Title: Rapid self-selecting and clone-free integration of transgenes into engineered CRISPR safe harbor locations in Caenorhabditis elegans

Authors: Zachary C. Stevenson* ${ }^{\dagger}$, Megan J. Moerdyk-Schauwecker* ${ }^{\dagger}$, Brennen Jamison ${ }^{\dagger}$, Patrick C. Phillips ${ }^{\dagger}$.
*These authors contributed equally to this work
${ }^{\dagger}$ Institute of Ecology \& Evolution, University of Oregon

Abstract

: Precision genome editing for model organisms has revolutionized functional analysis and validation of a wide variety of molecular systems. To date, the capacity to insert transgenes into the model nematode Caenorhabditis elegans has focused on utilizing either transposable elements or CRISPR-based safe harbor strategies. These methods require laborious screening processes that often result in false positives from heritable extrachromosomal arrays or rely on co-CRISPR markers to identify likely edited individuals. As a result, verification of transgene insertion requires anti-array selection screening methods or extensive PCR genotyping respectively. These approaches also rely on cloning plasmids for the addition of transgenes. Here, we present a novel safe harbor CRISPR-based integration strategy that utilizes engineered insertion locations containing a synthetic guide RNA target and a split-selection system to eliminate false positives from array formation, thereby providing integration-specific selection. This approach allows the experimenter to confirm an integration event has taken place without molecular validation or anti-array screening methods, and is capable of producing integrated transgenic lines in as little as five days post-injection. To further increase the speed of generating transgenic lines, we also utilized the C. elegans native homology-based formation of extrachromosomal arrays to assemble transgenes in-situ, removing the cloning step. We show that complete transgenes can be made and inserted into our split-selection safe harbor locations starting from PCR products, providing a clone-free and molecular-validation-free strategy for single-copy transgene integration. Overall, this combination of approaches provides an economical and rapid system for generating highly reproducible complex transgenics in C. elegans.

Introduction:

The introduction of transgenes is a staple in the molecular biologist's toolkit, with a broad range of utilities including expression of individual variants, ectopic expression of tagged native genes, and the addition of genes from other species. Injection of double-strand DNA into the Caenorhabditis elegans gonad arm generally results in assembly of these fragments via regions of microhomology, leading to the formation of extrachromosomal arrays (Stinchcomb et al. 1985; Mello et al. 1991). These extrachromosomal array structures can be in excess of 1 Mbp and contain up to hundreds of copies of the injected gene (Mello et al. 1991; Woglar et al. 2019). Extrachromosomal arrays are not stably inherited—either between cells within an individual or between generations-and have variable expression levels, which can be problematic depending on the biological question. To avoid the stochastic element of array expression, it is often desirable to integrate transgenes. Historically in C. elegans, microparticle bombardment (Praitis et al. 2001) and ultraviolet light exposure (Evans 2006) or gamma exposure (Mello and Fire 1995). have been used to integrate transgenes randomly. However, these methods are less than ideal as: integration usually results in multiple copies, which can impact expression; the integration location is random which can disrupt native genes expression or insert the transgene integrate into regions prone to transcriptional silencing; and both methods require expensive and specialized equipment to create transgene integrations and to identify the loci of insertion. More recent approaches have utilized transposon-based integration methods such as MosSCI and miniMos (Frøkjær-Jensen et al. 2008, 2014), which use a transposon to create a double-strand break, allowing for single transgene integration into a predefined or random region respectively. Recently, CRISPR/Cas9 techniques have been adopted for transgene integration. This includes generalized methods for transgenic cargo insertion, either with or without a selective marker
such as Hygromycin B resistance (Radman et al. 2013) or a self-excising cassette (SEC) (Dickinson et al. 2015; Kasimatis et al. 2018). More specialized CRISPR strategies, such as the SKI LODGE method, facilitates tissue-specific expression by splitting the coding and promoter element (Silva-García et al. 2019). A particular advantage of this latter strategy is that it introduces modular transgene integration, allowing for a more straightforward integration into a backbone of standard genetic elements that are pre-integrated within a safe harbor location.

Regardless of whether a transposon or CRISPR/Cas9 strategy is used, integration of the transgene by homology-directed repair (HDR) is generally inefficient compared to nonhomologous end joining (NHEJ) (Frøkjær-Jensen et al. 2008; Dickinson et al. 2013, 2015; Ward 2015). Both MosSCI and CRISPR show approximately the same integration efficiencies which varies greatly depending on the transgene. CRISPR and MosSCI also require robust screening methods to identify the rare correct transgene integration. Co-CRISPR simultaneously targets a second gene to generate a visible dominant phenotype (e.g., dpy-10) (Arribere et al. 2014), thereby allowing identification of a sub-population with active Cas9 expression and genome targeting. This enriched population must then be further screened, generally by PCR and Sanger sequencing, to identify correct integration events at the desired locus. In the case of selectable genes, the transgene generates a visible phenotype displayed not only by integrants but also individuals with heritable extrachromosomal arrays. This is because the injected donor homology contains a fully functional copy of the selectable gene. Distinguishing extrachromosomal arrays from integration events requires anti-array selection techniques such as heat shock induction of peel, a toxic transgene (Seidel et al. 2011; Frøkjær-Jensen et al. 2012) and visual screening for loss of an additional gene used to mark the array (e.g., fluorescent protein or rol-6). These
methods are imperfect and molecular methodologies such as genotyping PCRs must be used to verify genuine integrations. Currently, no method is available for C. elegans that provides integration-specific selection of transgenes. Such an approach would reduce the labor required to generate transgenics by eliminating false positives caused by extrachromosomal array formation, fitting into the category of a "screen from heaven" where only the desired transgenic integrant is alive on the petri dish (Jorgensen and Mango 2002).

In most cases, transgenes must be cloned into plasmids with homology arms matching the targeted genomic region for single-copy integration. This process requires laborious cloning strategies for each desired transgene. C. elegans can recombine fragments with microhomology and express resulting transgenes in an array (Mello et al. 1991; Kemp et al. 2007). Others have tested this strategy to create a donor homology for transgene integration. For example, Paix et al. (2016) and Philip et al. (2019) attempted to overcome the cloning obstacle by integrating transgenes with overlapping PCR fragments that, once recombined in-situ, should produce a functional gene. However, neither method provides direct selection for the transgene integration. As such, depending on the design, array formation can provide false-positives, increasing the difficulty of identifying a correct assembly and integration-a notable complication for current 'clone-free' strategies.

Here, we present a novel transgene integration strategy that utilizes a custom-designed safe harbor location to eliminate many of the steps required to go from concept-to-integrated transgene. Our approach removes the selective advantage from the array and selects only for the integration event by splitting the coding sequence for Hygromycin B resistance. Additionally, we
show the cloning stage can be bypassed in this system, utilizing the worms' native homology mediated repair to clone our transgene in-situ. Coupling these methods can reduce the labor and time required to produce a transgenic nematode, allowing the experimenter to go from PCR-tointegrated transgene in approximately one week.

Materials and Methods

Strains and growth conditions

Bristol N2-PD1073 (Yoshimura et al. 2019) and the derived strains PX692, PX693, PX694, PX695, PX696, and PX697 (Table S1) were maintained on NGM-agar plates seeded with OP50 or HB101 Escherichia coli at $15^{\circ} \mathrm{C}$ unless otherwise noted.

Molecular biology

All plasmids unique to this publication are listed in Table S2, and all primers used in this study are listed in Table S3. All-in-one-plasmids encoding both Cas9 and the desired sgRNA were created by site-directed mutagenesis of pDD162 (Addgene \#47549) (Dickinson et al. 2013) using the Q5 site-directed mutagenesis kit (NEB) per manufacturer directions. Guide and Cas9 sequences were confirmed by Sanger sequencing. The guide targeting Chromosome II:84201888420210 has been previously described, and the constructed plasmid (pMS8) is equivalent to pDD122 (Addgene \#47550) (Dickinson et al. 2013). Synthetic guide sites utilized in the landing pads were based on guides previously shown to be highly efficient in other species or generated based on predicted efficiency scores (Table 1). Predicted off-target effects were determined using the method of (Doench et al. 2016) while predicted on-target efficiency was calculated using Sequence Scan for CRISPR (Xu et al. 2015) and the method of (Hsu et al. 2013).

Repair template plasmids were assembled from overlapping fragments using the NEBuilder HiFi Kit (NEB) per manufacturer instructions. For the landing pads, the Cbr-unc-119 rescue gene and a portion of the homology arms containing the guide site were removed from pCFJ151(Addgene \#19330) (Frøkjær-Jensen et al. 2008) and replaced with a multiple cloning site to create pMS2. The SEC from pDD285 (Addgene \#66826) (Dickinson et al. 2015) was then inserted into SacI digested pMS2 to create pMS4. The C-terminal portion of the hygromycin resistance gene and the unc-54 3' UTR were then independently amplified from pCFJ1663 (Addgene \#514840 from the lab of Erik Jorgensen) and inserted into the SbfI site of pMS4 to create the final landing pad plasmids (pMS70-75). The six synthetic guide sites were included in the primers used to amplify the hygromycin resistance fragment (Table 1, Table S2, and Table S3). A complete annotated sequence of pMS74 can be found in Figure S1.

