
The Homo-Edit Distance Problem
Maren Brand1

Algorithmic Bioinformatics, Heinrich Heine University Düsseldorf, Germany
maren.brand@hhu.de

Nguyen Khoa Tran1

Algorithmic Bioinformatics, Heinrich Heine University Düsseldorf, Germany
nguyen.tran@hhu.de

Philipp Spohr
Algorithmic Bioinformatics, Heinrich Heine University Düsseldorf, Germany
philipp.spohr@hhu.de

Sven Schrinner
Algorithmic Bioinformatics, Heinrich Heine University Düsseldorf, Germany
sven.schrinner@hhu.de

Gunnar W. Klau2

Algorithmic Bioinformatics, Heinrich Heine University Düsseldorf, Germany
Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Germany
gunnar.klau@hhu.de

Abstract
We consider the homo-edit distance problem, which is the minimum number of homo-deletions or
homo-insertions to convert one string into another. A homo-insertion is the insertion of a string
of equal characters into another string, while a homo-deletion is the inverse operation. We show
how to compute the homo-edit distance of two strings in polynomial time: We first demonstrate
that the problem is equivalent to computing a common subsequence of the two input strings with
a minimum number of homo-deletions and then present a dynamic programming solution for the
reformulated problem.

2012 ACM Subject Classification Applied computing → Bioinformatics; Applied computing →
Molecular sequence analysis; Theory of computation → Dynamic programming

Keywords and phrases sequence analysis, homo-edit distance, string distance, sequence alignment,
common subsequence

Supplement Material Source code available at https://github.com/AlBi-HHU/homo-edit-distance.

Funding Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
under Germany’s Excellence Strategy – EXC 2048/1 – projectID 390686111.

Acknowledgements The authors thank Max Ried for supporting the release of the code as a Python
package.

1 Introduction

A homo-insertion is an insertion of a string of equal characters, which we also call a block,
into another string. A homo-deletion is the inverse operation, that is, the deletion of such a
block. We consider the following problem: Given two strings, what is the minimum number
of homo-insertions or homo-deletions needed to convert one into the other? We refer to this
number as the homo-edit distance. This distance is a generalization of the edit distance

1 Shared first authors.
2 Corresponding author.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.27.118273doi: bioRxiv preprint

mailto:maren.brand@hhu.de
https://orcid.org/0000-0002-4732-4294
mailto:nguyen.tran@hhu.de
https://orcid.org/0000-0002-6039-377X
mailto:philipp.spohr@hhu.de
https://orcid.org/0000-0002-6712-2198
mailto:sven.schrinner@hhu.de
https://orcid.org/0000-0002-6340-0090
mailto:gunnar.klau@hhu.de
https://github.com/AlBi-HHU/homo-edit-distance
https://doi.org/10.1101/2020.05.27.118273
http://creativecommons.org/licenses/by/4.0/

2 The Homo-Edit Distance Problem

between two strings, where only insertions and deletions are possible, which is also known as
the longest common subsequence distance [4, 1]. Unlike in the classic special case, where
blocks consist only of single characters, two blocks may merge to one after a homo-deletion.
For example, the homo-edit distance of ATA and the empty string is 2 and is achieved by
first deleting T and then the block AA. This property makes the homo-edit distance more
difficult to compute than the longest common subsequence distance.

We became aware of this problem as an exercise (6.40) in the classic textbook on
bioinformatics algorithms by Jones and Pevzner [3]. As this exercise caused our students a lot
of trouble we decided to look at it more closely within a thesis project [2]. We show how to
compute the homo-edit distance of two strings in polynomial time: We first demonstrate that
the problem is equivalent to computing a common subsequence of the two input strings with
a minimum number of homo-deletions and then present a dynamic programming solution for
the reformulated problem.

