of tracking with Anipose is the
ability to interpret and analyze movement speed from 3D
pose trajectories that are smooth in space and time, due
to filtering and interpolation from multiple camera views.
The resulting improvements in tracking smoothness make
it easier to analyze pose and movement dynamics. Specif-
ically, interpolated data enables the user to obtain better
estimates of behavior statistics, such as mean and variance,
and to perform dimensionality reduction techniques, such
as principal component analysis (PCA). Additionally, tem-
poral regularization reduces noise in the first derivative and
thus enables the user to obtain more precise estimates of
movement speed (Figures 8 and S5).

This ability to analyze 3D pose trajectories may open
up new opportunities for behavioral neuroscience, where
key insights have been gained through carefully controlled
behavioral paradigms. In particular, experiments are often
designed to accommodate the practical limitations of move-
ment tracking, recording neural activity, and perturbing
the animal in real time (e.g., [41, 42, 43, 44, 45]). Recent
advances in experimental technologies (e.g., high-density
extracellular recording probes [46], optical imaging of flu-
orescent reporters [47, 48], and optogenetics [49]) have
made it feasible to precisely record and perturb neural ac-
tivity from animals behaving freely in three dimensions.
Complementing these technologies, a comprehensive tool-
box for high-throughput 3D tracking will not only enable
deeper analysis of current experiments, but also make it
possible to study more natural behaviors.

A robust 3D markerless tracking solution could also
greatly expand the accessibility of quantitative movement
analysis in humans. Many neurological disorders, includ-
ing some commonly thought of as cognitive disorders,
affect walking gait [50, 51] and upper limb coordina-
tion [52, 53]. Many clinicians and basic researchers cur-
rently rely on qualitative evaluations or expensive clinical
systems to diagnose motor disorders and assess recovery
after treatment. While clinical approaches are commer-
cially available [54], they are costly, require proprietary
hardware, rely on the addition of markers to the patient,
and cannot assess walking gait in natural contexts such
as a patient’s home. Anipose could be used as a tool in
the diagnosis, assessment, and rehabilitative treatment of
movement and neurodegenerative disorders.
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3.2 New insights into the motor control of
Drosophila walking

By analyzing 3D joint kinematics of tethered walking
Drosophila, we found that each leg has a unique set of
joint angle distributions. One valuable insight, which was
not evident from 2D tracking alone, is that the movement
of the middle legs is driven primarily by femur rotation,
in contrast to the front and hind legs, which are driven
primarily by femur-tibia flexion. We also observed small
differences in femur-tibia flexion and femur rotation dis-
tributions between front and hind legs (Figure 10B). Thus,
the neural circuits that move each leg during walking must
be specialized for controlling joints with distinct forces and
dynamics within each leg. Previous models of Drosophila
walking have used an identical control architecture for
intra-leg joint coordination for all six legs [55, 56]. Our
results provide a framework for constructing more bio-
logically plausible neuromechanical models using distinct
architectures for controlling different joints within each
leg.

Inter-leg differences in joint kinematics also raise new
questions about limb proprioception. Proprioceptors in the
fly femoral chordotonal organ (FeCO) encode femur-tibia
flexion and movement [57]. Does the role of the FeCO
differ for the middle legs, for which the femur-tibia gen-
erally does not flex in a rhythmic pattern during walking?
Which proprioceptors, if any, are used to sense femur and
coxa rotation of the middle legs? Answering these ques-
tions will be facilitated by combining Anipose with in vivo
measurements and perturbations of proprioceptive neural
circuits [58].

Rythmic motor behaviors, such as walking, are thought
to be controlled by central pattern generators (CPGs): neu-
ral circuits that generate intrinsic rhythmic activity [59].
If fly walking is controlled by CPGs, our results suggest
that the CPG for each leg must control different muscles.
For example, we would predict that a walking CPG for
the front legs would connect to motor neurons that control
the tibia flexor and extensor muscles in the femur [60]. In
contrast, a CPG for the middle legs might connect to motor
neurons innervating muscles in the trochanter that control
femur rotation. These insights will be useful in guiding
ongoing efforts to trace motor control circuits using con-
nectomic reconstruction of the Drosophila ventral nerve
cord [61] and leg [62].

Femur rotation is also likely to be important for walk-
ing in other insect species. Fransevich and Wang tested
the passive rotation of the trochanter-femur articulation
in 23 insect species and found rotation ranges from 10◦to
120◦, depending on the species [63]. Our estimate for
the physiological range for walking Drosophila is about
70◦(Figure 10B), which falls within the trochanter-femur
articulation range observed in other insects. Thus, it is
plausible that articulation of the trochanter-femur joint is
sufficient to account for the femur rotation we measured
during walking, and that other insects rely on femur ro-
tation during walking as well. As an example, Bender et
al. reported different kinematics across legs in walking
cockroaches, with larger femur rotation and smaller femur-

tibia flexion in the middle legs relative to the hind legs [4].
The application of Anipose to track 3D joint kinematics
in other species will enable further comparative studies of
the biomechanics and neural control of walking.

3.3 Potential for future improvement based on
related work

Camera calibration has long been a rich topic in computer
vision research. The most commonly used calibration code,
based on Zhang’s work [64] and part of OpenCV [23], can
calibrate up to 2 cameras using images of checkerboards
from multiple angles. Although this method can be used
to calibrate 3 or more cameras by calibrating pairs of cam-
eras, in practice, precise calibration requires an additional
optimization step called bundle adjustment [24]. Bundle
adjustment has been a key part of structure from motion
toolkits [65, 66], but the method has received compara-
tively little attention as a solution to camera calibration for
markerless tracking. An exception is DeepFly3D, which
supports calibration based on animal keypoints but not
based on a calibration board, which hinders its ability to
handle setups with arbitrary camera positions [20]. Our
key innovation is to provide an open source implemen-
tation of sparse bundle adjustment targeted for camera
calibration for motion tracking. Our current implemen-
tation could eventually benefit from incorporating other
methods from the literature. For instance, using a neural
network to detect the calibration board may yield more
detected keypoints (Figure 4) and lead to more robust cali-
bration under difficult conditions [67]. Currently, Anipose
requires a calibration board to initialize camera parame-
ters (even with animal calibration), but it may be possible
to initialize camera parameters based on commonly de-
tected points, as is commonly done in the structure from
motion literature [65, 66], or perhaps by using a neural
network directly [68]. Bundle adjustment itself may be
made more robust by incorporating gauge constraints in
the optimization function, further reducing the number of
parameters [24]. Finally, the calibration process itself may
be streamlined if it were made interactive [69].