To generate an rpl-28p::mKate2::unc-54 3^{\prime} 'UTR reporter, rpl-28p amplified from $\mathrm{pBCN} 39-\mathrm{R} 4 \mathrm{R} 3$ (Addgene \#34914) (Semple et al. 2012) and the mKate2 coding sequence and unc-54 3'UTR amplified from pDD285 were inserted into SacI digested pMS2 to give pMS12. The reporter was then amplified from pMS12 and inserted into an intermediate construct containing: rps- $0 p$ and the N -terminal fragment of the hygromycin resistance gene from pCFJ1663 (amplified in two fragments to remove intron), a pUC57 backbone, a truncated 5' genomic homology arm from pMS2 and artificial sequences; to give the final insertion vector pMS81. A complete annotated sequence of pMS81 can be found in Figure S2. A second split hygromycin insertion vector, pZCS52, was made by amplifying the homology arms and split hygromycin from pMS81 by PCR and adding the $s q t-1(e 1350)$ gene amplified from pDD285.

To generate an additional fluorescent co-marker, eft-3p and tbb-2 3' UTR amplified from pDD162 and wrmScarlet amplified from pSEM89 (Bindels et al. 2016; Mouridi et al. 2017) were cloned into a pUC19 backbone to give pZCS16. The CRE expressing plasmid pZCS23 was made by PCR amplifying the backbone, eft-3p and $t b b-23^{\prime}$ UTR from pZCS 16 and adding $N L S:: C R E$ from synthetic gBlocks (IDT).

Strain generation by CRISPR/Cas9

A mixture consisting of $50 \mathrm{ng} / \mu 1 \mathrm{pMS} 8,10 \mathrm{ng} / \mu 1$ of the appropriate landing pad plasmid and 2.5 ng/ $\mu \mathrm{l}$ pCFJ421 (Addgene \#34876) (Frøkjær-Jensen et al. 2012) was microinjected into the gonad of young adult N2 hermaphrodites. Screening and removal of the SEC were done following Dickinson et al. (2015). Presence of the insertion and removal of the SEC was confirmed by PCR and Sanger sequencing (Table S3). Confirmed transgenics were backcrossed once to N2 to create the final strains PX692-PX697 (Table 1, Table S1).

Quantification of synthetic guide RNA efficiency

For each landing pad strain (PX692-PX697), a mixture consisting of $50 \mathrm{ng} / \mu \mathrm{l}$ of all-in-one plasmid targeting the corresponding synthetic guide site and $10 \mathrm{ng} / \mu \mathrm{pMS} 81$ was microinjected into the gonad of young adult hermaphrodites. Following injection, all worms were maintained at $25^{\circ} \mathrm{C}$ for the duration of the experiment. Injections were performed until approximately 60 broods per strain had at least one F1 progeny expressing the fluorescent donor homology, thereby marking the brood as successfully injected. Broods were screened for fluorescence at approximately 48 h post-injection (hpi), and all fluorescent individuals were counted regardless of developmental stage (Figure S3). Hygromycin B was then top spread to plates at a final
concentration of $250 \mu \mathrm{~g} / \mathrm{ml}$ and plates were then screened starting five days later for resistant progeny. Individuals from surviving broods were PCR screened to confirm correct integration.

Removal of the hygromycin selectable marker with CRE

A confirmed homozygous integrant line for rpl-28p::mKate $2:: u n c-543^{\prime} U T R$ was injected with $10 \mathrm{ng} / \mu 1$ of CRE expression plasmid pZCS23 and $10 \mathrm{ng} / \mu 1$ pCFJ421 co-marker. 30 co-marker positive F1 individuals were screened by PCR for the removal of the hygromycin gene. F2 progeny from 3 of the most promising candidates were then rescreened to confirm homozygous removal.

In-situ assembly for integrated transgenes

Two or six PCR fragments with 30bp overlaps, covering the sqt-1(e1350) gene, were amplified from pDD285 using Q5 polymerase (NEB) per manufacturer instructions. Homology arms with 30 bp overlaps to the sqt-1(e1350) gene were similarly amplified from pMS81. These homology arms were then complexed with the adjoining sqt-1(e1350) PCR fragment through a second round of PCR.

For in-situ assembly and integration, a mixture consisting of $50 \mathrm{ng} / \mu 1 \mathrm{pMS} 79,5 \mathrm{ng} / \mu 1 \mathrm{pZCS} 16$, and $40 \mathrm{fmol} / \mu 1$ of each of the appropriate gel purified PCR products was microinjected into the gonad of young adult PX696 worms. As a control, $10 \mathrm{ng} / \mu 1 \mathrm{pZCS} 52$ was substituted for the PCR products. Following injection, all worms were maintained at $25^{\circ} \mathrm{C}$ for the duration of the experiment. After 24 hours, injected adults were moved to new plates to facilitate counting. F1 individuals were screened for red fluorescence (Figure S4) and the roller phenotype at 3-4 days post-injection. Hygromycin B was then added to plates at a final concentration of $250 \mu \mathrm{~g} / \mathrm{ml}$. Each day for five days post-exposure, plates were scored for hygromycin resistance. Individuals resistant to hygromycin and with the roller phenotype were singled without hygromycin and screened for Mendelian inheritance of the roller phenotype to indicate an integration event. Lines
with promising candidates for single copy-integration were singled until they produced homozygous rol progeny, which were then screened for the presence of the wrmScarlet comarker, genotyped by PCR across the insert and Sanger sequenced for correct transgene assembly and integration (Table S3).

Accessibility of reagents and protocols

pMS4, pMS74, PMS79, pMS81, and pZCS16 are available from Addgene. Strain PX696 is available from the Caenorhabditis Genetics Center. Other strains and plasmids are available upon request. Full protocols and all plasmid sequences are available on the lab website (github.com/phillips-lab/SLP). All data files associated with this manuscript are available on FigShare.

Results

Generation of synthetic split landing pad sites

Current methods of transgene insertion in C. elegans result in a large number of false positives requiring additional phenotypic or PCR screening or anti-array selection. We sought a faster and simpler method by using CRISPR/Cas9 genome engineering to custom-designed synthetic split landing pads (SLPs). A split uracil selection system has been developed for yeast, whereby a functional URA3 gene is reconstituted by an integration event. Therefore only transgenic cells survive in the absence of uracil (Levy et al. 2015). We reasoned a similar system could be adapted to C. elegans. Hygromycin resistance was chosen as the selectable event as it works across C. elegans strains, provides more substantial selection than other antibiotic resistance genes, and does not rely on mutant backgrounds such as with unc-119 rescue (Radman et al. 2013). An artificial guide site plus the 3 ' hygromycin coding sequence and transcription terminator were integrated into the target genome site as part of the SLP, whereas the promoter
and 5' portion of the hygromycin coding sequence were included in the repair plasmid (Figure 1A). A central 500bp region was included in both fragments, allowing for homology-directed repair. Since a complete resistance gene is not present in either the insertion strain or extrachromosomal arrays containing the repair plasmid, only individuals with proper homologydirected repair have a functional hygromycin resistance gene and survive hygromycin exposure (Figure 1B-D).

The SLP was inserted at Chromosome II:8,420,157. Both this general region and this specific CRISPR site have been shown to be permissive for gene expression, including germline expression (Frøkjær-Jensen et al. 2008, 2012; Dickinson et al. 2015). The SLP was introduced using the SEC selection method, and removal of the SEC left a LoxP site downstream of the hygromycin resistance gene terminator (Figure 1A). By also including a LoxP site upstream of the promoter in the repair template, this allows for optional removal of the HygR gene in confirmed integrants by injection of a CRE expressing plasmid (Figure S5).

Efficiency of transgene integration

Given that the SLP is entirely artificial, the guide site can be of the experimenter's choosing. As previous work has shown that the choice of guide site can influence integration efficiency (Farboud and Meyer 2015), we made six different SLP strains, each differing only in their guide site (Table 1). Five of these were sites previously shown to be highly efficient in other model organisms, while the sixth was designed to maximize the predicted guide efficiency. All had very low predicted off-target effects. We then attempted to integrate into each of these a universal rpl28p::mKate2 repair template (pMS 81), which also served as a marker of injection success as it
can also be incorporated into and expressed in extrachromosomal arrays. 1.4-9.6\% of successfully injected broods (as determined by the presence of at least one mKate2 positive individual at 48 hpi) produced hygromycin resistant individuals. Overall, 79.2% of hygromycin resistant broods (19 of 24) also had perfect integrations events as determined by PCR (Table 1). Imperfect integrations are most often the result of HDR on one side of a double-strand break and incorrect integration on the opposite side, a known issue with transgenic integrations, although rearrangements within the transgene also occur, likely as a byproduct of the array assembly process (Stinchcomb et al. 1985).

Overall, we found three guide sites to have similar relatively high efficiencies, while one was slightly less efficient and the other two were much less efficient. The observed efficiencies were not always consistent with the predicted guide site efficiencies. For the top three guide sites 7.9$9.6 \%$ of co-marker positive broods contained integrants (not all of which were correct) which equated to approximately 300-450 co-marker positive progeny per integration event. In our hands, injection of thirty total individuals from any of the four best-performing strains was nearly always sufficient to obtain at least one correct line. This is on par with other transgene integration methods directed at this region (Frøkjær-Jensen et al. 2008, 2012; Dickinson et al. $2013,2015)$ which have variable integration efficiencies depending on the transgene, but generally range from 5-30\% with a few exceptions reaching higher frequency (Frøkjær-Jensen et al. 2012). As previously observed (Paix et al. 2014), broods with larger numbers of injection marker positive progeny (jackpots) were the most likely to yield integrants. However, this number was not predictive of perfect versus imperfect integration (Figure S3).