2 Problem Formulation

Let Σ be a finite alphabet. A string of length n ∈ N0 is defined as s = s1s2 . . . sn ∈ Σn. The
empty string is denoted as ε. We also write the length of a string s as |s|. A block is a string
consisting of identical characters, and we write ak for a block of length k and some a ∈ Σ.
We refer to substrings of s by

s(i, j) =
{
sisi+1 . . . sj if 1 ≤ i ≤ j ≤ n,
ε otherwise.

Subsequences sk1sk2 . . . skl
of s are characterized by their indices k1, k2, . . . , kl, where 1 ≤

k1 < k2 < . . . < kl ≤ n.
We define two string operations which we subsume as homo-operations: The first operation

inserts a block of length k into a string at a certain position. Let a ∈ Σ and let u = ak be
the block that is to be inserted into string s at position i, where 1 ≤ i ≤ n+ 1. We define
this homo-insertion as the string

Ii,u(s) = s1s2 . . . si−1u1 . . . uksi . . . sn.

The second operation deletes a block s(i, j) = a . . . a with a ∈ Σ and 1 ≤ i ≤ j ≤ n. We
define this homo-deletion as the string

Di,j(s) = s1s2 . . . si−1sj+1 . . . sn.

Note that both operations are reversible, that is, for each homo-insertion there is a
homo-deletion that can be applied to obtain the original string, and vice versa. For an
operation O we denote the corresponding reverse operation by O. Reversibility also holds for
chains of operations as the following lemma shows.

I Lemma 1. Consider a series of homo-operations O1, O2, . . . , Ok to convert a string s into
another string t, that is, t = (Ok ◦Ok−1 ◦ . . . ◦O1)(s). Then, also s = (O1 ◦O2 ◦ . . . ◦Ok)(t)
holds.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.27.118273doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.27.118273
http://creativecommons.org/licenses/by/4.0/

M. Brand and N.K. Tran and P. Spohr and S. Schrinner and G.W. Klau 3

Proof by induction.
Base case: k = 1
Case 1: t = O1(s) = Ii,u(s) is obtained by a homo-insertion of a string u = aj−i+1

into s at position i, where a ∈ Σ and j ≥ i. We reverse this homo-insertion by using a
homo-deletion of substring s(i, j) = u from t, i.e., Di,j(t) = O1(t) = O1(O1(s)) = s.
Case 2: t = O1(s) = Di,j(s) is obtained by a homo-deletion of a substring u = s(i, j)
from s. We reverse this homo-deletion by using a homo-insertion of u into t at position i,
i.e., Ii,u(t) = O1(t) = O1(O1(s)) = s.
Induction step: k → k + 1
Let s′ = (Ok ◦Ok−1 ◦ . . . ◦O1)(s) such that Ok+1(s′) = t.
Case 1: t = Ok+1(s′) = Ii,u(s′) is obtained by a homo-insertion of a string u = aj−i into
s′ at position i, where a ∈ Σ and j ≥ i. We reverse this homo-insertion by using a homo-
deletion of substring s′(i, j) = u from t, i.e., Di,j(t) = Ok+1(t) = Ok+1(Ok+1(s′)) = s′.
Case 2: t = Ok+1(s) = Di,j(s′) is obtained by a homo-deletion of a substring u = s′(i, j)
from s′. We reverse this homo-deletion by using a homo-insertion of u into t at position
i, i.e., Ii,u(t) = Ok+1(t) = Ok+1(Ok+1(s′)) = s′. J

We define the homo-edit distance H(s, t) between two strings s and t as the minimum
number of homo-operations to convert s into t. From Lemma 1 it follows that the homo-edit
distance is symmetric, that is, H(s, t) = H(t, s). We can now define the homo-edit distance
problem formally as follows:

I Problem 1 (Homo-Edit Distance Problem). Given two strings s and t, compute their
homo-edit distance H(s, t).

3 Problem Reformulation

In this section we point out that the homo-edit distance between two strings s and t can be
computed by considering homo-deletions only. For this we show that there exists a common
subsequence v of both strings such that converting both s and t into v needs a total of H(s, t)
homo-deletions.