There has been extensive recent work to improve mark-
erless tracking based on deep learning approaches. One
common approach has been to improve the neural network
architecture for training. For instance, this approach has
been used to induce priors in the neural network based on
occlusions [70, 71], multi-view geometry [72, 19, 18, 73],
limb lengths [74], or time [75]. We note that this approach
is complementary to our work, as the Anipose filters could
be used with keypoint detection by any neural network.
Another approach is to resolve tracking by using pictorial
structures to add priors on limb lengths [76, 77, 20] or
motion [78]. The Viterbi filter used in Anipose is analo-
gous to the motion based pictorial structures and could be
further extended to handle priors on limb lengths based
on insights from these papers. Beyond tracking single
animals, toolboxes like SLEAP [79], OpenPose [14], and
DeepLabCut [22] have some support for multi-animal pose
estimation in 2D. For tracking multiple animals in 3D, a
promising approach is to build correspondences based on
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geometry and appearance [80] across multiple views. As
automated, high-throughput tracking of animal behavior
grows in scale, new methods for data analysis, visualiza-
tion, and modeling will also be needed to gain insight into
the neural control of dynamic behavior [81, 10, 45, 58].

3.4 Limitations and practical recommendations
There are several common scenarios under which Anipose
may fail to produce accurate 3D tracking. Below, we enu-
merate some of the scenarios we have encountered in ap-
plying Anipose on different datasets and suggest practical
strategies for troubleshooting.

As is the case for any tracking system, the ability of
Anipose to track and estimate body pose is fundamentally
limited by the quality of the underlying data. High qual-
ity videos are well illuminated, contain minimal motion
blur, and provide coverage of each keypoint from differ-
ent views. A common failure mode we encountered was
when the neural network misplaced 2D keypoints in some
frames. If the errors are uncorrelated across camera views,
then the Anipose filters can compensate and still produce
accurate tracking in 3D. But in some cases, multiple views
have correlated errors or these errors persist in time. These
type of errors most commonly arise when the neural net-
work has not been trained on a subset of rare behaviors,
so that the animal adopts poses unseen by the trained net-
work. One solution to reducing the frequency of such
errors involves systematically identifying outlier frames,
manually relabeling them, then retraining the network.
Anipose supports this functionality, as do other tracking
toolboxes [11, 79, 13, 20].

Poor multi-camera calibration also results in tracking
errors. A good calibration should have an average repro-
jection error of less than 3 pixels, and ideally less than 1
pixel. To obtain a quality calibration, the calibration videos
should be recorded so that the board is clearly visible from
multiple angles and locations on each camera. If it is not
possible to achieve this, we suggest exploring a prelimi-
nary calibration module in Anipose that refines an initial
calibration based on the detected points on the animal itself.
This module was inspired by the animal based calibration
in DeepFly3D [20], but our implementation uses the initial
calibration from a calibration board as a starting guess,
permitting generalization in different setups. It also takes
advantage of our iterative calibration procedure to yield
robust calibration even with errors in tracking.

An effective experimental setup needs to have an ap-
propriate number of cameras to track all keypoints across
possible pose configurations. In particular, each joint must
be visible from at least 2 cameras at all times. Thus, for
tracking multiple limbs or body parts, we recommend at
least 3 equally spaced cameras, so that half of the body is
visible from any single camera. We evaluated this quanti-
tatively in the human dataset (Figure S6), where there is a
dramatic reduction in error from 2 to 3 cameras.

The mouse reaching dataset is one example where
tracking was reasonably accurate without filters, but filters
did not further improve tracking accuracy. There are sev-
eral potential explanations for this result. The reaches are

very short (about 40-100 frames or 200-500ms) and the
hand is hard to see when it is on the ground, so temporal
filters such as the Viterbi filter or temporal regularization
lack the information to resolve tracking errors. There are
very few keypoints (only 3 per hand) and these can change
in distance relative to each other, so the spatial regular-
ization cannot impose strong constraints. With only 2
cameras, the spatiotemporal regularization cannot fully
leverage multiple views to remove outliers (Figure S6) and
the autoencoder has limited utility. In this situation, using
basic linear least-squares triangulation works well enough
for analysis (Figure 11A and B). The accuracy of tracking
mouse reaching might be improved by labeling more key-
points on each hand, increasing the camera frame rate, and
adding more cameras.

As a practical starting point, we recommend users start
with no filters to first evaluate the quality of the track-
ing. If outliers or missing data impede data analysis, then
we recommend enabling the default filter parameters in
Anipose, which we have found to produce good tracking
results across multiple datasets. In some cases, some addi-
tional tuning of parameters may be required, especially on
datasets with unique constraints or when studying behav-
iors with unusual dynamics. If any joints are not visible
for an extended period of time in certain videos, we rec-
ommend disabling the spatiotemporal optimization, as it
can hallucinate trajectories, increasing overall error (as in
Figure S6). We provide suggestions for tuning parameters
in our documentation at anipose.org.

3.5 Outlook
We designed Anipose to make markerless 3D tracking sim-
ple and broadly accessible for the scientific community.
With this goal in mind, we built Anipose on DeepLabCut,
a widely used 2D tracking toolkit. As many labs develop
machine learning tools for behavior tracking and analysis,
we advocate for pooling efforts around common frame-
works that emphasize usability [82, 83]. In particular, we
suggest that tools be built in a modular way, so that code
can be extended and reused in other frameworks. We hope
that the Anipose toolkit contributes to these community
efforts. We welcome contributions to improve and extend
the Anipose toolkit and conversely are ready to contribute
the ideas and code from Anipose to other toolkits.

4 Methods
4.1 Video collection and annotation
ChArUco dataset. To evaluate the performance of Ani-
pose compared to physical ground truth, we collected
videos of a precision-manufactured ChArUco board [25].
The ChArUco board was manufactured by Applied Image
Inc (Rochester, NY) with a tolerance of 2 µm in length and
2◦ in angle. It is a 2 mm × 2 mm etching of opal and blue
chrome, on a 5 mm × 5 mm board. The ChArUco pattern
itself has 6 × 6 squares, with 4 bit markers and a dictio-
nary size of 50 markers. With these parameters, the size
of each marker is 0.375 mm and the size of each square
is 0.5 mm. We filmed the ChArUco board from 6 cam-
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eras (Basler acA800-510µm) evenly distributed around the
board (Figure 1A), at 30Hz and with a resolution of 832 x
632 pixels, for 2-3 minutes each day over 2 separate days.
While filming, we manually rotated the ChArUco board
within the field of view of the cameras. These videos were
used as calibration videos for both the ChArUco dataset
and the fly dataset detailed below.