In-situ donor assembly and integration

While plasmids offer the advantage of producing large quantities of the repair template, they require time and labor to produce. Standard cloning practices require a source of DNA, a ligation step, bacterial transformation, plasmid purification, and verification. As we sought to both simplify the process and reduce the overall time-to-integration, we attempted to bypass the cloning step and utilize the C. elegans native homology-directed repair to produce a transgene (Figure 2). While clone-free transgenesis has been previously demonstrated in C. elegans (Paix et al. 2016; Philip et al. 2019) we wanted to see if this process could synergize with the splitselection system to further improve the process as the previous work did not provide direct selection on the integration event. To test this approach, we utilized the sqt-1(e1350) mutation as it gives a dominant roller phenotype allowing us to assay for in-situ assembly. Transgene integration was most efficient for the plasmid vector, with 20% of co-marker positive broods containing an integrant. However, confirmed in-situ assembled and integrated sqt-1 genes were also obtained using both two and six PCR fragments (Table 2, PCR Confirmed Integrations). Two parts correctly assembled and integrated more often than six parts. In some cases, hygromycin resistant individuals were observed without the sqt-1 roller phenotype (Table 2, Hygromycin Resistant Broods). We believe these represent incorrect integration events, where at least the 5 ' hygromycin resistance coding fragment was integrated into the genome. As these cannot be correct integration and assembly events, we did not pursue or characterize them.

For two-part assemblies, most hygromycin resistance events were accompanied by sqt-1 assembly and integration, as indicated by the ability to isolate homozygous roller populations. However, not all of these insertions matched the expected sequence. Two of the eight insertions
could not be amplified by PCR, suggesting larger scale errors, while three had point mutations identified during Sanger sequencing, and three had no detectable errors. In no case did we detect multiple copy insertions. In the six-part experiment, all resistant plates had non-roller (incorrect) integration events, with a few having roller individuals as well (Table 2, Hygromycin Resistant Broods). In most cases, a homozygous roller line could not be isolated, suggesting these individuals were the result of correctly assembled genes in arrays paired with incorrect integrations. In one case, a homozygous roller line could be isolated, indicating multiple integration events had taken place in that brood. In this case, the roller causing integration had a correctly assembled sqt-1(e1350) gene but also contained a second copy of one of the homology arms which was identified by Sanger sequencing.

The inclusion of a fluorescent co-marker allowed for monitoring of array loss in this experiment. Since there is no selection on the transgene containing plasmid, any arrays that form should be rapidly lost. As expected, prior to the addition of hygromycin, array positive individuals could be seen. However, none of the homozygous individuals isolated for sequencing (approximately 3-5 generations after injection) contained arrays, demonstrating arrays are indeed quickly lost in this system. Even so, it remains best practice to confirm array loss through either use of an array comarker or a vector specific PCR performed in conjunction with the genotyping PCR.

Discussion

We have created a fast and efficient strategy for integrating transgenes into the C. elegans genome that bypasses some pitfalls and laborious steps present in other methods. Combining split selection with self-assembly of repair templates takes what before would require at best two
to three weeks down to as little as a week, while simultaneously reducing the required expertise and overall hands-on time (Figure 3). The core technology relies on integration-specific selection, made possible by SLPs at a safe harbor insertion site. These SLPs can be inserted into any C. elegans strain using a single set of reagents since the protocol presented does not rely on a particular genetic background. The landing pad presented is universal, and the experimenter can choose any type of cargo to be integrated. However, the SLP design could be modified with additional elements to facilitate specific types of insertions, such as reporter constructs or allelic variants. While we see no obvious phenotypic effects from the constitutive expression of hygromycin resistance protein, the SLP includes LoxP sites, allowing for a second injection of a CRE expression plasmid to remove the hygromycin gene. While removal by CRE injection is relatively efficient (Figure S5), if routine removal of hygromycin is desired, incorporation of inducible CRE and a marker gene into either the landing pad or insertion vector would allow for self-excision using a protocol similar to SEC (Dickinson et al. 2015). Further, additional SLPs using either the same or different guide and selective gene could be inserted into other sites in the C. elegans genome known to be permissive for transgene expression. This would facilitate the construction of more complex, multigene transgenic nematodes. The antibiotics neomycin (Giordano-Santini et al. 2010), puromycin (Semple et al. 2010), blasticidin (Kim et al. 2014) and nourseothricin (Obinata et al. 2018) have all been used for selection in C. elegans, and the coding sequences of the corresponding resistance genes could be split. The SLP, conceptually adopted from yeast, does not need to be restricted to C. elegans. While the formation of heritable arrays is unique to Caenorhabditis nematodes among model systems, and thus does not complicate single-copy integration transgenesis in other models, the concept of custom-designed SLPs could provide direct readouts for integrations events, with specific, custom-built guide
target sequences. For example, a split fluorescent coding sequencing could suffice to screen injected embryos for proper, site-specific integration in model vertebrates and be coupled with a non-native, experimentally chosen guide RNA to reduce off-target effects while increasing ontarget cutting and HDR.

The ability of C. elegans to self-assemble exogenous DNA fragments based on microhomology represents a possible alternative to plasmid cloning for insert assembly. Individuals with an assembled and integrated transgene were seen using both two or six PCR products. However, six pieces resulted in fewer correct integration and more incorrect integrations (Table 2, Hygromycin Resistant Broods), suggesting that, as expected, proper assembly occurs more often with fewer PCR products. As such, it is likely desirable to complex PCR products by overlap PCR before integration where feasible. While the use of PCR products, rather than plasmids, represents a more rapid protocol with fewer technical steps, it comes with the trade-off of a lower frequency of correct integrations requiring injection and screening of a larger number of worms. Thus, while use of PCR products results in a shorter time to integration confirmation, the total amount of hands on time is similar between the two protocols. Ultimately, at this time, choice of PCR products versus plasmid will largely come down to lab preference, although certain protocols, such as insertion of a library of similar constructs may favor the PCR approach.

Site-specific transgene insertions rely on homology-directed repair (HDR). However, nonhomologous end joining is almost always the prevalent pathway in repairing a double-stranded break (Ward 2015; Xu et al. 2015). During guide efficiency testing, the top three guides all had
similar insertion frequencies, suggesting we are approaching the upper limit of cutting efficiency and that further improvements will require improved rates of HDR. Furthermore, improved HDR should assist in the assembly of PCR products in worms and reduce the rate of false positives due to incorrect assembly. Low rates of HDR are not specific to C. elegans and impair HDRbased insertion in many model systems. As a result, multiple HDR enhancement strategies have been proposed in multiple model organisms (Beumer et al. 2008; Böttcher et al. 2014; Ward 2015). Adaptation and advancement of one or more of these methods will likely represent the next breakthrough in genome editing efficiency in C. elegans.

Acknowledgments:

This project was supported by grants from the National Institutes of Health (R01 AG56436, R35 GM131838) to PCP. We would like to thank Erin Petruccione for technical assistance and Stephen Banse for helpful discussions and comments on the manuscript.

A
The Synthetic Landing Pad

B

Cargo with Donor Homology

Molecular Overview of Integration-Specific Selection

C Cas9 \& Guide
Expression Plasmid

Single copy transgene with integration-specific selection

Figure 1. Overview of Integration Specific Selection. A) The Synthetic Landing Pad (SLP) with synthetic guide RNA target sequence, the 5 ' fragment of the hygromycin resistance gene (partial coding sequence and UTR), and a single LoxP sequence. B) The donor homology with cargo transgene to be inserted, a second LoxP sequence, and the 3' fragment of the hygromycin resistance gene (promoter \& partial coding sequence). C) Cas9 \& guide expression plasmid is injected with donor homology. Cas9 targets and creates a double-strand break at the synthetic target location. D) Once the double-strand break is made, repair with the donor homology integrates the transgenic cargo, and restores the hygromycin gene, allowing selection to occur only upon integration.

In-situ assembly of donor homology

Fragments are injected into the C. elegans gonad which recognizes microhomology and assembles

Donor homology is ready for integration

Figure 2. Overview of in-situ assembly. A) Amplification of homology arms and cargo fragments by PCR with overlaps of $\sim 30 \mathrm{bp}$ B) Optional complexing by a second round of PCR reduces the number of fragments and increases the frequency of correct integration. C) Upon microinjection, PCR products are recombined by the worm using microhomology to make \mathbf{D}) the complete donor homology ready for integration.

Figure 3: Experimental Overview. A) Injections of PCR fragment or cloned donor homology with Cas 9 and guide expression plasmid. With PCR products, in-situ assembly forms the cargo transgene. B) Two days after injection, worms are exposed to hygromycin B. Since the array does not provide selection \mathbf{C}) only integrated worms survive the exposure, providing the integration-specific selection.

Table 1: SLP guide efficiency for insertion of rpl-28p::mKate 2

Strain	Guide Sequence	Reference	Doench Score $^{\text {a }}$	SSC Score $^{\text {b }}$	Specificity Score	Marker Positive Broods	HygR Resistant Broods $(\%)$	Correct Integration Broods $(\%)$
PX692	GTTTGAGTAGAGCACTCAGGAGG	Kane et al. (2017).	66.9	0.7991	99.3	59	$5(8.5 \%)$	$3(5.1 \%)$
PX693	GACAGTGGACATCTAAGCGGAGG	Kane et al. (2017).	61.5	1.2308	100.0	60	$1(1.7 \%)$	$1(1.7 \%)$
PX694	GTCCAGCGGCAGATCGGCGGAGG	Ge et al. (2016)	45.1	1.0511	99.7	73	$7(9.6 \%)$	$5(6.8 \%)$
PX695	GAGTTCTGTAATTCAGCATAAGG	Agudel et al. (2017).	52.8	0.0095	99.0	74	$1(1.4 \%)$	$1(1.4 \%)$
PX696	GGACAGTCCTGCCGAGGTGGAGG	Varshney et al. (2016)	40.9	0.5977	99.6	76	$6(7.9 \%)$	$5(6.6 \%)$
PX697	GGGGCCTGTGAAATACACAGAGG	N.A.	84.1	0.9981	99.2	77	$4(5.2 \%)$	$4(5.2 \%)$

${ }^{\text {a }}$ Predicted guide efficiency as per (Doench et al. 2016)
${ }^{\text {b }}$ Predicted guide efficiency as per (Xu et al. 2015)
${ }^{\text {c Predicted off-target effects as per (Hsu et al. 2013) }}$

Table 2: In-situ assembly \& integration efficiency.