I Lemma 2. Let s and t be two strings and let H(s, t) = k. Then there exists an optimal
series of homo-operations O1, O2, . . . , Ok to convert s into t, such that the first part of the
series contains only homo-deletions and the second part only homo-insertions.

Proof. Let O′1, O′2, . . . , O′k be any optimal series of homo-operations without the property
stated in Lemma 2, let O′i be a homo-insertion followed by a homo-deletion O′i+1, where
1 ≤ i ≤ k − 1, and let s[i] = (O′i−1 ◦ O′i−2 ◦ . . . ◦ O′1)(s). If there exists a homo-deletion
O′′i followed by a homo-insertion O′′i+1 such that (O′i+1 ◦O′i)(s[i]) = (O′′i ◦O′′i+1)(s[i]), then
the series O1, O2, . . . , Ok must exist as well, because we can repeatedly replace each homo-
insertion followed by a homo-deletion with a homo-deletion followed by a homo-insertion,
resulting in the same string.

Let u be the string that we want to insert by applying O′i and let w be the string that we
want to delete by applying O′i+1. We consider two cases:

Case 1: w consists of a substring of s[i] only.
Let p1 be the position in s[i] where we want to insert u, and let p2 be the position of w1
in s[i]. We can safely delete w first and then insert u either at position p1, if p1 ≤ p2, or
at position p1 − |w|, if p1 > p2.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.27.118273doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.27.118273
http://creativecommons.org/licenses/by/4.0/

4 The Homo-Edit Distance Problem

Case 2: w consists of a substring of u as well as a substring of s[i].
Let a ∈ Σ, let u = ac1 , and let w = ac2 , such that after applying both homo-operations,
we either inserted or deleted ac1−c2 , depending on whether c1 > c2 or c1 ≤ c2. This
means we could use one instead of two homo-operations for inserting or deleting ac1−c2 ,
or even zero if c1 = c2. Thus, the series O′1, O′2, . . . , O′k would not be optimal, which is a
contradiction. J

I Lemma 3. Let s and t be two strings. Then H(s, t) = k if and only if there is a common
subsequence v of s and t, such that it takes a total of k homo-deletions to convert s and t
into v.

Proof. From Lemma 2 we know that for converting s into t, there exists a series of homo-
operations O1, O2, . . . Ok where the first i homo-operations of this series include homo-
deletions only and where the last k − i homo-operations include homo-insertions only, where
0 ≤ i ≤ k. Let v be the string that we obtain by performing these homo-deletions on s, that
is, v = (Oi ◦Oi−1 ◦ . . . ◦O1)(s). Then v is a subsequence of s by definition. From Lemma 1
we know that we can reverse the homo-insertions of the series t = (Ok ◦Ok−1 ◦ . . . ◦Oi+1)(v)
such that v = (Oi+1 ◦ Oi+2 ◦ . . . ◦ Ok)(t). Thus, v is also a subsequence of t, and we can
obtain v by a total of k homo-deletions. J

Lemma 3 implies that we can safely disregard homo-insertions for computing homo-edit
distances. In the next section we present an algorithm that computes the homo-edit distance
of two strings by finding the minimum number of homo-deletions to convert both into a
common subsequence.

4 Dynamic Programming Algorithm

This section contains our algorithmic contributions to the problem, their correctness proofs,
a note on backtracking and a running time analysis.

4.1 Algorithms
We compute the homo-edit distance between two strings s and t with a two-part dynamic
programming (DP) algorithm: The first part is a precomputation step that computes and
stores the homo-edit distance between every substring of both s and t and the empty string
ε. The second part is the main algorithm that, similar to classic textbook approaches for
sequence alignment, computes a DP matrix containing the homo-edit distances between all
prefixes of s and t. For better understanding we explain the main algorithm first.