We chose 9 of the corners as keypoints for manual an-
notation and detection (Figures 1A and 4A). We extracted
and manually annotated 200 frames from each camera
from day 1, and an additional 200 cameras per camera
from day 2 (1200 frames per day, 2400 frames total). We
used the frames for day 1 for training the neural network
and the frames from day 2 for evaluation of all methods.

Mouse dataset. Reaching data were obtained from four
adult C57BL/6 mice (∼8-12 weeks old, two male and two
female) trained to reach for a pellet. Procedures performed
in this study were conducted according to US National In-
stitutes of Health guidelines for animal research and were
approved by the Institutional Animal Care and Use Com-
mittee of The Salk Institute for Biological Studies. The
reaching task is described in detail elsewhere [35]. Briefly,
the training protocol consisted of placing the mouse in a
20 cm tall × 8.5 cm wide × 19.5 cm long clear acrylic
box with an opening in the front of the box measuring 0.9
cm wide and 9 cm tall. A 3D-printed, 1.8 cm tall pedestal
designed to hold a food pellet (20 mg, 3 mm diameter;
Bio-Serv) was placed 1 cm away from the front of the
box opening and displaced to one side by 0.5 cm (to en-
courage mice to use their preferred forelimb), and food
pellets were placed on top as the reaching target (Fig. 1B).
Mice were food deprived to ∼85% of their original body
weight and trained to reach for food pellets for either 20
minutes or until 20 successful reaches (defined as pellet
retrieval) were accomplished. Mice were trained in this
setup for 14 consecutive days before reaches were captured
with 2 cameras (Sentech STC-MBS241U3V with Tamron
M112FM16 16mm lens) placed in front and to the side of
the mouse (∼ 85◦ apart). Videos were acquired at a frame
rate of 200 Hz at a resolution of 1024 × 768 pixels.

We chose 6 points on the mouse hands as keypoints
(Figure 1B). On each mouse hand, we labeled 3 points:
the dorsal wrist, the base of digit 5, and the proximal end
of digit 3. In total, we manually labeled 2200 frames
(1100 frames per camera) for training the neural network
from 2 mice. For test data to evaluate the post estimation
performance, we labeled an additional 400 frames (200
frames per camera) taken from videos of 2 mice that were
not in the training set.

Fly dataset. We next evaluated 3D tracking with Ani-
pose on walking fruit flies. Male and female Berlin wild
type Drosophila melanogaster, 4 days post-eclosion, were
used for all experiments. Flies were reared on standard
cornmeal agar food on a 14 hr/10 hr light-dark cycle at
25 ◦C in 70% relative humidity. The flies’ wings were
clipped 24-48 hours prior to the experiment in order to
increase walking and prevent visual obstruction of the legs
and thorax. For all experiments, a tungsten wire was teth-

ered to the dorsal thorax of a cold-anesthetized fly with
UV cured glue. Flies were starved with access to water for
2–15 hours before they were tethered. After 20 minutes
of recovery, tethered flies were positioned on a frictionless
spherical treadmill [84, 85] (hand-milled foam ball, den-
sity: 7.3 mg/mm3, diameter: 9.46 mm) suspended on a
stream of compressed air (5 L/min). Six cameras (imaging
at 300 Hz, Basler acA800-510µm with Computar zoom
lens MLM3X-MP) were evenly distributed around the fly,
providing full video coverage of all six legs (Figure 1C).
Fly behavior was recorded in 2 second trials, capturing
a range of behaviors such as walking, turning, grooming,
and pushing against the ball. The recording region of each
video was cropped slightly so that the fly filled the frame
and the camera was able to acquire at 300Hz. For all train-
ing and test evaluation data, the interval between trials was
25 seconds. For some of the flies in the larger walking
dataset used in Figure 10, the interval between trials was
set to 9 seconds.

We selected 30 points on the fly as keypoints (Fig-
ure 1C). On each fly leg, we labeled 5 points: the body-
coxa, coxa-femur, femur-tibia, and tibia-tarsus joints, as
well as the tip of the tarsus. In total, we manually labeled
6632 frames (about 1105 frames per camera) for training
the neural network. For test data to evaluate the post esti-
mation performance, we labeled an additional 1200 frames
(200 frames per camera) taken from videos of 5 flies that
were not in the training set. For analyzing flexion and
rotation of angles during walking in Figure 10, we used a
larger dataset of videos from 39 flies, all collected with the
methods described above.

Human dataset. We evaluated 3D tracking with Ani-
pose on the Human 3.6M dataset [86, 87]. Because this
dataset has been used extensively for human pose estima-
tion, it provides a useful comparison to existing computer
vision methods. It consists of 11 professional actors per-
forming a range of actions, including greeting, posing, sit-
ting, and smoking. The actors were filmed in a 4m × 3m
space with 4 video cameras (Basler piA1000) at a resolu-
tion of 1000 × 1000 pixels at 50Hz (Figure 1D). To gather
ground-truth pose data, the actors were also outfitted with
reflective body markers and tracked with a separate motion
capture system, using 10 Vicon cameras at 200 Hz. Lever-
aging these recordings, the authors derived the precise 3D
positions of 32 body joints and their 2D projections onto
the videos. For camera calibration, we used the camera
parameters from the Human 3.6M dataset, converted by
Martinez et al. [88].

To compare the performance of Anipose against previ-
ous methods, we used a protocol from the literature [72].
The Human 3.6M dataset contains data from 5 subjects
as a training dataset (2 female and 3 male), 2 subjects as
a validation dataset, and 4 subjects as a testing dataset (2
female and 2 male). We used frames from the training
dataset to train the network and evaluated the predictions
on the validation dataset. We also removed frames from
the training dataset in which the subject did not move rel-
ative to the previous frame (< 40mm movement of all
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joints from the previous frame). We evaluated the tracked
human dataset on every 64th frame. We used 17 of the
32 provided joints as keypoints (Figure 1D). Iskakov et
al. [72] showed that some scenes from the S9 validation
actor (parts of the Greeting, SittingDown, and Waiting
actions) have ground-truth shifted in global coordinates
compared to the actual position [72], so we exclude these
scenes from the evaluation set. Furthermore, for subject
S11, one of the videos is corrupted (part of the "Directions"
action), so we exclude this from the dataset as well. In
total, we obtained 636,724 frames (159,181 per camera)
for training the neural network, and 8608 frames (2152 per
camera) frames for evaluation.