		Hygromycin Resistant Broods		In-situ Assembly			
	Marker Positive Broods	All Roller	Mixed	All wt	Homozygous Roller Isolated	PCR Confirmed Integrations	Error Free Integrations
Plasmid	15	3	0	0	3	3	$3(20.0 \%)$
2pc PCR	41	6	3	0	8	6	$3(7.3 \%)$
6pc PCR	51	0	8	5	1	1	$0(0.0 \%)$

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.26.117390; this version posted May 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

B.

1 tgtgaaattgttatccgctggtatcagctcactcaaaggcggtaatacggttatccacagaatcaggggataacgcaggaaagaacatgtgagcaaaagg ccagcaaaagaccaggaaccgtaaaaaggccgcgttgctggcgtttttccataggctccgcccccctgacgagcatcacaaaaatcgacgctcaagtcag aggtggcgaaacccgacaggactataaagataccaggcgtttccccetggaagctccctcgtgcgctctcctgttccgaccctgccgcttaccggatacc tgtccgcctttctcccttcgggaagcgtggcgctttctcatagctcacgctgtaggtatctcagttcggtgtaggtcgttcgctccaagctgggctgtgt gcacgaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccggtaagacacgacttatcgccactggcagcagcc actggtaacaggattagcagagcgaggtatgtaggcggtgctacagagttcttgaagtggtggcctaactacggctacactagaaggacagtatttggta tctgcgctctgctgaagccagttaccttcggaaaaagagttggtagctcttgatccggcaaacaaaccaccgctggtagcggtggtttttttgtttgcaa gcagcagattacgcgcagaaaaaaaggatctcaagaagatcctttgatcttttctacggggtctgacgctcagtggaacgaaaactcacgttaagggatt ttggtcatgagattatcaaaaaggatcttcacctagatccttttaaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaaacttggtctg acagttaccaatgcttaatcagtgaggcacctatctcagcgatctgtctatttcgttcatccatagttgcctgactccccgtcgtgtagataactacgat acgggagggcttaccatctggccccagtgctgcaatgataccgcgagacccacgctcaccggctccagatttatcagcaataaaccagccagccggaagg gccgagcgcagaagtggtcctgcaactttatccgcctccatccagtctattaattgttgccgggaagctagagtaagtagttcgccagttaatagtttgc gcaacgttgttgccattgctacaggcatcgtggtgtcacgctcgtcgtttggtatggcttcattcagctccggttcccaacgatcaaggcgagttacatg atcccccatgttgtgcaaaaagcggttagctccttcggtcctccgatcgttgtcagaagtaagttggccgcagtgttatcactcatggttatggcagca ctgcataattctcttactgtcatgccatccgtaagatgcttttctgtgactggtgagtactcaaccaagtcattctgagaatagtgtatgcggcgaccga gttgctcttgcccggcgtcaatacgggataataccgcgccacatagcagaactttaaaagtgctcatcattggaaaacgttcttcggggcgaaaactctc aaggatcttaccgctgttgagatccagttcgatgtaacccactcgtgcacccaactgatcttcagcatcttttactttcaccagcgtttctgggtgagca aaaacaggaaggcaaaatgccgcaaaaagggaataagggcgacacggaaatgttgaatactcatactcttcctttttcaatattattgaagcatttatc agggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataaacaaataggggttccgcgcacatttccccgaaaagtgccacctgacgt ctaagaaaccattattatcatgacattaacctataaaaataggcgtatcacgaggccctttcgtctcgcgcgtttcggtgatgacggtgaaaacctctga cacatgcagctcccggagacggtcacagcttgtctgtaagcggatgccgggagcagacaagcccgtcagggcgcgtcagcgggtgttggcgggtgtcggg gctggcttaactatgcggcatcagagcagattgtactgagagtgcaccatatgcggtgtgaaataccgcacagatgcgtaaggagaaaataccgcatcag gcgccattcgccattcaggctgcgcaactgttgggaagggcgatcggtgcgggcctcttcgctattacgccagctggcgaaagggggatgtgctgcaagg cgattaagttgggtaacgccagCACGTGtgtttttgaacacggcgatatgtatctgtagatcatccccaattttcaacaatgaatctaaatactgaactt tttgtgtaatctttagtgcagaaaaatgaccaaaatcagcgattttccgattatacccaaaatatctcagctcaatgagcacctataaaaatgtaaaaat aaagaaagtagtcgaaccatattttgtaaaggctaaaaaactgaataaatttttatccatccagcgcggcgttacaatccgtggcccatgtcacgcacgg ctttcaaagaaaaaaaaacagtctgtttgcgcgacatcgatctggcaaaaatcctaaaaacgactatgcgtggctcactttatattaatatgaaaaatac aaacttggtggtgcaggtgctgcagaggccatcgatgaagaagtggaggccttgttgtcgatctacaaaattgtatggttgtttgagattttccttgaaa cgctctcaatcttggatatgatataaattctggataagatatgatggatatgatctatgtttgatagagtgcatttgaaaggataacggccctgcagaca tttttgaaaaaataacaaacatttaattttctcactcgtttaggctattcccctatttttgatattccttcgcacatatgaaaactacttttttcgaaa ctgttaactccagaatttataaatctatagcccttacttgattatttattatcatggttactcacctcatgtctctttctctttcaagaagtcttcgtt catatctgttgtctctttcctccttttgaatctctgctttgctcttcgccattgtttcctgaaaataatgtaacttgaattgtgtaatatacttttttaa tttgaatttggcttgtaacgcggaatcactacgtgcgggatcatttcttactagaaaacccagaaaatgccatatttcacttatctcggggtcatttcta attagaaaagctacaaaaaccatttctaattacggtgactttagaactggtcgaaatagctaattagaaatgggtttttgctaattagaggtgactctat gttatctgagtaagcctcgtttgtatgtaaactcacagtactaataaatgcaagacacccgggtttgtctagatatgaaataattgaaatatcaattctg acagacaataatggtaatcttgataaggagttccacgcccaggagaacacgttagttttcttgtttttgattgcgtgcgttattttggagaaaaactcga ttttttacaaaataattttttgaaaggaacactgttcaataagttttgtcttttttctcagttgtgatacggttttttattcttttttgtagttatacag aagaccgcctgcaggGGACAGTCCTGCCGAGGTGGAGGgaccgttacgtctaccgtcacttcgcctccgccgccctcccaatcccagaggtcctcgacat cggagagttctccgagtccctcacctactgcatctcccgtcgtgcccaaggagtcaccctccaagacctcccagagaccgagctcccagccgtcctccaa ccagtcgccgaggccatggacgccatcgccgccgccgacctctcccaaacctccggattcggaccattcggaccacaaggaatcggacaatacaccacct ggcgtgacttcatctgcgccatcgccgacccacacgtctaccactggcaaaccgtcatggacgacaccgtctccgcctccgtcgcccaagccctcgacga gctcatgctctgggccgaggactgcccagaggtccgtcacctcgtccacgccgacttcggatccaacaacgtcctcaccgacaacggacgtatcaccgcc gtcatcgactggtccgaggccatgttcggagactcccaatacgaggtcgccaacatcttcttctggcgtccatggctcgcctgcatggagcaacaaaccc
bioRxiv preprint doi: https://doi.org/10.1101/2020.05.26.117390; this version posted May 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