Given two strings s and t, let v be an optimal common subsequence, that is, v satisfies
the conditions of Lemma 3. Let m = |s| and n = |t|. We compute an (m + 1) × (n + 1)
matrix d, where each entry di,j corresponds to the homo-edit distance between the prefixes
s(1, i) and t(1, j), with the following recurrence:

d0,0 = 0

di,j = min

di−1,j−1 if si = tj ,

min
0≤k<i

{dk,j +H(s(k + 1, i), ε)} ,

min
0≤l<j

{di,l +H(t(l + 1, j), ε)}

 (1)

We start by initializing d0,0 with 0. For all other entries we proceed, e.g., from top to
bottom (i = 0, 1, . . . ,m) and from left to right (j = 0, 1, . . . , n), and consider three cases for
the homo-edit distance between s(1, i) and t(1, j), among which we pick the minimum:

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.27.118273doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.27.118273
http://creativecommons.org/licenses/by/4.0/

M. Brand and N.K. Tran and P. Spohr and S. Schrinner and G.W. Klau 5

1. The first case is given if we have a match, i.e., si = tj . In this case, the common character
could be part of an optimal common subsequence v. As we would neither delete si nor tj
by a homo-deletion, we have di,j = di−1,j−1.

2. The next case comprises all possibilities that involve deleting si from s, meaning that
this character would not be part of an optimal subsequence v. More precisely, for di,j

we consider each entry dk,j of the same column j in a row k from above plus the cost of
deleting s(k + 1, i). We will show how to compute the homo-edit distances between all
substrings of a string and the empty string ε later.

3. The last case consists of all possibilities where we delete tj from t. More precisely, for
di,j we consider each entry di,l of the same row i in a column l from left plus the cost of
deleting t(l + 1, j).

Eventually, dm,n contains the homo-edit distance between s and t. We can obtain an
optimal subsequence v and thereby an optimal series of operations to obtain s from t or
vice versa by backtracking the cases from dm,n to d0,0. Note that there can be multiple
possibilities for v. See Algorithm 1 and the paragraph about backtracking below for more
details.

Algorithm 1 Main dynamic programming algorithm to compute the homo-edit distance between
two strings s and t.

1: function int homoEditDistance(s, t)
2: let H be a dictionary, which holds all entries for distancesToEmptyString of s

and t, with substrings as keys and the corresponding homo-edit distances to ε as values
3: m← |s|
4: n← |t|
5: initialize d as an (m+ 1)× (n+ 1) matrix
6: for i← 0, 1, . . . ,m do
7: for j ← 0, 1, . . . , n do
8: if i = j = 0 then
9: di,j ← 0
10: continue
11: C ← {} . candidate values
12: if si = tj then
13: append di−1,j−1 to C
14: for k ← 0, 1, . . . , i− 1 do
15: append dk,j +H[s(k + 1, i)] to C
16: for l← 0, 1, . . . , j − 1 do
17: append di,l +H[t(l + 1, j)] to C
18: di,j ← min(C)
19: return dm,n

We now show how to precompute the homo-edit distances H(s(i, j), ε) between all
substrings of a string s of length n and the empty string. Again, we use dynamic programming,
filling an n× n matrix h(s), with the following recurrence:

hi,j(s) =

1 if i = j,

min
i≤k<j

{hi,k(s) + hk+1,j(s)− [si = sj]} otherwise. (2)

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.27.118273doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.27.118273
http://creativecommons.org/licenses/by/4.0/

6 The Homo-Edit Distance Problem

We start by initializing all homo-edit distances between ε and every substring s(i, i) of
length one to hi,i(s) = H(s(i, i), ε) = 1 for all 1 ≤ i ≤ n. Then we loop over all substrings of
length two and compute their homo-edit distances to ε, and repeat the same procedure for
all substrings of increasing length up to length n: To compute hi,j(s), we partition substring
s(i, j) into all possible pairs of shorter substrings s(i, k) and s(k + 1, j), where i ≤ k < j.
For each partition we compute the cost to delete it, and choose the minimum of these costs.
If si 6= sj the cost of deleting a partition is the sum of the costs to delete either substring.
If, however, si = sj the cost decreases by one, which we notate using the Iverson bracket.
The reason is that all partitions delete si in s(i, k) and sj in s(k + 1, j) separately by two
homo-deletions, but it is always possible to delete the characters at the first and last index
together with one homo-deletion. In the end, hi,j(s) = H(s(i, j), ε) for all 1 ≤ i < j ≤ n.
See Algorithm 2 and the correctness proof below for more details.