Manual annotation of datasets. To produce neural net-
work training data, we annotated the fly dataset using
Fiji [89] and the VGG Image Annotator (VIA) [90, 91].
All the images in the fly test set were annotated with VIA.
We annotated all the images in the ChArUco dataset and
mouse dataset with VIA.

4.2 Neural network keypoint detections
Detection of keypoints in each of the datasets was per-
formed with DeepLabCut 2.1.4 [22]. Briefly, to produce
training data, we used k-means clustering to pick out
unique frames from each of the views, then manually an-
notated the keypoints in each frame. We trained a single
Resnet-50 [92] network for all camera views for the fly,
mouse, and ChArUco datasets, starting from a network
pretrained on Imagenet. For the human dataset, we started
with a Resnet-101 network pretrained on the MPII hu-
man pose dataset [93]. During training, we augmented
the training dataset with cropping, rotation, brightness,
blur, and scaling augmentations using Tensorpack [94].
We then used the Anipose pipeline to run the network on
each video. For each keypoint, the network produced a list
of predicted positions, each associated with a confidence
score (between 0 and 1). We saved the top-n most likely
predictions of each joint location for each frame for use
in Viterbi filtering of likely keypoints in 2D, as described
below.

4.3 Filtering of 2D keypoint detections
The raw keypoint detections obtained with DeepLabCut
were often noisy or erroneous (Figure 6). Thus, filtering
the detections from each camera was necessary before tri-
angulating the points. Anipose contains 3 main algorithms
to filter keypoint detections; we elaborate on each algo-
rithm below. Example applications of these filters and
results are compared in Figure 6.

Median filter. The first algorithm identifies outlier key-
point detections by comparing the raw detected trajectories
to median filtered trajectories for each joint. We started
by computing a median filter on the detected trajectory for
each joint’s x and y positions, which smooths the trajectory
estimate. We then compared the offset of each point in
the raw trajectory to the median filtered trajectory. If a
point deviated by some threshold number of pixels, then
we denoted this point as an outlier and removed it from the

data. The missing points were then interpolated by fitting a
cubic spline to the neighboring points. The median filter is
simple and intuitive, but it cannot correct errors spanning
multiple frames.

Viterbi filter. To correct for errors that persist over mul-
tiple frames, we implemented the Viterbi algorithm to
obtain a single most consistent path in time from the top-n
predicted keypoints in each frame for each joint. To be
specific, we expressed this problem as a hidden Markov
model for each joint, wherein the possible values at each
frame are the multiple possible detections of this keypoint.
To obtain a cleaner model, we removed duplicate detec-
tions (within 7 pixels of each other) within each frame.
To compensate for missed detected keypoints over many
frames, we augmented the possible values at each frame
with all detections up to F previous frames, weighted in
time elapsed by multiplying their probability 2−F . We
then identified the best path through the hidden Markov
model using the Viterbi algorithm [95]. This procedure
estimates a consistent path, even with missed detections of
up to F frames.

Autoencoder filter. We found that the network would
often try to predict a joint location even when the joint was
occluded in that view. This type of error is particularly
problematic when used in subsequent 3D triangulation.
The convolutional neural network confidence scores asso-
ciated with these predictions can be high, making them
difficult to distinguish from correct, high-confidence pre-
dictions. To remove these errors, inspired by [96], we
implemented a neural network that takes in a set of confi-
dence scores from all keypoints in one frame, and outputs
a corrected set of confidence scores. To generate a training
set, we made use of the fact that human annotators do not
label occluded joints but label all of the visible joints in
each frame. Thus, we generated artificial scores from bi-
ased distributions to mimic what the convolutional neural
network might predict for each frame, with visible joints
given a higher probability on average. Specifically, we
sample the scores from a normal distribution, with stan-
dard deviation of 0.3 and mean 0 for invisible and 1 for
visible joints, clipped to be between 0 and 1. To mimic
false positive or false negative detections, we flip 5% of
the scores (x→ 1−x) at random. The task of the network
is to predict a high score for each joint that is truly visible
in that frame and a low score for any occluded joint. The
network is a multilayer perceptron network with a single
hidden layer and tanh activation units to perform this task.
The size of the hidden layer is the number of joints (e.g.
if there are 10 joint scores to predict, we set the hidden
layer to 10 units). We trained the network using the Adam
optimizer [97] implemented in the scikit-learn library [98]

4.4 Calibration of multiple cameras.
Camera model. A camera captures 2D images of light
reflecting from 3D objects; thus, we can think of each
camera as a projection, transforming 3D vectors to 2D vec-
tors. To establish our notation, for a point p = (x, y, z)T

or u = (x, y)T , we use a tilde to denote that point in
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homogeneous coordinates (with a 1 at the end), so that
p̃ = (x, y, z, 1)T or ũ = (x, y, 1)T .

A camera model specifies a transformation from a 3D
point p̃ to a 2D point ũ. We use the camera model de-
scribed by Zhang [64], which consists of a product of an
intrinsics matrix A, an extrinsics matrix P, and a distortion
function D.

The extrinsics matrix P ∈ R4×3 describes how the
camera is positioned relative to the world. We represent P
as the product of a rotation matrix and a translation matrix.
Both rotations and translations may be fully specified with
3 parameters each, for 6 parameters total in P.

The intrinsics matrix A ∈ R3×3 describes the internal
coordinate system of the camera. It is often modeled using
5 parameters: focal length terms fx and fy, offset terms
cx and cy , and a skew parameter s:

A =

[
fx s cx
0 fy cy
0 0 1

]
.

In practice, we found that we obtain a more robust cal-
ibration by reducing the number of parameters, setting
f = fx = fy , s = 0, and (cx, cy) to be at the center of the
image, so that we need to estimate only the focal length
parameter f for the intrinsics matrix.

The distortion function models nonlinear distortions in
the camera pixel grid. This distortion is typically modeled
with 3 parameters as

D([x, y]) =[
x+ x

(
k1(x

2 + y2) + k2(x
2 + y2)2 + k3(x

2 + y2)4
)

y + y
(
k1(x

2 + y2) + k2(x
2 + y2)2 + k3(x

2 + y2)4
)] .

In practice, we found that the higher-order distortion terms
k2 and k3 are often small for modern cameras, so we
assume k2 = k3 = 0 and only estimate a single parameter
k1.

Thus, the full mapping may be written as

ũ = D(APp̃).

In total, the camera model involves estimating 8 parameters
per camera: 6 for extrinsics, 1 for intrinsics, and 1 for
distortion.