4301
gttacttcgagcgtcgtcacccagagctcgccggatccccacgtctccgtgcctacatgctccgtatcggactcgaccaactctaccaatccctcgtcga cggaaacttcgacgacgccgcctgggcccaaggacgttgcgacgccatcgtccgttccggagccggaaccgtcggacgtacccaaatcgcccgtcgttcc gccgccgtctggaccgacggatgcgtcgaggtcctcgccgactccggaaaccgtcgtccatccacccgtccacgtgccaaggagtaagTCCAATTACTCT НСААААТСССТАСАТGСТСТТТСТСССТGТGСТСССАСССССТАТТТТТGTTATTATСААААААСТТСТСТTA GTCAССТСТAACAATGAAATTGTGTAGATTCAAAAATAGAATTAATTCGTAATAAAAAGTCGAAAAAAATTGTGCTCCCTCCCCCCATTAATAATAATTC TATCCCAAAATCTACACAATGTTCTGTGTACACTTCTTATGTTTTTTACTTCTGATAAATTTTTTTGAAACATCATAGAAAAAACCGCACACAAAATACC TTATCATATGTTACGTTTCAGTTTATGACCGCAATTTTTActagtgcaggagctgtaagtttaaaATAACTTCGTATAGCATACATTATACGAAGTTATt ttcagGGAGAGCAAAAGCTTATCTCCGAGGAGGACCTCTAAGGATGATCGACGCCaACGTCGTTGAATTTTCAAATTTTAAATACTGAATATTTGTTTTT TTTССТАТТАТТТАТТТАТТСТСТTTGTGTTTTTTTTCTTGCTTTCTAAAAAATTAATTCAATCCAAATCTAAacattttttttctcttccgtctccc aattcgtattccgctcctctcatctgaacacaatgtgcaagtttatttatcttctcgctttcatttcattaggacgtggggggaattggtggaaggggga aacacacaaaaggatgatggaaatgaaataaggacacacaatatgcaacaacattcaattcagaaatatggaggaaggtttaaaagaaaacataaaaata tatagaggaggaaggaaactagctgccctcgattgtctatcttccattctcaccaagtttcaacaactttattcagtcattcttctctggttcatttccc aaccaatcttccogaataaagcccatctgtcctttcggccacattcctcacctacatccgtactccttatctcccgttcttatccagtcttttatcgtct ctgcgtctcgcacactgtctcgtcggtaatgtaaaaaaaaacaaaaaaaacttgaaaacttgcggaaagatttcctaataaaaggagacgaatccggta ggaaatcgacaagtctctgcttctcgaagactaggtgagttacatttctttggccgaattattttgaaatcctaaatttgataatttcagagATGTCTGT AAAACTTGCGTGTTATGTGACGGCTTCGGTCACTGTCGCCACTCTTATGGTATGCTTCATGACCATGTCAACCATCTACTCGGAGGTTGATGGATTCAGA GAGAAGCTTGATACCGAGATGAATGTGTTCAGAgtgagttaaattatattt tgaattttaaataatttttaattttctagCAATCTACCAATGGATTGTG GAAGGACATAGTTGTCATCGGAAGATCTAGCAAGCGTGTCCGTTGTCAATATGAAGAGACCAACGCTACCCCAACTCCACATGCTGATGGATCCCCATCT GСТССАССАGGTCAACCACCAGCAGTTCCACCAGTCTTCAACCAGCCAAAGACTCCAAATGGAGCCAATGGAAATGGACCAACCTGCAACTGCAATGCTG ATAACAAGTGCCCAGCTGGACCATCCGGACCAAAGGGAGTTCCAGGAGTTCCAGGACTCGACGGAGTTCCAGGACTTGACGGTGTTCCAGGAGTTGGAGC TGATGATATCGCTCСACAACGCGAGTCTGTCGGATGCTTCACTTGCCCACAAGGACCAGTTGGACCACCAGGAGCTCTTGGAAGACCAGGACCACGTGGA CTTCCAGGACCAAGAGGACAAAATGGAAACCCAGGAAGAGATGGACAACCAGGACATCCAGGAGAGCAAGGATCATCCGGTCAAATCGGAAAGATCGGAG AGCCAGGACCACCAGGAGAGAAGGGACGCGACGCCGAGCATCCAATCGGAAGACCAGGACCAAAGGGACCAAGAGGAGATCAAGGACCAACAGGACCAGC TGGACAGAACGGTCTTCACGGACCACCAGGAGAGCCAGGAACCGTTGGACCAGAAGGACCATCTGGAAAGCAAGGACGTCAAGGACCAGACGGAACCCAG GGAGAGACTGGACCAGACGGAAGACCAGGAAAGGATGCCGAGTACTGCCAGTGCCCAGACAAGTCTCCACCATCAGAGGCTGTCAACGCCAACCGTGGAT ACAGAAATATCTAAattgttggtgttttctaataaaatatttgagattcagtgagacttttttcttggcggcacaataaagtttcctctttttgttgggt cactcaacgaacacaatacaaatatttgagcgctcgcatttttctcaacctttcgggtttaaagcacttcaaaatggaattgaagagagattgtgaaagt acatcagacagaatcacattttgatagcattcacttcactcagatgcaaacttttcagtgactataaaagtcataaaataataacattaaaaagcaaa taaattagcgagagaattttttgacaaaaagaaagaagagtgatagagaagaagggaatgcttgaaaggattttgcatttatcttaATCACCGTCTTCGA GAAGACGAACCATGGCGCCAGTTTCAGAATCCAAGTTTCTAATATAGTTCATCACAATGTTGACGTTGGTCCAACCTCCGGCTTGCATAATCTCTGGGAT GGAAACTCCAGCGCGAGCCATGTCACGGGCAGCTCCGACACGGGCGGAATGTCCAGACCAAGCCAAGTAACGTTGTCCGGAATCATCCTTGGCTCCGTAG ATGAGACGGTGGGTAGCTTCGAAGATTCctgaaaatttattttcagcttattcttagctaatatgttgtttaaacttacCTTCAAGAGCTCGAGTCGAGA GTTGTGATGTTGCACTCGGGGCAGCAACTCCGTTCTTGCGAACACGACAGAACAGGTAGTTGTTTGGATCATCGGCGACTCCGGAAACCGAAATCCAGCG СTСAACGAGCTTGGTAACTCCAAGGGAGAGCGCTTTTTCGACTCCGGCAGTCGAGACCAGCGTTTTTGTACGTCCGATGTGGATGAGCATTCTTCCTCCG TCTGTGCGACTAATATCCTTGACGCGAATGCGGGCAATTTCGGCGATACGGAGAAGTGTGTTGTAAGCAATTCCGAGGAAGGCGAGGTTTCGGATGTCCT GGCAACGATCGGAATTTTCCATAAGAGAACGGACCTGATCGAAGTCGGTTctgaaaatttcgtcaagtcttaggattgaatacattaatatttaaactta сСТTTCGAAGGCGAGGGCTTGCTTGGCTCTCTCTCCAGCATCAACATTTTCCTTGCGGATACGTCTCATTACGAGAGATACGGCATTAGAATCTGATGGG CGTGGAAGTCCAGATCGGCGATGGAGCATATTGAGCTGTCCGAGATGTTGTTGGATCGTCTTCACCGCCAATCCACGAGCTTGGAGGTAGAGCAAGTAGT CACGAACGTCTTCTGGCTCGGCTGGGAACCACTTGCGGTTGTTAAGCTTGCACCAGGCAGCCCAAGAACGGCACACTGAGAGAAGCATCTTCCAGGTGTG CTCGGAGAAGGCTTGTCTGTCACGGAACATATCCATGAGGTTCTTGCGAACTTCATCACTTGTCGCGTCAACTGGAAGTGCTGGAAGATTTTGATGAACA GTGAGAAGATTTGACATattttcgaagttttttagatgcactagaacaaagcgtgttggcttcctctgagcccgctttccttatatacccgcattctgca gccttacagaatgttctagaaggtcctagatgcattcgtttgaaaatactcccggtgggtgcaaagagacgcagacggaaaatgtatctgggtctcttta ttgtgtacactacttttccatgtaccgaatgtgagtcgccctccttttgcaacaagcagctcgaatgttctagaaaaaggtggaaaatagtataaatacc gttgaaaataaataccgaacaacatttgctctaattgtgaaattagaaatcttcaaactataatcatgtcactttaccactatttccgtccagctcaacg ttccgtttttggtgatcATTTTTGCTTTCGTCGTAAATCTACACACGCGTCTCTTCCGTGCGAGAGTCCAAGCCAGCAGCCAAATTCGTTGACTGAGTAT TCAACGTTTATACGTTGTCGGCAACGAGAAATAGGAAAATGCATCGGGAAATGTTCTTTTTTCGATTTTTTCCAAGGTTTTGACAAATTTTACCACGAAT TTTGCTATGTTTTCAATTAAAAAATATGTTATTCAACTGTTTCTATGAGGAAAATAAGGCTTTGCATGTAATTTTCTTATTCAGCATAATTTTTAATTAA TTTGAATTTTCTGTCCTAACGTTTATTTTGTTTTCTTGGTTATGACTGATCTGAAATTAATTTTTGAATTTTAAGGTAATATGTCAGGCGGTGCCGCAAG TTTGTACAAAAAAGCAGGCTCCATGAAAAAGCCTGAACTCACCGCGACGTCTGTCGAGAAGTTTCTGATCGAAAAGTTCGACAGCGTCTCCGACCTGATG CAGCTCTCGGAGGGCGAAGAATCTCGTGCTTTCAGCTTCGATGTAGGAGGGCGTGGATATGTCCTGCGGGTAAATAGCTGCGCCGATGGTTTCTACAAAG ATCGTTATGTTTATCGGCACTTTGCATCGGCCGCGCTCCCGATTCCGGAAGTGCTTGACATTGGGGAATTCAGCGAGAGCCTGACCTATTGCATCTCCCG CCGTGCACAGGGTGTCACGTTGCAAGACCTGCCTGAAACCGAACTGCCCGCTGTTCTGCAGCCGGTCGCGGAGGCCATGGATGCGATCGCTGCGGCCGAT CTTAGCCAGACGAGCGGGTTCGGCCCATTCGGACCGCAAGGAATCGGTCAATACACTACATGGCGTGATTTCATATGCGCGATTGCTGATCCCCATGTGT ATCACTGGCAAACTGTGATGGACGACACCGTCAGTGCGTCCGTCGCGCAGGCTCTCGATGAGCTGATGCTTTGGGCCGAGGACTGCCCCGAAGTCCGGCA CCTCGTGCACGCGGATTTCGGCTCCAACAATGTCCTGACGGACAATGGCCGCATAACAGCGGTCATTGACTGGAGCGAGGCGATGTTCGGGGATTCCCAA TACGAGGTCGCCAACATCTTCTTCTGGAGGCCGTGGTTGGCTTGTATGGAGCAGCAGACGCGCTACTTCGAGCGGAGGCATCCGGAGCTTGCAGGATCGC CGCGGCTCCGGGCGTATATGCTCCGCATTGGTCTTGACCAACTCTATCAGAGCTTGGTTGACGGCAATTTCGATGATGCAGCTTGGGCGCAGGGTCGATG CGACGCAATCGTCCGATCCGGAGCCGGGACTGTCGGGCGTACACAAATCGCCCGCAGAAGCGCGGCCGTCTGGACCGATGGCTGTGTAGAAGTACTCGCC GATAGTGGAAACCGACGCCCCAGCACTCGTCCGAGGGCAAAGGAATAGACCCAGCTTTCTTGTACAAAGTGGGTCCAATTACTCTTCAACATCCCTACAT GСТСТТТСТСССТGTGСТСССАСССССТАТTTTTGTTATTATCAAAAAACTTCTCTTAATTTCTTTGTTTTTTAGCTTCTTTTAAGTCACCTCTAACAAT AAATTGTGTAGATTCAAAAATAGAATTAATTCGTAATAAAAAGTCGAAAAAAATTGTGCTCCCTCCCCCCATTAATAATAATTCTATCCCAAAATCTAC ACAATGTTCTGTGTACACTTCTTATGTTTTTTACTTCTGATAAATTTTTTTGAAACATCATAGAAAAAACCGCACACAAAATACCTTATCATATGTTACG TTTCAGTTTATGACCGCAATTTTTAATAACTTCGTATAGCATACATTATACGAAGTTATt t cagGGAGCCGGATCTGagctcttaagacgaagtgagtt
 tttaagttcattcacaatatcatgaatctctcgtcctttggtttccggtaagtagcgaaataatataagcatacttataaatgaaggaattgaatataga a tactacgatgtttttgaggtaccagttcagaggatataaaccacgaaattggaccaactccagttctgaaatttcattattcgattaaatcaaaata tatttgaaaaacctcacccataagtataaccgtagatgatcaatgcaactaggcatccgtatt catcgggtcaatcagaatacgtatttt gcgaagaa
tacgaatgcaattagagctaaattattgagaaatgtgaagagaaggagaagcttgcgtcgaccaactctgtaaacttattcatacaattttgtcttcaaa
 agtaattgttccagaaacataagctaaacc