Algorithm 2 Auxiliary dynamic programming algorithm to compute the homo-edit distance
between every substring of a string s and the empty string.

1: function dictionary distancesToEmptyString(s)
2: n← |s|
3: initialize H as an empty dictionary
4: for l← 0, 1, . . . , n− 1 do
5: for i← 1, 2, . . . , n− l do
6: j ← i+ l

7: if i = j then
8: H[s(i, j)]← 1
9: continue
10: C ← {} . candidate values
11: for k ← i, i+ 1, . . . , j − 1 do
12: append H[s(i, k)] +H[s(k + 1, j)]− [si = sj] to C
13: H[s(i, j)]← min(C)
14: return H

The example in Fig. 1 illustrates how the algorithms compute the homo-edit distance for
the input strings s = CTGCA and t = AGAAC.

4.2 Correctness
I Lemma 4. Given a string s = s1s2 . . . sn, Recurrence (2) computes the homo-edit distance
between every substring of s and the empty string ε.

Proof by induction.
Base case: n = 1.
We need exactly one homo-deletion for one character, thus we have a homo-edit distance
of 1, which is consistent with Recurrence (2).
Induction step: n→ n+ 1.
We consider two cases:

Case 1: There exists an index k where 1 ≤ k < n+1 such that s(1, k) and s(k+1, n+1)
can be deleted independently from one another, i.e., we do not perform a homo-deletion
that involves both substrings at once. This means the induction holds since we can
reduce this problem to two subproblems.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.27.118273doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.27.118273
http://creativecommons.org/licenses/by/4.0/

M. Brand and N.K. Tran and P. Spohr and S. Schrinner and G.W. Klau 7

d ε A G A A G

ε 0 1 2 2 2 3
C 1 2 3 3 3 4
T 2 3 4 4 4 5
G 3 4 3 4 4 4
C 3 4 4 5 5 5
A 4 3 4 4 5 5

j substrings deletion costs
1 C, T, G, C, A 1, 1, 1, 1, 1
2 CT, TG, GC, CA 2, 2, 2, 2
3 CTG, TGC, GCA 3, 3, 3
4 CTGC, TGCA 3, 4
5 CTGCA 4

s = CTGCA

j substrings deletion costs
1 A, G, A, A, G 1, 1, 1, 1, 1
2 AG, GA, AA, AG 2, 2, 1, 2
3 AGA, GAA, AAG 2, 2, 2
4 AGAA, GAAG 2, 2
5 AGAAG 3

t = AGAAG

C T G C A →
C G C A →
C C A →

A → A G G

→ A G A A G

(a)

(b) (c)

Figure 1 Example illustrating the algorithm. (a) Input strings s and t and the costs computed
by the auxiliary DP. (b) Main DP matrix. An optimal backtracking path is colorized. Black arrows
indicate how the entry for prefixes CTG and AG (shown in bold face) is computed. Here, the minimum
is determined by the first case of Recurrence (1) and indicated by a bold arrow. (c) A transition in
five steps as given by backtracking the colored path in (b).

Case 2: There exists no such index k. Then s1 and sn+1 are the same character and
must be deleted together because otherwise Case 1 would apply. That is, the cost for
deleting s(1, n+1) are the same as for s(1, n) because we can always delete s1 and sn+1
(and perhaps other equal characters in between) together with the last homo-deletion
before reaching ε. J

I Lemma 5. Given two strings s = s1s2 . . . sn and t = t1t2 . . . tm, Recurrence (1) computes
and stores the homo-edit distance between s and t in dm,n.