For the camera calibration and triangulation methods
described below, we define the projection T from p̃ to ũ
as

T (p̃,θc) = ũ = D(APp̃),

where θc are the 8 parameters for the camera model of
camera c.

Initial estimate of camera parameters. In order to cal-
ibrate the cameras and estimate parameters of the camera
models, we start by obtaining an initial estimate of the
camera parameters. We detected calibration board key-
points in videos simultaneously captured from all cameras.
We then initialized intrinsics based on these detections fol-
lowing the algorithm from Zhang [64]. We initialized the
distortion coefficients to zero.

We developed the following method to initialize cam-
era extrinsics from arbitrary locations. For each pair of
cameras, the number of frames in which the board is seen
simultaneously is counted and used to build a graph of
cameras. To be specific, each node is a camera, and edges
represent pairs of cameras whose relation we will use to
seed the initialization.

The greedy graph construction algorithm is as follows.
Starting with the pair of cameras for which the number of
frames the board is simultaneously detected is the largest,
connect the two camera nodes with an edge. Next, proceed
with iterations in decreasing order of the number of boards
simultaneously detected. At each iteration, if the two nodes
(cameras) are not already connected through some path,
connect them with an edge. Processing iteratively through
all pairs of cameras in this manner, a graph of camera
connectivity is produced. Full 3D calibration is possible if
and only if the graph is fully connected.

To initialize the extrinsics using this graph, we start
with any camera and set its rotation and translation to zero.
Then, we initialize its neighbors from the estimated rela-
tive pose of the calibration board between them using the
initial intrinsics. This procedure is continued recursively
until all cameras are initialized. A diagram of the camera
initialization for an example dataset is provided in Figure
3A.

Bundle adjustment. To refine the camera parameters
from initial estimates, we performed a bundle adjustment
by implementing a nonlinear least-squares optimization to
minimize the reprojection error [24]. Given all ũc,j,t, the
detected jth keypoints from the calibration board at cam-
eras c in frames t, we solve for the best camera parameters
θc and 3D points p̃j,t such that the reprojection loss L is
minimized:

L =
∑
c

∑
j

∑
t

E (ũc,j,t − T (p̃j,t,θc)) .

Here, E(·) denotes the norm using which the error is com-
puted. This norm may be the least squares norm, but in
practice, we used a robust norm, such as the Huber or soft
`1 norm, to minimize the influence of outliers.

This optimization is nonlinear because the camera pro-
jection function T is nonlinear. We recognized that it is a
nonlinear least-squares problem with a sparse Jacobian and
thus solved it efficiently using the Trust Region Reflective
algorithm [99, 100], as implemented in SciPy [101].

Iterative bundle adjustment. When calibrating cam-
eras, we found that outliers have an outsized impact on
calibration results, even when using robust losses such
as the Huber loss or soft `1 loss. Thus, we designed an
iterative calibration algorithm, inspired by the fast global
registration algorithm from Zhou et al. [102], which solves
a minimization with a robust loss efficiently through an
alternating optimization scheme.

We approximate this alternating optimization in the
camera calibration setting through an iterative threshold
scheme. In our algorithm, at each iteration, a reprojection
error threshold is defined and the subset of points uc,i with
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reprojection error below this threshold is chosen. Bundle
adjustment is then performed on these points alone. The
threshold decreases exponentially with each iteration, to
refine the points to be calibrated. The pseudocode for the
algorithm is listed in Algorithm 1.

Algorithm 1 Iterative bundle adjustment
Input:
Initial camera parameters θ
Keypoint detections u from multiple cameras
Starting and ending thresholds µstart and µend

1: for i← 1 to Niter do
2: ueval ← sample(u)
3: errorseval ← reprojection_errors(ueval,θ)
4: low← percentile(errorseval, 15%)
5: high← percentile(errorseval, 75%)

6: µi ←
(
µend
µstart

)i/Niter

7: µi ← max(low,min(µi,high))
8: µpicked ← points from ueval for which reprojec-

tion error is below µi
9: θ ← bundle_adjust(θ, upicked)

10: end for
11: return θ

4.5 Triangulation and 3D filtering
The 3D triangulation task seeks 3D points pj,t for joint j
at frame t, given a set of detected 2D points uc,j,t from
cameras c with camera parameters θc. There are several
common methods for solving this triangulation task. Be-
low, we describe 3 of these methods, then describe our
method for spatiotemporally constrained triangulation. For
illustration, a comparison of the performance of these meth-
ods is shown on an example dataset in Figure 7.

Linear least-squares triangulation. The first method
triangulates 3D points by using linear least-squares [103].
Linear least-squares is the fastest method for multi-camera
triangulation, but it may lead to poor results when the 2D
inputs contain noisy or inaccurate keypoint detections. To
be specific, we start with a camera model with parameters
estimated from the calibration procedure described above,
so that the extrinsics matrix Pc, intrinsics matrix Ac, and
distortion function Dc are known for each camera c. By
rearranging the camera model, we may write the following
relationship:

D−1c (ũc,j,t) = AcPcp̃j,t.

We solved this linear system of equations using the singu-
lar value decomposition (SVD) of the product AcPc to
approximate the solutions for the unknown p̃j,t [103].

Median-filtered least-squares triangulation. As a sim-
ple extension of least-square triangulation to correct some
of the noisy detections, we applied a median filter to the

resulting 3D points tracked across frames. This filtering im-
proves the tracking, but at the cost of losing high frequency
dynamics. Furthermore, a median filter does not improve
triangulation if the original tracking is consistently poor.

RANSAC triangulation. Random sample consensus
(RANSAC) triangulation aims to reduce the influence of
outlier 2D keypoint detections on the triangulated 3D point,
by finding the subset of keypoint detections that minimizes
the reprojection error. We implemented RANSAC trian-
gulation by triangulating all possible pairs of keypoints
detected from multiple views and picking the resulting 3D
point with the smallest reprojection error.

Formally, let p̃a,bj,t be the triangulated 3D point for key-
point j at frame t computed using the 2D keypoint detec-
tions from cameras a and b, then our algorithm finds p̃jt
using the following relation:

p̃j,t = argmin
p̃a,b
j,t

∥∥∥T (p̃a,bj,t ,θa)− ũa,j,t∥∥∥
2
+

∥∥∥T (p̃a,bj,t ,θb)− ũb,j,t∥∥∥
2
.

Spatiotemporally regularized triangulation. We for-
mulated triangulation as an optimization problem, which
allowed us to specify soft spatiotemporal constraints (i.e.
regularization) on the triangulated points. We propose
that the points must satisfy three soft constraints: (1) the
projection of the 3D points onto each camera should be
close to the tracked 2D points, (2) the 3D points should be
smooth in time, and (3) the lengths of specified limbs in
3D should not vary too much. Each of these constraints
may be formulated as a regularization in the full objective
function.

First, the reprojection loss is written as

Lproj =
∑
c

∑
j

∑
t

E (T (p̃j,t,θc)− ũc,j,t) .

Here, E(·) is a robust norm function such as the Huber or
soft-`1 norm, to minimize the influence of outlier detec-
tions.

Second, the temporal loss is formulated as follows:

Ltime =
∑
j

∑
t

∥∥p̃j,t − p̃j,(t−1)∥∥2 .
We extend this penalty to minimize higher-order (e.g.
2nd or 3rd) finite-difference derivatives, which produces
smoother trajectories but has less impact on important high
frequency dynamics (see Figure S5).

Third, the limb loss may be formulated by adding an
additional parameter dl for each limb l, defined to consist
of joints j1 and j2:

Llimb =
∑

l,j1,j2∈limbs

∑
t

(
‖p̃j1,t − p̃j2,t‖2 − dl

dl

)2

.

The limb error is normalized relative to the limb length so
that each limb contributes equally to the error.
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Given each of the losses above, the overall objective
function to minimize may be written as:

L = Lproj + αtimeLtime + αlimbLlimb.

We solve this sparse nonlinear least-squares problem ef-
ficiently using the Trust Region Reflective algorithm [99,
100], as implemented in SciPy [101], similarly to the bun-
dle adjustment optimization. To initialize the optimization,
we use linear least-squares triangulation. When formulated
as a sparse nonlinear least-squares problem, the time and
memory requirements of the optimization scale linearly
relative to the number of input time points.

The parameters αtime and αlimb may be tuned to adjust
the strength of the temporal or limb loss, respectively. Note,
however, that the temporal loss is in units of distance,
which may vary substantially across datasets. Thus, to
standardize these parameters, we break down the parameter
αtime in terms of a user-tunable parameter βtime and an
automatically computed scale γ such that

αtime = βtimeγ.

We compute the scale γ as

γ =
N∑

j

∑
t

∥∥p̃j,t − p̃j,(t−1)∥∥2 ,
where p̃j,t is an initial estimate obtained from linear
least-squares triangulation. We found that the parame-
ters βtime = 2 and αlimb = 2 work well across a variety
of datasets, and we used these parameters for tracking all
four datasets in this manuscript. The user may additionally
specify weaker constraints for the lengths of certain limbs
to allow for some flexibility, such as the shoulder length in
humans or the length of the tarsus in flies.

Estimating joint angles. We estimated joint angles from
the tracked 3D positions. To compute the flexion an-
gle defined by the three 3D points surrounding the joint
(pi,pj ,pk), where point pj lies at the joint, the angle φj
is

φj = arccos ((pi − pj) · (pk − pj)) .
To estimate rotation and abduction angles, we solve

an inverse kinematics problem treating the set of limb
joints as a kinematic chain. When estimating limb angles
from 3D coordinates of joints, the rotation of a joint is
indistinguishable from the abduction of the next joint in
the chain. We observed that fly and human limbs can be
approximated to only have abduction at the joint closest to
the body, so we resolve this ambiguity by assuming that
only the first (most proximal) joint may abduct and the last
(most distal) joint may not rotate.

The solution proceeds in two stages. In the first stage,
we estimate the absolute rotation of each joint based on its
{x, y, z} coordinate axes. The axes of the first joint match
the coordinate system for the body. For other joints, the z
axis is in the direction of the limb segment pointing from
that joint away from the body, the x axis is in direction of
proximal limb segment (towards the body) orthogonalized
to the z-axis, and the y-axis is the cross product of the

z-axis with the x-axis. In the second stage, the relative
rotation between joints is computed and transformed to an
Euler angle with an order of {z, y, x} for axis rotations. The
rotations about the {z, y, x} axis represent rotation, flexion,
and abduction angles, respectively. For more details of the
implementation, see the accompanying code.

4.6 Evaluation
Comparison of bundle adjustment algorithms To
evaluate the different bundle adjustment algorithms (Fig-
ures 3B and S1), we ran the algorithms with different
parameters on the calibration videos from the fly setup.
There were 4475 frames where the calibration board was
detected in 2 or more cameras. To demonstrate the use-
fulness of our iterative bundle adjustment procedure with
lower number of detections, we evaluated all bundle adjust-
ment algorithms after subsampling the frames with board
detections to 313 (7%) and 4475 (100%). At each of these
frame counts, we initialized the camera parameters and
then ran our iterative bundle adjustment procedure, as well
as traditional bundle adjustment with a linear least-squares
loss, a Huber loss, and soft L1 loss. As the Huber and soft
L1 losses are sensitive to the outlier threshold parameter,
we evaluated them at multiple outlier thresholds on our
dataset (Figure S1). We picked the loss with the best outlier
threshold, as evaluated by the reprojection error at the 75th
percentile, to plot in the main calibration figure. The itera-
tive bundle adjustment procedure was run with the default
parameters in Anipose: Niter = 12, µstart = 15, µend = 1.

Evaluation against physical ground truth. To evalu-
ate the calibration and triangulation, we compared the
accuracy of manual keypoint annotations, neural network
keypoint detections, and OpenCV keypoint detections (Fig-
ure 4). The ground truth was considered to be known
physical length and angles of the ChArUco board. The
physical lengths were calculated between all pairs of key-
points by taking the length between the known positions of
pairs of corners. Similarly, the physical angles were esti-
mated between all triplets of non-collinear keypoints. The
subpixel OpenCV detections were done using the Aruco
module [25]. The manual annotation and neural network
methods are detailed above. Given the keypoint detections
from each method, we used linear least-squares triangu-
lation to obtain 3D points and computed angles using the
dot product method detailed above. If a keypoint was de-
tected in fewer than 2 cameras at any time, we could not
triangulate it and therefore did not estimate the error at that
frame.