Figure S1. (A) Schematic of landing pad insertion vector pMS74 and (B) corresponding colorcoded sequence
bioRxiv preprint doi: https://doi.org/10.1101/2020.05.26.117390; this version posted May 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
A.

Synthetic mKate2 Gene w/ Introns 2723.. 3571
B.

1 TAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGT
101 CAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTT
201 AGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCA 301 CTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAACCACCGCTACCA
bioRxiv preprint doi: https://doi.org/10.1101/2020.05.26.117390; this version posted May 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

[^0]Figure S2. (A) Schematic of cargo insertion vector pMS81 and (B) corresponding color-coded sequence

Figure S3. Comparison of integration broods. A) Distribution of injection marker (mKate2) positive broods based on the number of m Kate 2 positive F1 individuals per brood. Broods with a small number of positive individuals are most common; however, there are 'jackpot' injections showing large numbers of individuals. B) Broods with a large number of mKate2 positive F1 individuals are more likely to have integration events, both correct and incorrect. However, when controlling for the total number of mKate2 positive individuals, \mathbf{C}) each brood with positive F1s is nearly equally likely to have integration events. Thus, while jackpot broods may have more transgenics, having more transgenics spread across several plates is similarly sufficient for identifying successful integration events.

Figure S4. Representative images of eft-3p::wrmScarlet::tbb-2 3'UTR (pZCS16) array individuals. Synchronized young adults were injected with a mix containing $3 \mathrm{ng} / \mu \mathrm{p}$ pCS16 $91.25 \mathrm{ng} / \mu \mathrm{l}$ total DNA. A) Composite image of 30 ms DIC and 40 ms mCherry filter at 100 x total magnification. B) Composite image 60 ms DIC and mCherry filter at 200X total magnification.

Figure S5. Injection of a CRE expressing plasmid results in the efficient removal of the hygromycin resistance marker gene. Co-marker expression marker positive F1 progeny (upper panel) were PCR screened for removal of the hygromycin resistance gene ("floxed" product). Four F2 progeny (lower panel) from three of the F1 broods with the weakest wild-type signal ("full insert" product), were then screened to confirm homozygous removal.

Table S1. Strains generated for this study

Strain	Background	Genotype
PX692	N2	fxIs $6[$ synthetic guide1:: $\Delta H Y G R::$ unc-54 3' UTR $::$ LoxP, II:8420157]
PX693	N2	fxIs $7[$ synthetic guide $2:: \Delta H Y G R::$ unc-54 3' UTR $::$ LoxP, II:8420157]
PX694	N2	fxIs $8[$ synthetic guide $3:: \Delta H Y G R::$ unc-54 3' UTR $::$ LoxP, II:8420157]
PX695	N2	fxIs $9[$ synthetic guide $4:: \Delta H Y G R::$ unc-54 3' UTR:::LoxP, II:8420157]
PX696	N2	fxIs10[synthetic guide5:: $\mathrm{AHYGR}::$ unc-54 3' UTR:: LoxP, II:8420157]
PX697	N2	fxIs11[synthetic guide6:: ΔH GYR::unc-54 3' UTR:: LoxP, II:8420157]

Table S2. Plasmids generated for this study

Plasmid	Information
pMS8	All-in-one plasmid targeting guide site at Chromosome II:8420188-8420210 (equivalent to pDD122)
pMS59	All-in-one plasmid targeting guide site in PX692
pMS76	All-in-one plasmid targeting guide site in PX693
pMS77	All-in-one plasmid targeting guide site in PX694
pMS78	All-in-one plasmid targeting guide site in PX695
pMS79	All-in-one plasmid targeting guide site in PX696
pMS80	All-in-one plasmid targeting guide site in PX697
pMS2	Multiple cloning site flanked by homology arms
pMS4	SEC flanked by homology arms
pMS70	Repair template for insertion of landing pad into PX692 (includes SEC)
pMS71	Repair template for insertion of landing pad into PX693 (includes SEC)
pMS72	Repair template for insertion of landing pad into PX694 (includes SEC)
pMS73	Repair template for insertion of landing pad into PX695 (includes SEC)
pMS74	Repair template for insertion of landing pad into PX696 (includes SEC)
pMS75	Repair template for insertion of landing pad into PX697 (includes SEC)
pMS12	rpl-28p $::$ mKate2::unc-54 3'UTR reporter flanked by homology arms
pMS81	rpl-28p::mKate2::unc-54 3'UTR reporter in split HygR insertion vector
pZCS52	sqt-1(e1350) in split HygR insertion vector
pZCS16	eft-3p $::$ wrmScarlet::tbb-2 3'UTR reporter
pZCS23	eft-3p $:: N L S:: C R E:: t b b-23^{\prime}$ UTR (CRE expression plasmid)

Table S3. Primers used in this study

Name	Sequence (5'->3')	Purpose
MS276	TTTGAGTAGAGCACTCAGGGTTTTAGAGCT AGAAATAGCAAGT	Mutagenic primer for generation of pMS59
MS344	ACAGTGGACATCTAAGCGGGTTTTAGAGCT AGAAATAGCAAGTTAAAATAAGGC	Mutagenic primer for generation of pMS76
MS362	TCCAGCGGCAGATCGGCGGGTTTTAGAGCT AGAAATAGCAAGT	Mutagenic primer for generation of pMS77
MS348	AGTTCTGTAATTCAGCATAGTTTTAGAGCT AGAAATAGCAAGTTAAAATAAGGC	Mutagenic primer for generation of pMS78
MS363	GACAGTCCTGCCGAGGTGGGTTTTAGAGCT AGAAATAGCAAGT	Mutagenic primer for generation of pMS79
MS352	GGGCCTGTGAAATACACAGGTTTTAGAGCT AGAAATAGCAAGTTAAAATAAGGC	Mutagenic primer for generation of pMS80
MS18	GCCTGCAGGAGCTCTTAAGACGAAGTGAGT TTGCTACCATC	Forward mutagenic primer for generation of pMS2