Proof. The edit distance problem is to convert a string into another such that the sum of
individual costs of the editing operations insertion, deletion, and substitution is minimized,
where the mentioned editing operations can operate on exactly one character. Ukkonen [6]
describes a generalization of this problem: Given two strings s = s1s2 . . . sn and t = t1t2 . . . tm,
we want to convert s into t such that the sum of individual costs of editing operations is
minimized.
We can show that a problem is also a generalized edit distance problem by giving an editing
operation set E ⊂ Σ∗ × Σ∗, where an element (x, y), x 6= y, represents an editing operation
that replaces x with y, and a recurrence that defines a matrix d with cost function δ : E → N
as follows:

d0,0 = 0,

di,j = min
{
di−1,j−1 if si = tj ,

di−k,j−r + δ((si−k+1 . . . si, tj−r+1 . . . tj)) if (si−k+1 . . . si, tj−r+1 . . . tj) ∈ E

}
.

(Note that we rewrote Ukkonen’s recurrence to fit our notations.) Hence, if the homo-edit
distance problem is a generalized edit distance problem, Recurrence (1) works correctly.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.27.118273doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.27.118273
http://creativecommons.org/licenses/by/4.0/

8 The Homo-Edit Distance Problem

For the homo-edit distance problem we can represent the editing operation set as

E ={(s(i− k + 1, i), t(j + 1, j)) | 1 ≤ i ≤ n and 0 ≤ k ≤ i and 1 ≤ j ≤ m}
∪ {(s(i+ 1, i), t(j − r + 1, j)) | 1 ≤ j ≤ m and 0 ≤ r ≤ j and 1 ≤ i ≤ n}.

The cost function can be defined as

δ(s, t) =
{
H(s, ε) if t = ε,

H(t, ε) if s = ε.

As a result, Algorithm 1 works correctly as we can rewrite Recurrence (1) as Ukkonen’s
recurrence. J

4.3 Backtracking
From Lemma 1 and Lemma 3 we can deduce that an optimal series of operations needed
for transforming s into t can be inferred from an optimal series of homo-deletions needed
to transform both s and t into a common subsequence v with the property described in
Lemma 3. Therefore, we disregard homo-insertions. Besides, we focus on backtracking one
optimal series of homo-deletions that transform each input string into v. Note, however, that
there might be multiple possible optimal series and subsequences.

In order to backtrack and thus generate an optimal series of homo-deletions as well as v,
we augment our matrices d and h as follows: For each entry di,j , we additionally store the
indices of any entry di′,j′ from which we came from. For each entry hi,j(s), we additionally
store the smallest index k that led to hi,j(s). We proceed analogously for h(t).

Next, we backtrack a path from dm,n to d0,0. Let di1,i2 be the entry from where we
obtained our current entry dj1,j2 . Let v′ be an empty string ε that will eventually hold our
desired v, and let Ls and Lt be initially empty lists in which we will store our indices denoting
an optimal series of homo-deletions from s or t, respectively. Note that homo-deletions cause
indices to shift such that the indices stored in Ls and/or Lt might need to be adjusted
accordingly. We consider three cases:
1. If we obtained dj1,j2 from a match, we prepend sj1 to v.
2. If we obtained dj1,j2 from an above entry that deletes s(i1, j1) from s, we recursively split

the deletion of s(i1, j1) into the deletion of the two substrings s(i1, k) and s(k + 1, j1),
where k is the respective index obtained from backtracking h(s). We abuse notation by
using the same notation for any lower level of the recursion. The recursion adds a tuple
(k, k) (or (k + 1, k + 1)) to Ls if a substring s(k, k) (or s(k + 1, k + 1)) consists of one
character only. Every time we move up one recursion level, we check whether the outer
characters si1 and sj1 are equal. If so, from Ls we remove the tuple that is returned first
by s(i1, k), which contains i1, as well as the tuple that is returned last by s(k + 1, j1),
which contains j1. We then append (i1, j1) to Ls.