Evaluation of 3D tracking error for different filters.
To evaluate the contribution of 2D and 3D filters, we ap-
plied each filter and measured the reduction in error. For
the 2D filters, we applied each of the filters (2D median
filter, Viterbi filter, and autoencoder filter) and computed
the 3D position using linear least-squares triangulation.
We could not train the autoencoder filter on the human
dataset, as the filter relies on occluded keypoints not being
present in the annotated dataset and, due to the nature of
the human dataset, all keypoints are annotated from every
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view at every frame. When applying the spatiotemporal
regularization, we assumed a low variance in length of
the coxa, femur, and tibia in flies and of the arm, the fore-
arm, pelvis, femur, and tibia in the human. We assumed a
slightly higher variance for the length of the tarsus in each
fly and of the neck and shoulders in each human, because
these body segments are more flexible. The parameters for
each filter are listed in Table S1. We measured the error
in joint positions and angles relative to those computed
from manual annotations, using the `2 norm. To evaluate
the effect of the filter addition, as there was a lot of vari-
ance in error across points, we computed the difference in
error for each point tracked. We treated points with repro-
jection error above 20 pixels as missing. The procedure
for evaluating the 3D filters was similar, except that we
compared the error in joint position and angle relative to
the error from 3D points obtained with a Viterbi filter and
autoencoder filter with linear least-squares triangulation.

Evaluation of derivative error for different filters. To
evaluate the contribution of different 2D and 3D filters to
the error in derivative estimation, we applied each filter to
the 3D trajectory of each joint and estimated the derivative
by using the finite difference method. For each joint, each
frame, and each filter, we obtain a 3D vector representing
a derivative. We compare the error between this derivative
vector and the true derivative vector from manual annota-
tions by using the `2 norm, as in the previous section.

Evaluation of 3D tracking error for different number
of cameras To evaluate how the number of cameras con-
tributes to the estimate of error, we ran Anipose on all
combinations of 2, 3, and 4 cameras for the human dataset.
We measured the error in joint position and angles relative
to manual annotations as described above. We plotted the
mean error across all joint positions or angles and across
all possible combinations of cameras (Figure S6) at each
number of cameras.

Evaluation of temporal regularization on synthetic
dataset To evaluate how minimizing higher order deriva-
tives affects tracking of high frequency movement dynam-
ics, we evaluated the temporal regularization on a syn-
thetic dataset (Figure S5). We synthesized 30 ground-truth
keypoint trajectories, each of length 500, by applying a
low-pass filter with a cutoff of 0.12 cycles/sample on white
noise. We then corrupted these trajectories by adding white
noise and removing 10% of the points, simulating observed
triangulated points (for example, as in the "No filters" trace
in Figure 7A). We reconstructed the signal using temporal
regularization and minimizing the 1st, 2nd, or 3rd deriva-
tive across different levels of smoothing factor βtime. We
estimated the power spectrum of the ground truth, cor-
rupted, and reconstructed signals by taking the average
power spectral density at each frequency across all 30 sim-
ulated trajectories. We estimated the power spectral density
using the Welch’s method as implemented in SciPy [101].
We computed the root mean squared error (RMSE) be-
tween the ground truth and reconstructed signals for each
derivative minimized at different levels of smoothing. We

evaluated the RMSE of median filters with window size
of 3 to 25 samples on the same trajectories, and found the
median filter with a window size of 9 samples to have the
lowest RMSE, which we plot as a reference.

4.7 Analysis of kinematics
Analysis of fly walking kinematics For the analysis in
Figure 10, we used data from 39 wild-type Berlin flies on
a spherical treadmill (details of experimental setup above).
We tracked the flies using Anipose with spatiotemporal
regularization and Viterbi and autoencoder filters. We con-
firmed by visual inspection and by checking reprojection
errors that all flies were well tracked.

To restrict the data to only walking, we manually la-
beled fly behavior for a random subset of videos using the
VGG Image Annotation tool [91]. The categories of behav-
iors labeled were abdomen grooming, antennae grooming,
ball push, ball tapping, eye grooming, head grooming,
standing, t1 grooming, t3 grooming, walking. To detect
walking behavior across the entire dataset, we fit a logistic
classifier to predict the type of behavior. The input data to
the classifier for each time point was a chunk of 24 samples
around that time of 3D joint positions and angles and the
Fourier transform of the 24 samples of each variable. The
confusion matrix for the classifier on a test set is shown
in Figure S8C. The false negative rate was 0%, whereas
the false positive rate was about 3%. To detect bouts of
walking, we used the classifier to predict a walking prob-
ability for each sample in a video, applied a mean filter
with a window of 16 samples to the probability, then kept
bouts where the probability was above 0.5 for at least 40
consecutive samples. To further reduce spurious walking
bout detections, we removed any bout where the femur-
tibia flexion of the left front and hind legs varied less than
10 degrees over the full bout. We confirmed with visual in-
spection that all bouts removed in this way did not include
walking.

To perform the UMAP embeddings, we followed a
procedure inspired by DeAngelis et al [27], which mapped
the manifold structure of Drosophila walking from 2D
tracking data. We took chunks of 32 samples, advancing
by 8 samples, of the coxa rotation, femur rotation, and
femur-tibia flexion angles and their derivatives. Thus, we
obtained a set of vectors of size 1152 (32 samples * 6 legs *
3 angles * 2 raw & derivatives), which we standardized by
subtracting the mean and dividing by the standard deviation
along each dimension. We embedded this set of vectors
in 3 dimensions using the UMAP algorithm [31], with
effective minimum distance of 0.4 and 30 neighbors as
parameters. To compute the phase of the step cycle, we
applied a band-pass filter (1st order Butterworth over 3–
60Hz) to front left leg femur-tibia flexion and estimated the
phase from the analytic signal obtained using the Hilbert
transform.

Analysis of mouse reaching kinematics In Figure S9,
we analyzed videos from 4 mice recorded over 2 different
days (details of experimental setup above). We tracked
3 keypoints on the hand for each mouse using Anipose
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with no filters. To obtain accurate 3D tracking for all
trajectories, we removed all points with reprojection error
above 10 pixels, then filled in missing data (about 11% of
the data) using linear interpolation. We used the proximal
end of digit 3 as a marker for the overall hand position.
Mice 1 and 3 reached with their left hand, whereas mice
2 and 4 reached with their right hand. Accordingly, we
quantified the movement of the hand each mouse reached
with. We labeled the start and end of each reach, along with
the reach type using the Anipose visualizer (Figure 9). To
obtain the 3D position of the pellet holder, we labeled the
pellet holder for each mouse and day from both views using
the VGG Image Annotation tool [91], then triangulated the
labeled points for each pair of views using aniposelib. We
measured the distance of the hand (proximal end of digit
3) to the pellet holder by using the `2 norm.

Analysis of human walking kinematics In Figure S10,
we analyzed videos from all 7 publicly available subjects
in the Human 3.6M dataset (dataset described above). We
tracked 17 keypoints for each human using Anipose with
spatiotemporal regularization and Viterbi filters.

To focus on walking, we restricted our analysis on
the “Walking-1”, “Walking-2”, “WalkingTogether-1”, and
“WalkingTogether-2” actions in the dataset. We estimated
the knee flexion, hip flexion, and hip rotation angles as
described in the “Estimating joint angles” section above.
For the UMAP embedding, we followed a procedure simi-
lar to our analysis of fly kinematics. Specifically, we took
chunks of 24 samples, advancing by 8 samples, of the
knee flexion, hip rotation, and hip flexion angles and their
derivatives. Thus, we obtained a set of vectors of size 288
(24 samples * 2 legs * 3 angles * 2 raw & derivatives),
which we standardized by subtracting the mean and divid-
ing by the standard deviation along each dimension. We
embedded this set of vectors in 3 dimensions using the
UMAP algorithm [31], with effective minimum distance
of 0.4 and 30 neighbors as parameters.
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ChArUco Mouse Fly Human

Training frames 1200 2200 6632 636724
Test frames 1200 400 1200 159181
Num cameras 6 2 6 4
Pixel scale (mm) 0.0075 0.0897 0.0075 4.79

2D filter
score threshold 0.05 0.05
n_back 3 3
medfilt 13 13
offset_threshold 15 30
spline true true

3D filter
score_threshold 0.3 0.3 0.3 0.3
reproj_error_threshold 5 5
scale_length 3 1.5
scale_length_weak 0.5 0.5
scale_smooth 2 4
n_deriv_smooth 3 2

Table S1: Anipose configuration parameters used in this paper. Related to Figures 6, 7, 8.
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Figure S1: Related to Figure 3. Reprojection error as a function of outlier threshold for bundle adjustment with Huber
and soft L1 losses.
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Spatiotemporal constraints + 2D filters
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Figure S2: Cumulative distribution functions of the position and angle error with and without filters for each of the
datasets. Related to Figure 5

.
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ANIPOSE

View with keypoint detections
removed by autoencoder

3D before 3D after

Figure S3: An autoencoder corrects 3D tracking by removing bad keypoint detections. Related to Figure 6. On the left
is one view where the autoencoder lowered the confidences for particularly bad detections, thus removing them from
the 3D triangulation. On the right are the 3D positions of the keypoints before and after the removal.
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Figure S4: Related to Figure 7. (A) Example traces of the tracked hind-leg femur tibia flexion angle, before and after
filtering. (B) Comparison of methods for estimating tibia length. Spatial regularization most closely matches the
distribution of tibia lengths based on manual annotations. The plots show the distribution of tibia lengths for one fly,
extending the example shown in Figure 7B, for different filtering strategies (top) and manual annotations (bottom).
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Figure S5: Minimizing higher order derivatives preserves high frequency dynamics and leads to lower reconstruction
error. Related to Figure 7. (A) An example simulated trajectory along with its reconstructions using temporal
regularization with different derivatives minimized. Each column shows reconstructions with different smoothing
factors. (B) We synthesized 30 different trajectories with the procedure in A and compared the average power spectral
density between the true, corrupted, and reconstructed trajectories with different derivatives minimized. At any
smoothing factor, minimizing higher derivatives preserves more power at high frequencies. (C) The average root-mean
squared error (RMSE) of reconstruction for the 30 simulated trajectories. The minimum error for a median filter (over
all possible filter widths) is shown as a dashed line, for reference. Dotted lines indicate the smoothing factors shown in
A and B. Note that minimizing higher derivatives is more robust to smoothing factor choice, as a wider range of factors
give lower RMSE than a median filter. The best RMSE over all possible smoothing factors is lower when minimizing
the 3rd derivative than 2nd or 1st.
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Figure S6: Estimates of error with different number of cameras for the human dataset. Related to Figure 7. (A) Mean
joint position error of Anipose tracking with subsets of cameras and different filter conditions. (B) Same as A, but
plotting mean joint angle error.
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Figure S7: An example of the Anipose file structure. This structure enables visualization of arbitrary datasets, as shown
in Figure 9. (A) The input file structure consists of folders nested to arbitrary depths (e.g. “experiment/2019-03-03/trial
1”) with a folder for raw videos at each leaf of the directory tree. The calibration folder may be placed anywhere
and will apply recursively to all folders adjacent to it. (B) When the user runs Anipose, it will create a folder for
each step of processing. New folders created include “pose-2d” and “videos-labeled” which contain the unfiltered
keypoint detections and visualizations of those, “pose-2d-filtered” and “videos-labeled-filtered” which contain the
filtered keypoint detections and visualizations, “pose-3d” and “videos-3d” which contain the triangulated 3D keypoint
detections and visualizations of these, and finally “angles” which contains angles computed based on the 3D keypoint
detections.
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Figure S8: Related to Figure 10. (A) Probability density functions of all joint angles and derivatives for 39 wild type
flies during walking, extending the subset of angles presented in Figure 10B. (B) UMAP embeddding of fly walking,
as in Figure 10C, colored by each of the joint angles. The colormap is normalized to the angle within each plot. (C)
Confusion matrix for the behavior classifier used to isolate walking bouts for Figure 10.
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Figure S9: 3D tracking with Anipose reveals common structure of mouse reaches. (A) 3D trajectories of example
reaches of each type. The pellet holder is indicated as a black dot. (B) Mean distance to pellet holder as a function of
time, for each mouse. Shaded areas are 95% confidence intervals. When reaches are aligned to grasp attempt (0 ms),
the hand is farther from the pellet on miss trials compared to hit or bump trials.
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Figure S10: 3D tracking of human walking enables quantification of leg angles and comparison across individuals.
(A) Representative traces of knee flexion, hip rotation, and hip flexion from a walking human, tracked with Anipose.
Data is from the Human 3.6M dataset. The median angle value is indicated at left as a reference point. (B) Probability
distribution functions of knee flexion, hip rotation, and hip flexion angles from 7 humans. Only sessions that include
walking are included. Note the asymmetry in the distributions of knee flexion and hip flexion, revealing the known
non-sinusoidal pattern of knee and hip flexion during walking. (C) Axis units are arbitrary. Although each human
subject has a characteristic gait, there is a continuum across all subjects. (D) UMAP embedding of knee flexion, hip
rotation, and hip flexion angles across all legs, and their derivatives. The UMAP embedding is colored by knee flexion
and hip rotation for each leg. Coloring by knee flexion angle reveals the common phase alignment of the circles across
subjects. From this phase alignment, we see that the trajectory of hip rotation for each subject is markedly different.
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