MS359	GTAGACGTAACGGTCCTTGTAGAATCCGTC GGCG	Reverse primer for amplification of $r p s-0 p$ and N -terminal HYGR
MS354	GACGGATTCTACAAGGACCGTTACGTCTAC CGTCA	Forward primer for amplification of internal HYGR
MS271	GGAGAAAATACCGCATATTGGGAGTCTCCG AACA	Reverse primer for amplification of internal HYGR
MS272	CGGAGACTCCCAATATGCGGTATTTTCTCCT TACG	Forward primer for amplification of pUC57 backbone
MS273	TAGCCTAAACGAGTGAGCTTGGCGTAATCA TGGTC	Reverse primer for amplification of pUC57 backbone
MS262	TGATTACGCCAAGCTCACTCGTTTAGGCTA TTCC	Forward primer for truncated genomic homology arm
MS355	CCTCGAGTGCTCTACTCAAATCCTGCAGG	Reverse primer for truncated genomic homology arm
ZCS282	CTTCGTATAGCATACATTATACGAAGTTAT ATTTTTGCTTTCGTCGTAAATCTACACACG	Forward primer for amplification of empty split HygR insertion vector/ 3' homology arm
ZCS168	TGAGAATGGAAGATAGACAATCGAGGGCA GCCTGCAGGCGGTCTTCTG	Reverse primer for amplification of empty split HygR insertion vector/5' homology arm
ZCS71	CTGCCCTCGATTGTCTATCTTCC	Forward primer for amplification of sqt-1(e1350) for insertion into split HygR insertion vector/sqt-1 fragment (2 and 6pc)
MS460	CTTCGTATAATGTATGCTATACGAAGTTATC TGAATCTCAAATATTTTATTAGAAAACACC AAC	Reverse primer for amplification of sqt-1(e1350) for insertion into split HygR insertion vector/ fragment (2 and 6pc)
ZCS237	CGGGTACCGAGCTCGAATTC	Forward primer for amplification of pUC19 backbone
ZCS238	GGGATCCTCTAGAGTCGAC	Reverse primer for amplification of pUC19 backbone
ZCS249	GGTCGACTCTAGAGGATCCCGCACCTTTGG TCTTTTATTGTC	Forward primer for amplification of eft-3p
ZCS270	TTTTTCTAGAGCAAAGTGTTTC	Reverse primer for amplification of eft-3p
ZCS271	AACACTTTGCTCTAGAAAAAATGGTCAGCA AGGGAGAG	Forward primer for amplification of wrmScarlet
ZCS272	TTGCATTTATCACTAGTTTACTTGTAGAGCT CGTCCATTC	Reverse primer for amplification of wrmScarlet
ZCS269	TAAACTAGTGATAAATGCAAAATC	Forward primer for amplification of $t b b-23^{\prime} U T R$
ZCS246	GAATTCGAGCTCGGTACCCGTGAGACTTTT TTCTTGGC	Reverse primer for amplification of $t b b-23^{\prime} U T R$
ZCS242	GACGGGACATTTTTTCTAGAGCAAAGTGTT TC	Reverse primer for amplification of eft-3p with NLS overlaps
ZCS243	TCTAGAAAAAATGTCCCGTCGTCGTAAG	Forward primer for amplification of NLS: :CRE
ZCS244	TATCACTAGTTTAGTCTCCGTCCTCAAG	Reverse primer for amplification of $N L S: \because C R E$
ZCS245	CGGAGACTAAACTAGTGATAAATGCAAAAT CC	Forward primer for amplification of $t b b-23^{\prime} U T R$ with CRE overlaps
MS59	GCTTATCTCGAATGAGACCCTTG	Forward primer for PCR confirmation of landing pad insertion and Cre removal of HygR/sequencing and sqt-1 integration amplification
MS93	GGAGGCGAACCTAACTGTAAA	Reverse primer for PCR confirmation of landing pad insertion
MS58	GCCCAGGAGAACACGTTAG	Sequencing primer for landing pad insertion and sqt-1 integration amplification \& Sanger sequencing
MS291	AGTGCATTTGAAAGGATAACGG	Forward primer for PCR confirmation of rpl-28p::mKate2 insertion and for sqt-1 integration amplification and Sanger sequencing
MS119	CCTCGTATGGCTTTCCCTCT	Reverse primer for PCR confirmation of rpl-28p::mKate2 insertion
MS337	TTAAACTTACAGCTCCTGCACT	Wt primer for for PCR confirmation of rpl-28p::mKate2 insertion
MS181	AGTCTACTACGTCGACCGTC	Reverse primer for PCR confirmation of Cre removal of HygR
MS260	ACGTCTACCACTGGCAAAC	Wt primer for PCR confirmation of Cre removal of HygR and for Sanger sequencing of sqt-1 integration
MS452B	CATAACACGCAAGTTTTACAGAC	Reverse primer for amplification of sqt-1 fragment (6pc)/complexing PCR with 5 ' homology arm (6 pc)
MS453B	CAGAGATGTCTGTAAAACTTGC	Forward primer for amplification of sqt-1 fragment (6pc)
MS454	CTTGCTAGATCTTCCGATGA	Reverse primer for amplification of sqt-1 fragment (6pc)
MS455	GACATAGTTGTCATCGGAAGATCT	Forward primer for amplification of sqt-1 fragment (6pc) and for Sanger sequencing of sqt-1 integration
ZCS169	ACACCGTCAAGTCCTGGAACT	Reverse primer for amplification of sqt-1 fragment (2 and $6 \mathrm{pc}) /$ complexing PCR with 5 ' homology arm (2 pc) and for Sanger sequencing of sqt-1 integration
ZCS170	ACTCGACGGAGTTCCAGGA	Forward primer for amplification of sqt-1 fragment (2 and $6 \mathrm{pc}) /$ complexing PCR with 3 ' homology arm (2 pc) and for Sanger sequencing of sqt-1 integration
MS456	TGGCTCTCCGATCTTTCCGA	Reverse primer for amplification of sqt-1 fragment (6pc) and for Sanger sequencing of sqt- 1 integration
MS457	TCCGGTCAAATCGGAAAGATC	Forward primer for amplification of sqt-1 fragment (6pc)
MS458	CTTTCCTGGTCTTCCGTCTG	Reverse primer for amplification of sqt-1 fragment (6pc)

MS459	GAGACTGGACCAGACGGAAG	Forward primer for amplification of sqt-1 fragment (6pc)/complexing PCR with 3' homology arm (2 pc) and for Sanger sequencing of sqt-1 integration
ZCS167	CACTCGTTTAGGCTATTCCCCTATT	Forward primer for amplification 5' homology arm/complexing PCR with sqt-1 fragment
ZCS172	TATTGGGAGTCTCCGAACATGGC	Reverse primer for amplification 3' homology arm/complexing PCR with sqt-1 fragment
MS92	GTGAACAAGACTCGAGCAAATC	Forward primer for amplification of 3' homology arm for sanger sequencing
ZCS275	CGTCGGCGCAGGAGTT	Forward primer for amplification of sqt- 1 integration
ZCS154	CGTCGGCGCAGGAGTTG	Forward primer for amplification of sqt- 1 integration and for Sanger sequencing
MS247	CGTTGAATACTCAGTCAACG	For Sanger sequencing of sqt-1 integration

References:

Arribere J. A., R. T. Bell, B. X. Fu, K. L. Artiles, P. S. Hartman, et al., 2014 Efficient MarkerFree Recovery of Custom Genetic Modifications with CRISPR/Cas9 in Caenorhabditis elegans. Genetics 198: genetics.114.169730. https://doi.org/10.1534/genetics.114.169730

Beumer K. J., J. K. Trautman, A. Bozas, J.-L. Liu, J. Rutter, et al., 2008 Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases. Proc National Acad Sci 105: 19821-19826. https://doi.org/10.1073/pnas. 0810475105

Bindels D. S., L. Haarbosch, L. van Weeren, M. Postma, K. E. Wiese, et al., 2016 mScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nat Methods 14: 53-56. https://doi.org/10.1038/nmeth. 4074

Böttcher R., M. Hollmann, K. Merk, V. Nitschko, C. Obermaier, et al., 2014 Efficient chromosomal gene modification with CRISPR/cas9 and PCR-based homologous recombination donors in cultured Drosophila cells. Nucleic Acids Res 42: e89-e89. https://doi.org/10.1093/nar/gku289

Chen C., L. A. Fenk, and M. de Bono, 2013 Efficient genome editing in Caenorhabditis elegans by CRISPR-targeted homologous recombination. Nucleic Acids Res 41: e193-e193. https://doi.org/10.1093/nar/gkt805

Dickinson D. J., J. D. Ward, D. J. Reiner, and B. Goldstein, 2013 Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods 10: 10281034. https://doi.org/10.1038/nmeth. 2641

Dickinson D. J., A. M. Pani, J. K. Heppert, C. D. Higgins, and B. Goldstein, 2015 Streamlined Genome Engineering with a Self-Excising Drug Selection Cassette. Genetics 200: 10351049. https://doi.org/10.1534/genetics.115.178335

Doench J. G., N. Fusi, M. Sullender, M. Hegde, E. W. Vaimberg, et al., 2016 Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34: 184-191. https://doi.org/10.1038/nbt. 3437

Evans, T., 2006 Transformation and microinjection (April 6, 2006), WormBook, ed. The C. elegans Research Community WormBook, http://www.wormbook.org.https://doi.org/10.1895/ wormbook.1.108.1

Farboud B., and B. J. Meyer, 2015 Dramatic Enhancement of Genome Editing by CRISPR/Cas9 Through Improved Guide RNA Design. Genetics 199: 959-971. https://doi.org/10.1534/genetics.115.175166

Frøkjær-Jensen C., M. W. Davis, C. E. Hopkins, B. J. Newman, J. M. Thummel, et al., 2008 Single-copy insertion of transgenes in Caenorhabditis elegans. Nat Genet 40: 1375-1383. https://doi.org/10.1038/ng.248

Frøkjær-Jensen C., M. W. Davis, M. Ailion, and E. M. Jorgensen, 2012 Improved Mos1mediated transgenesis in C. elegans. Nat Methods 9: 117-118.
https://doi.org/10.1038/nmeth. 1865
Frøkjær-Jensen C., W. M. Davis, M. Sarov, J. Taylor, S. Flibotte, et al., 2014 Random and targeted transgene insertion in Caenorhabditis elegans using a modified Mos1 transposon. Nature Methods 11: nmeth.2889. https://doi.org/10.1038/nmeth. 2889

Giordano-Santini R., S. Milstein, N. Svrzikapa, D. Tu, R. Johnsen, et al., 2010 An antibiotic selection marker for nematode transgenesis. Nat Methods 7: 721-723. https://doi.org/10.1038/nmeth. 1494

Hsu P. D., D. A. Scott, J. A. Weinstein, F. A. Ran, S. Konermann, et al., 2013 DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31: 827-832. https://doi.org/10.1038/nbt. 2647

Kasimatis K. R., M. J. Moerdyk-Schauwecker, and P. C. Phillips, 2018 Auxin-Mediated Sterility Induction System for Longevity and Mating Studies in Caenorhabditis elegans. G3 Genes Genomes Genetics 8: g3.200278.2018. https://doi.org/10.1534/g3.118.200278

Kemp B. J., J. Hatzold, L. A. Sternick, J. Cornman-Homonoff, J. M. Whitaker, et al., 2007 In vivo construction of recombinant molecules within the Caenorhabditis elegans germ line using short regions of terminal homology. Nucleic Acids Res 35: e133-e133. https://doi.org/10.1093/nar/gkm857

Kim H., T. Ishidate, K. S. Ghanta, M. Seth, D. Conte, et al., 2014 A Co-CRISPR Strategy for Efficient Genome Editing in Caenorhabditis elegans. Genetics 197: genetics.114.166389. https://doi.org/10.1534/genetics.114.166389

McDiarmid T. A., V. Au, A. D. Loewen, J. Liang, K. Mizumoto, et al., 2018 CRISPR-Cas9 human gene replacement and phenomic characterization in Caenorhabditis elegans to understand the functional conservation of human genes and decipher variants of uncertain significance. Dis Model Mech 11: dmm036517. https://doi.org/10.1242/dmm. 036517

Mello C., J. Kramer, D. Stinchcomb, and V. Ambros, 1991 Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. The EMBO journal 10: 3959-70.