3. If we obtained dj1,j2 from a left entry that deletes t(i2, j2) from t, we proceed analogously
to the second case.

4.4 Running Time Analysis
Consider s = s1s2 . . . sn and t = t1t2 . . . tm. For string s, Algorithm 2 considers n(n+1)

2
different substrings of s. For each of those substrings, we have up to n− 1 different partitions
into two substrings. Consequently, the running time is in O((n − 1) n(n+1)

2) = O(n3).
Analogously, we get O(m3) to preprocess string t.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.27.118273doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.27.118273
http://creativecommons.org/licenses/by/4.0/

M. Brand and N.K. Tran and P. Spohr and S. Schrinner and G.W. Klau 9

For each entry in d, Algorithm 1 regards up to m options from above, up to n options
from left, and possibly one option from top-left. As we have m · n entries, the running time
is in O(m · n · (m+ n+ 1)) = O(max{n,m}3).

All in all, the running time is O(n3) +O(m3) +O(max{n,m}3) = O(max{n,m}3) and
thus cubic in the input length.

We can now state our main result:

I Theorem 6. Algorithm 1 computes the homo-edit distance of two strings s = s1s2 . . . sn

and t = t1t2 . . . tm in time O(max{n,m}3).

Proof. Follows from Lemmas 4 and 5 and the above running time analysis. J

5 Conclusions

The focus of this paper is to introduce the homo-edit distance problem and to present a
solution to compute this distance in polynomial time. We have not yet considered applications
of this distance to specific problems in bioinformatics and leave this as future work.

We can, for example, imagine applications to sequence analysis problems that involve
tandem repeats, in a similar way as done by Sammeth and Stoye [5] who analyzed coding
regions of the Staphylococcus aureus protein A gene (spa). S. aureus is a major human
pathogen, and the analysis of relations between antibiotics-resistant strains can have important
implications for clinical practice. Here, the homo-edit distance could be a good starting point
for an all-against-all comparison of the spa-regions of different strains with an alphabet given
by the repeats or higher order repeat structures.

Another possible application is the analysis of homopolymer-rich DNA-regions. Basecalling
in these regions is particularly difficult for pyro- and ion torrent-based sequencing technologies,
where over- and undercalling are common errors in these regions. The challenge is to
distinguish these sequencing artifacts from true genetic content where a homo-edit distance-
based analysis of the reads falling in such regions may provide some help.

In general, we envision also more theoretical work on extensions of the homo-edit distance.
For which combinations of additional biologically meaningful operations like, e.g., duplications
or mutations, can the distance still be computed in polynomial time and which versions
become intractable? These and related open questions provide challenging opportunities for
the theoretical bioinformatics community.

References
1 A. Apostolico and C. Guerra. The longest common subsequence problem revisited. Algorithmica,

2(1):315–336, 1987.
2 M. Brand. Das Homo-Edit-Distanz-Problem. Bachelor’s thesis, Heinrich Heine University

Düsseldorf, 2020.
3 N. Jones and P. Pevzner. An Introduction to Bioinformatics Algorithms. MIT Press, Cambridge,

MA, 2004.
4 S. Needleman and C. Wunsch. A general method applicable to the search for similarities in

the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3):443–453, 1970.
5 M. Sammeth and J. Stoye. Comparing tandem repeats with duplications and excisions of

variable degree. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 3(4):395–407, 2006.
6 E. Ukkonen. Algorithms for approximate string matching. Information and control, 64(1-

3):100–118, 1985.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.27.118273doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.27.118273
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Problem Formulation
	Problem Reformulation
	Dynamic Programming Algorithm
	Algorithms
	Correctness
	Backtracking
	Running Time Analysis

	Conclusions