Mello C., and A. Fire, 1995 Methods in Cell Biology. Methods Cell Biol 48: 451-482. https://doi.org/10.1016/s0091-679x(08)61399-0

Mouridi S., C. Lecroisey, P. Tardy, M. Mercier, A. Leclercq-Blondel, et al., 2017 Reliable CRISPR/Cas9 Genome Engineering in Caenorhabditis elegans Using a Single Efficient sgRNA and an Easily Recognizable Phenotype. G3: Genes, Genomes, Genetics 7: 14291437. https://doi.org/10.1534/g3.117.040824

Obinata H., A. Sugimoto, and S. Niwa, 2018 Streptothricin acetyl transferase 2 (Sat2): A dominant selection marker for Caenorhabditis elegans genome editing. Plos One 13: e0197128. https://doi.org/10.1371/journal.pone. 0197128

Paix A., Y. Wang, H. E. Smith, C.-Y. S. Lee, D. Calidas, et al., 2014 Scalable and Versatile Genome Editing Using Linear DNAs with Microhomology to Cas9 Sites in Caenorhabditis elegans. Genetics 198: 1347-1356. https://doi.org/10.1534/genetics.114.170423

Paix A., H. Schmidt, and G. Seydoux, 2016 Cas9-assisted recombineering in C. elegans : genome editing using in vivo assembly of linear DNAs. Nucleic Acids Res 44: gkw502. https://doi.org/10.1093/nar/gkw502

Philip N. S., F. Escobedo, L. L. Bahr, B. J. Berry, and A. P. Wojtovich, 2019 Mos1 ElementMediated CRISPR Integration of Transgenes in Caenorhabditis elegans. G3 Genes Genomes Genetics 9: 2629-2635. https://doi.org/10.1534/g3.119.400399

Praitis V., E. Casey, D. Collar, and J. Austin, 2001 Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genetics 157: 1217-26.

Radman I., S. Greiss, and J. W. Chin, 2013 Efficient and Rapid C. elegans Transgenesis by Bombardment and Hygromycin B Selection. Plos One 8: e76019. https://doi.org/10.1371/journal.pone. 0076019

Seidel H. S., M. Ailion, J. Li, A. van Oudenaarden, M. V. Rockman, et al., 2011 A Novel Sperm-Delivered Toxin Causes Late-Stage Embryo Lethality and Transmission Ratio Distortion in C. elegans. Plos Biol 9: e1001115. https://doi.org/10.1371/journal.pbio. 1001115

Semple J. I., R. Garcia-Verdugo, and B. Lehner, 2010 Rapid selection of transgenic C. elegans using antibiotic resistance. Nat Methods 7: 725-727. https://doi.org/10.1038/nmeth. 1495

Semple J. I., L. Biondini, and B. Lehner, 2012 Generating transgenic nematodes by bombardment and antibiotic selection. Nat Methods 9: 118-119. https://doi.org/10.1038/nmeth. 1864

Silva-García C. G., A. Lanjuin, C. Heintz, S. Dutta, N. M. Clark, et al., 2019 Single-Copy Knock-In Loci for Defined Gene Expression in Caenorhabditis elegans. G3 Genes Genomes Genetics 9: g3.400314.2019. https://doi.org/10.1534/g3.119.400314

Stinchcomb D., J. Shaw, S. Carr, and D. Hirsh, 1985 Extrachromosomal DNA transformation of Caenorhabditis elegans. Molecular and Cellular Biology 5: 3484-3496.
https://doi.org/10.1128/mcb.5.12.3484
Waaijers S., V. Portegijs, J. Kerver, B. B. L. G. Lemmens, M. Tijsterman, et al., 2013
CRISPR/Cas9-targeted mutagenesis in Caenorhabditis elegans. Genetics 195: 1187-91. https://doi.org/10.1534/genetics.113.156299

Ward J. D., 2015 Rapid and Precise Engineering of the Caenorhabditis elegans Genome with Lethal Mutation Co-Conversion and Inactivation of NHEJ Repair. Genetics 199: 363-377. https://doi.org/10.1534/genetics.114.172361

Woglar A., K. Yamaya, B. Roelens, A. Boettiger, S. Kohler, et al., 2019 Quantitative Cytogenetics Reveals the Longitudinal Architecture of Meiotic Chromosome Axes. Biorxiv 724997. https://doi.org/10.1101/724997

Xu H., T. Xiao, C.-H. Chen, W. Li, C. A. Meyer, et al., 2015 Sequence determinants of improved CRISPR sgRNA design. Genome Res 25: 1147-1157.
https://doi.org/10.1101/gr.191452.115
Yoshimura J., K. Ichikawa, M. J. Shoura, K. L. Artiles, I. Gabdank, et al., 2019 Recompleting the Caenorhabditis elegans genome. Genome Res 29: 1009-1022.
https://doi.org/10.1101/gr.244830.118

[^0]: 3401 cagACCACCTACCGTTCCAAGAAGCCAGCCAAGAACCTCAAGATGCCAGGAGTCTACTACGTCGACCGTCGTCTTGAGCGTATCAAGGAGGCCGACAAGG 3501 AGACCTACGTCGAGCAACACGAGGTCGCCGTCGCCCGTTACTGCGACCTCCCATCCAAGCTCGGACACCGTTAAGTCCAATTACTCTTCAACATCCCTAC 3601 ATGCTCTTTCTCССTGTGCTCССАСССССTATTTTTGTTATTATCAAAAAACTTCTCTTAATTTCTTTGTTTTTTAGCTTCTTTTAAGTCACCTCTAACA 3701 ATGAAATTGTGTAGATTCAAAAATAGAATTAATTCGTAATAAAAAGTCGAAAAAAATTGTGCTCCCTCCCCCCATTAATAATAATTCTATCCCAAAATCT 3801 ACACAATGTTCTGTGTACACTTCTTATGTTTTTTACTTCTGATAAATTTTTTTGAAACATCATAGAAAAAACCGCACACAAAATACCTTATCATATGTTA 3901 CGTTTCAGTTTATGACCGCAATTTTTACTTAAGTTCAATCCGGAAAGgtaagtttaaaATAACTTCGTATAGCATACATTATACGAAGTTATtttcagGG 4001 AGAGCAAAAGATTTTTGCTTTCGTCGTAAATCTACACACGCGTCTCTTCCGTGCGAGAGTCCAAGCCAGCAGCCAAATTCGTTGACTGAGTATTCAACGT 4101 TTATACGTTGTCGGCAACGAGAAATAGGAAAATGCATCGGGAAATGTTCTTTTTTCGATTTTTTCCAAGGTTTTGACAAATTTTACCACGAATTTTGCTA 4201 TGTTTTCAATTAAAAAATATGTTATTCAACTGTTTCTATGAGGAAAATAAGGCTTTGCATGTAATTTTCTTATTCAGCATAATTTTTAATTAATTTGAAT 4301 TTTCTGTCCTAACGTTTATTTTGTTTTCTTGGTTATGACTGATCTGAAATTAATTTTTGAATTTTAAGGTAATatgaaaaaacccgagttgaccgccaca 4401 tccgtagagaagttcctcatcgagaagttcgactccgtctccgacctcatgcaactctccgagggagaggagtcccgtgccttctccttcgacgtcggag 4501 gacgtggatacgtcctccgtgtcaactcctgcgccgacggattctacaaggaccgttacgtctaccgtcacttcgcctccgccgccctcccaatcccaga 4601 ggtcctcgacatcggagagttctccgagtccctcacctactgcatctcccgtcgtgcccaaggagtcaccctccaagacctcccagagaccgagctccca 4701 gccgtcctccaaccagtcgccgaggccatggacgccatcgccgccgccgacctctcccaaacctccggattcggaccattcggaccacaaggaatcggac 4801 aatacaccacctggcgtgacttcatctgcgccatcgccgacccacacgtctaccactggcaaaccgtcatggacgacaccgtctccgcctccgtcgccca 4901 agccctcgacgagctcatgctctgggccgaggactgcccagaggtccgtcacctcgtccacgccgacttcggatccaacaacgtcctcaccgacaacgga 5001 cgtatcaccgccgtcatcgactggtccgaggccatgttcggagactcccaataTGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATA 5101 TGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCC 5201 CGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGACGAAAGGGCCTCGT 5301 GATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTA 5401 TTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATT 5501 TCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGG 5601 TGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTT 5701 CTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAG 5801 TCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAAC 5901 GATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCA 6001 AACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAA 6101 TAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGA

