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Abstract:  20 

While interspecific variation in microbiome composition can often be readily explained by factors 21 

such as host species identity, there is still limited knowledge of how microbiomes vary at scales 22 

lower than the species level (e.g., between individuals or populations). Here, we evaluated 23 

variation in microbiome composition of individual parasites among infrapopulations (i.e., 24 

populations of parasites of the same species living on a single host individual).  To address this 25 

question, we used genome-resolved and shotgun metagenomic data of 17 infrapopulations 26 

(balanced design) of the permanent, bloodsucking seal louse Echinophthirius horridus sampled 27 

from individual Saimaa ringed seals Pusa hispida saimensis.  Both genome-resolved and read-28 

based metagenomic classification approaches consistently show that parasite infrapopulation 29 

identity is a significant factor that explains both qualitative and quantitative patterns of microbiome 30 

variation at the intraspecific level.  This study contributes to the general understanding of the 31 

factors driving patterns of intraspecific variation in microbiome composition, especially of 32 

bloodsucking parasites, and has implications for understanding how well-known processes 33 

occurring at higher taxonomic levels, such as phylosymbiosis, might arise in these systems. 34 

 35 

Keywords: genome-resolved metagenomics, host-symbiont, intraspecific variation, lice, microbiota, 36 

shotgun metagenomics, symbiont.  37 
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Introduction  39 

Patterns of inter- and intraspecific variation in microbiome composition of animals have received 40 

much attention because the microbiome may influence many biological processes that have 41 

considerable effects on the host (Clemente et al. 2012; Le Chatelier et al. 2013; Rothschild et al. 42 

2018; Rudman et al. 2019; Velazquez et al. 2019). For instance, particular microbiome 43 

compositions have been found to drive genomic adaptation (Rudman et al. 2019) or to confer 44 

protection against pathogens (Velazquez et al. 2019).   45 

In general, both stochastic (e.g., dispersal, or ecological drift) and deterministic (e.g., host 46 

immunological regulation, or microbe–microbe interactions) processes operate across multiple 47 

spatial scales to shape the composition of animal microbiomes (Adair and Douglas 2017; Kohl 48 

2020).  In particular, among the many determinants shaping microbiome composition, host species 49 

identity has been repeatedly identified as a key factor determining the composition of animal 50 

microbiomes (Brooks et al. 2016; Mazel et al. 2018; Nishida and Ochman 2018; Lutz et al. 2019; 51 

Knowles et al. 2019; Lim and Bordenstein 2020; Song et al. 2020).  In other words, microbiomes 52 

of individuals of the same species tend to be more similar than to those of another species.  This 53 

pattern is generally the result of filtering microbial taxa by the host (e.g., through host diet, habitat, 54 

or immune system, Adair and Douglas 2017) or result from host-microbe coevolution (Lim and 55 

Bordenstein 2020).  When this process exhibits phylogenetic signal, the pattern is known as 56 

phylosymbiosis (i.e., microbial community relationships that recapitulate the phylogeny of their 57 

host, Brucker and Bordenstein 2013; Brooks et al. 2016; Lim and Bordenstein 2020).  Nonetheless, 58 

several aspects of the variation of animal microbiomes are yet to be better understood (Lim and 59 

Bordenstein 2020).  In particular, for non-human animals, there is still much to learn about how 60 

microbiomes vary at scales below the species level, such as between populations (Blekhman et al. 61 
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2015; Kohl et al. 2018; Rothschild et al. 2018; Campbell et al. 2020; Fountain"Jones et al. 2020) 62 

or ecotypes (Agany et al. 2020). 63 

An area of focus on understanding intraspecific variation in microbiome composition has been 64 

bloodsucking parasites.  In these parasites, previous studies have consistently found a major role 65 

of the host species in shaping microbiome composition in the parasites (Osei"Poku et al. 2012; 66 

Zhang et al. 2014; Swei and Kwan 2017; Zolnik et al. 2018; Landesman et al. 2019; Lee et al. 67 

2019; Muturi et al. 2019).  However, in ticks (Ixodes scapularis), host individual identity of the 68 

blood meal was even more important than host species identity in explaining microbiome 69 

composition (Landesman et al. 2019).  These results suggested that individual host identity of the 70 

blood meal might be an important factor that shapes parasite microbiomes at the intraspecific level 71 

(Landesman et al. 2019).  In theory, microbiomes of individual bloodsucking parasites could vary 72 

due to: 1) the individual parasite immune system that may impose selection on different bacterial 73 

taxa (Blekhman et al. 2015; Suzuki et al. 2019), 2) differences in the source of the blood meal that 74 

may transfer or disperse particular bacterial taxa, or modulate bacteria by creating specific 75 

conditions during digestion (Rothschild et al. 2018), 3) microbe–microbe interactions (Hassani et 76 

al. 2018), and 4) stochastic processes (e.g., ecological drift) (Lankau et al. 2012).  However, for 77 

most species, and for bloodsucking parasites in particular, the nature of intraspecific variation in 78 

microbiomes and the relative importance of factors shaping this variation remain understudied. 79 

Sucking lice (Phthiraptera: Anoplura) are permanent blood-feeding ectoparasites that live in the 80 

fur or hairs of mammals.  The sucking lice of pinnipeds (seals, sea lions, and walrus) are of 81 

particular interest because of their need to adapt to the aquatic lifestyle of their hosts (Durden and 82 

Musser 1994; Leonardi et al. 2013).  There is evidence that the sucking lice of seals and sea lions 83 
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have codiversified with their hosts (Kim 1971, 1975, 1985; Leonardi et al. 2019).  In addition, the 84 

sucking lice of pinnipeds represent an interesting system in which to study the variation in 85 

microbiome composition and the drivers of this variation at an intraspecific level because: 1) these 86 

lice have well defined, isolated populations (infrapopulations) on individual seal hosts, due to an 87 

expected low rate of horizontal dispersal among host individuals, which is only possible during 88 

the seals’ haul-out periods on land or ice (Kim 1985; Leonardi et al. 2013, 2019); and 2) these lice 89 

feed only upon the blood of their host (Snodgrass 1944; Kim 1985), so that it can be assumed that 90 

individuals from the same infrapopulation feed upon "exactly" the same resource (i.e., the blood 91 

of the individual seal on which they occur).   92 

Here, we used genome-resolved approaches (the construction of draft microbial genomes from 93 

short-read shotgun sequencing data; Bowers et al. 2017; Uritskiy et al. 2018) and metagenomic 94 

classification tools (taxonomic classification of individual sequencing reads; Menzel et al. 2016) 95 

to infer patterns of microbiome variation among individuals of the sucking seal louse 96 

Echinophthirius horridus (von Olfers, 1816) inhabiting individual Saimaa ringed seals Pusa 97 

hispida saimensis (Nordquist, 1899).  Our sampling design, involving analysis of two individual 98 

lice from each of 17 seals, allowed us to evaluate the degree to which variation in microbiome 99 

composition among individual lice is explained by the infrapopulation (the identity of the seal 100 

host). 101 

Materials and Methods 102 

Sampling, DNA extraction, and sequencing 103 

Thirty-four individual lice were sampled from 17 individual Saimaa ringed seals (Pusa hispida 104 

saimensis), which is an endemic endangered landlocked subspecies of the ringed seal living in 105 
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freshwater Lake Saimaa in Finland (e.g., Nyman et al. 2014).  Individual lice were collected from 106 

seals found dead or from seals that were live-captured for telemetry studies (e.g., Niemi et al. 107 

2019), and placed in 2-ml screw-cap tubes with 99.5% ethanol.  Lice from a single seal individual 108 

were put in the same tube.  Prior to DNA extraction, each louse individual was rinsed with 95% 109 

ethanol and placed alone in a new sterile vial; then, the remaining ethanol was evaporated at room 110 

temperature.  111 

Whole lice were ground up individually, and genomic DNA was extracted using the Qiagen 112 

QIAamp DNA Micro Kit (Qiagen, Valencia, CA, U.S.A.).  The standard protocol was modified 113 

so that specimens were incubated in ATL buffer and proteinase K at 55 (insert degree) C for 48 h 114 

instead of the recommended 1 – 3 h, as well as by substituting buffer AE with buffer EB (elution 115 

buffer).  This was done to ensure maximal yield (greater than 5 ng) of DNA from each louse.  Each 116 

DNA extract was quantified with a Qubit 2.0 Fluorometer (Invitrogen, Carlsbad, CA, U.S.A.) 117 

following the manufacturer#s recommended protocols.  118 

Shotgun genomic libraries were prepared from the extracts with Hyper Library construction kits 119 

(Kapa Biosystems, Wilmington, MA, U.S.A.), and the libraries were quantitated by qPCR and 150 120 

bp pair-end sequenced on one lane of an Illumina NovaSeq 6000 sequencer (Albany, New York).  121 

FASTQ files from sequence data were generated and demultiplexed with bcl2fastq v.2.20.  All 122 

library preparations, sequencing, and FASTQ file generation were carried out at the Roy J. Carver 123 

Biotechnology Center (University of Illinois, Urbana, IL, U.S.A.).  Raw reads were subsequently 124 

deposited to the NCBI GenBank SRA database (Table S1).  125 

Metagenomic analyses  126 

 127 
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For the genome-resolved metagenomic analyses, we used the metaWRAP v1.1.5 pipeline (Uritskiy 128 

et al. 2018) along with all the recommended databases (i.e., Checkm_DB, NCBI_nt, and 129 

NCBI_tax).  We used the metaWRAP Read_qc module with default parameters to quality trim the 130 

reads and to de-contaminate each sample from host reads.  For decontamination, we ran a de-novo 131 

genome assembly of an individual louse of the same species, not included in this study, and with 132 

a high amount of sequencing data ("Echor52") in Abyss v2.0.1 (Jackman et al. 2017).  Finally, we 133 

filtered out all non-bacterial reads from the contig file using Blobtools v1.0.1 (Laetsch and Blaxter 134 

2017) and used this file to decontaminate all the other samples with the metaWRAP Read_qc 135 

module.  Next, we co-assembled reads from all the samples with the metaWRAP Assembly 136 

module (--usemetaspades option) (Nurk et al. 2017).  For this assembly, and because of memory 137 

limitations, we used BBNorm (sourceforge.net/projects/bbmap/) before assembly to reduce the 138 

coverage of the concatenated FASTQ file to a maximum of 100X and to discard reads with 139 

coverage under 3X.    We binned reads with the metaWRAP Binning module (--maxbin2 --concoct 140 

--metabat2 options) (Alneberg et al. 2014; Wu et al. 2016; Kang et al. 2019) and then consolidated 141 

the resulting bins into a final bin set with both metaWRAP’s Bin_refinement module (-c 50 -x 10 142 

options) and the Reassemble_bins module. We quantified the bins resulting from the 143 

Bin_refinement module with Salmon (Patro et al. 2017) using the Quant_bins module with default 144 

parameters.  Finally, we classified bins using the Classify_bins module.  This module uses Taxator-145 

tk, which gives highly accurate but conservative classifications (Dröge et al. 2015).  Accordingly, 146 

we also uploaded our final metagenome-assembled genomes (MAGs) to MiGA for a 147 

complementary analysis to determine the most likely taxonomic classification and novelty rank of 148 

the bin (Rodriguez-R et al. 2018).  We used the NCBI Genome database (Prokaryotes; February 149 

26, 2020 version) for this analysis.  150 
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For the metagenomic classification of reads, we used the metagenomic classifier Kaiju (Menzel et 151 

al. 2016) with Reference database: nr (Bacteria and Archaea; Database date: 2017-05-16).  We 152 

used the default parameters for these analyses – SEG low complexity filter: yes; Run mode: 153 

greedy; Minimum match length: 11; Minimum match score: 75; Allowed mismatches: 5.  We then 154 

converted Kaiju's output files into a summary table at the genus and species level and filtered out 155 

taxa with low abundances (<0.1 % of the total reads).  We also removed poorly identified taxa 156 

because they would artificially increase the similarity between our samples.  Specifically, the 157 

following taxa were excluded: "NA", "Viruses", "archaeon", "uncultured bacterium", "uncultured 158 

Gammaproteobacteria bacterium" (Table S2 and S3).   159 

Lastly, we used Decontam v1.2.1 to filter out bacterial taxa exhibiting known statistical properties 160 

of contaminants (Davis et al. 2018).  We used the frequency method (isContaminant function) 161 

which is based on the inverse relationship between the relative abundance of contaminants and 162 

sample DNA concentration, and also has been found suitable for samples dominated by host DNA 163 

(Willner et al. 2012; Lusk 2014; Salter et al. 2014; Jervis-Bardy et al. 2015; Hooper et al. 2019; 164 

McArdle and Kaforou 2020).  As input for Decontam analyses, we used the aforementioned total 165 

DNA concentration values.  Then, as recommended, we explored the distribution of scores 166 

assigned by Decontam to assign the threshold according to bimodality between very low and high 167 

scores (Davis et al. 2018).  For the MAGs matrix, no bimodality was found, and thus we used the 168 

0.1 default value (Fig S1a).  None of the MAGs were classified as contaminants, according to 169 

Decontam.  For Kaiju matrices, a 0.3 threshold value was selected for the species matrix (Fig S1b) 170 

and 0.31 for the genus matrix (Fig S1c).  Decontam filtered out a single species (Clostridia 171 

bacterium k32) from the species matrix and two genera (Cupriavidus and Massilia) from the genus 172 

matrix. 173 
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Statistical analyses 174 

To visualize similarities of microbiome composition among louse individuals from the same or 175 

different individual seal hosts, we constructed non-metric multidimensional scaling (NMDS) 176 

ordinations based on Bray–Curtis and Jaccard (binary = T) dissimilarities using the phyloseq 177 

v1.26-1 R package (McMurdie and Holmes 2013).  For the genome-resolved metagenomic 178 

analyses, we used the normalized MAGs compositional matrices resulting from Salmon.  179 

Specifically, these MAG counts are standardized to the individual sample size (MAG copies per 180 

million reads) and thus allow between-sample comparisons.  For the Kaiju analyses, we used the 181 

rarefy_even_depth function of phyloseq (without replacement as in the hypergeometric model) to 182 

rarefy samples to the smallest number of classified sequences per individual observed (85,513, and 183 

71,267 reads in genus and species matrices, respectively) (Weiss et al. 2017).  To assess the 184 

influence of individual host identity on the microbiome composition of louse individuals, we 185 

conducted a permutational multivariate analysis of variance (PERMANOVA) (Anderson and 186 

Walsh 2013; Anderson 2014).  PERMANOVA analyses were done using the adonis2 function in 187 

vegan v2.5–4 (Oksanen et al. 2019), based on Bray–Curtis and Jaccard distance matrices with 100 188 

iterations.  In PERMANOVA analyses, for the individual host identity factor, our within-group 189 

sample size (n=2) was smaller than both the total number of groups (n=17) and the total sample 190 

size (n=34).  Thus, to account for a potential deviation in F-statistics and R2 values (Kelly et al. 191 

2015), we wrote an R simulation that randomly subsampled the infrapopulations from which the 192 

louse came (5 infrapopulations per iteration). We ran 10 iterations and ran a PERMANOVA 193 

analysis for each iteration.  Note that, for a few iterations, subsampled samples were too similar 194 

and PERMANOVA could not be done.  In addition, we ran PERMANOVA analyses to explore 195 

additional factors (louse sex: male, female; sequencing lane: 1, 2; and host status: dead, alive) that 196 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.05.27.118331doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.27.118331
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

10 

may explain variance in microbiome composition.  Furthermore, we included significant factors 197 

as the first factors of the host identity PERMANOVA models (i.e., to obtain the variance explained 198 

by host identity after accounting for the variance explained by that factor).  We also restricted the 199 

groups in which permutations could be done to only those with the same value of that vector using 200 

the strata argument (e.g., for a sample collected from a dead host, and for the host-status factor, 201 

permutations could only be done among other dead hosts).  Lastly, we ran a Mantel test using the 202 

mantel function in vegan (method=spearman, permutations=9999) to explore if host locality (i.e., 203 

the coordinates in which each host was sampled) correlated with the microbiome composition of 204 

louse individuals.  For this analysis, we ran 10 iterations of an R simulation in which we randomly 205 

subsampled one louse sample for each individual host and ran a Mantel test for each iteration. The 206 

following packages were used to produce the plots: ggplot2 v3.1.0.9 (Wickham 2016), grid v3.5.3 207 

(R Core Team 2019), gridExtra v.2.3 (Auguie 2016), ggrepel v0.8.0 (Slowikowski et al. 2019), 208 

ggpubr v.0.2.5 (Kassambara 2018), and ggsci v2.9 (Xiao 2018). 209 

Results 210 

From the genome-resolved metagenomics pipeline, 13 high-quality bacterial metagenome-211 

assembled genomes (MAGs) were obtained (Table 1; Fig 1).  According to MiGA analyses, 10 of 212 

them (77%) likely belong to a species not represented in the NCBI Genome database.   213 

Kaiju analyses recovered a higher diversity of microorganisms than did the genome-resolved 214 

approach.  These differences are likely because of the quality-filtering parameters used in the 215 

genome-resolved metagenomics pipeline (i.e., these taxa may have been discarded because the 216 

completeness values of their bins were lower than 50% and/or their contamination values were 217 

higher than 10%).  Nevertheless, bacterial taxa found in the genome-resolved metagenomic 218 
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approach were generally found also in Kaiju and with similar relative abundances (Fig 2), and a 219 

similar pattern was found also at the species level (Fig S2). 220 

Ordination and PERMANOVA analyses show a major role of infrapopulation identity in 221 

explaining microbiome composition for both presence–absence and quantitative data.  In the 222 

genome-resolved metagenomic dissimilarity matrices, most (>84% in all cases) of the variance 223 

was explained by infrapopulation identity (PERMANOVA: Bray-Curtis, R2= 0.857, F=6.419, 224 

P=0.001, Fig 3a; Jaccard, R2= 0.842, F= 5.671, P=0.001; Fig S3a).  Results from the simulations 225 

were in line with the results of the regular model, and thus support that our results were not biased 226 

by the sampling design [PERMANOVA: Bray-Curtis, R2 (min= 0.65, max= 0.98, mean= 0.78); P 227 

(min= 0.001, max= 0.019, n<0.05= 10/10); Jaccard, R2 (min= 0.66, max= 1, mean= 0.86), P (min= 228 

0.001, max= 0.106, n<0.05= 5/7)].  From all the additional factors examined, only host status (i.e., 229 

dead, alive) explained a significant amount of variance [PERMANOVA: Bray-Curtis, Host status: 230 

R2= 0.28, F= 12.72, P= 0.001, Louse sex: R2= 0.08, F= 0.9, P= 0.554, Sequencing lane: R2= 0.01, 231 

F= 0.38, P=  0.878; Jaccard, Host status: R2= 0.13, F= 4.93, P= 0.002, Louse sex: R2= 0.03, F= 232 

0.28, P= 0.867, Sequencing lane: R2= 0, F= -0.01, P= 1; Mantel test, locality, Bray-Curtis: ρ (min= 233 

-0.09, max= -0.09, mean= -0.09), P (min= 0.8749, max= 0.8867, n<0.05= 0/10); Jaccard: ρ (min= 234 

-0.29, max= -0.29, mean= -0.29), P (min= 0.97742, max= 0.9777, n<0.05= 0/10)].  Including host 235 

status in PERMANOVA analyses did not alter the results on the major influence of host identity 236 

in explaining microbiome composition (PERMANOVA: Host identity, Bray-Curtis, R2= 0.57, F= 237 

4.58, P= 0.001; Jaccard, R2= 0.71, F= 5.09, P= 0.002). 238 

Similarly, in Kaiju matrices collapsed at the species level, most (>80% in all cases) of the variance 239 

was also explained by infrapopulation identity (PERMANOVA: Bray–Curtis, R2=0.804, F=4.346, 240 

P=0.001, Fig 3b; Jaccard, R2=0.803, F=4.319, P=0.001; Fig S3b).  Again, results from simulations 241 
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were similar [PERMANOVA: Bray-Curtis, R2 (min= 0.62, max= 0.88, mean= 0.75); P (min= 242 

0.003, max= 0.058, n<0.05= 9/10); Jaccard, R2 (min= 0.63, max= 0.95, mean= 0.76), P (min= 243 

0.002, max= 0.09, n<0.05= 9/10)].  Of all the others factors examined, only host status explained 244 

a significant amount of variance [PERMANOVA: Bray-Curtis, Host-status: R2= 0.22, F= 9.03, P= 245 

0.001, Louse sex: R2= 0.08, F= 0.81, P= 0.564, Sequencing lane: R2= 0.01, F= 0.35, P=  0.859; 246 

Jaccard, Host-status: R2= 0.21, F= 8.73, P= 0.001, Louse sex: R2= 0.08, F= 0.88, P= 0.497, 247 

Sequencing lane: R2= 0.01, F= 0.4, P= 0.825; Mantel test, locality, Bray-Curtis: ρ (min= 0.04, 248 

max= 0.04, mean= 0.04), P (min= 0.5637, max= 0.5785, n<0.05= 0/10); Jaccard: ρ (min= -0.03, 249 

max= -0.03, mean= -0.03), P (min= 0.5337, max= 0.5488, n<0.05= 0/10)]. PERMANOVA 250 

analysis accounting for host status did not alter the significance of host identity (PERMANOVA: 251 

Bray-Curtis, R2= 0.52, F= 1.78, P= 0.007; Jaccard, R2= 0.59, F= 3.37, P= 0.001).  252 

Furthermore, results were consistent when using matrices collapsed at the genus level (>77% of 253 

variance explained in all cases) (PERMANOVA: Bray–Curtis, R2= 0.865, F= 6.804, P= 0.001, Fig 254 

S4a; Jaccard, R2= 0.774, F= 3.634, P= 0.001; Fig S4b). Once again, results from simulations were 255 

similar [PERMANOVA: Bray-Curtis, R2 (min= 0.68, max= 0.96, mean= 0.8); P (min= 0.002, 256 

max= 0.073, n<0.05= 9/10); Jaccard, R2 (min= 0.54, max= 0.86, mean= 0.73), P (min= 0.003, 257 

max= 0.061, n<0.05= 9/10)].  Additionally, of all the others factors examined, only host status 258 

explained a significant amount of variance [PERMANOVA: Bray-Curtis, Host-status: R2= 0.3, F= 259 

14, P= 0.001, Louse sex: R2= 0.05, F= 0.51, P= 0.851, Sequencing lane: R2= 0.01, F= 0.39, P= 260 

0.753; Jaccard, Host-status: R2= 0.18, F= 7.19, P= 0.002, Louse sex: R2= 0.07, F= 0.75, P= 0.53, 261 

Sequencing lane: R2= 0.01, F= 0.40, P= 0.75; Mantel test, locality, Bray-Curtis: ρ (min= 0.09, 262 

max= 0.09, mean= 0.09), P (min= 0.7198, max= 0.7344, n<0.05= 0/10); Jaccard: ρ (min= 0.02, 263 

max= 0.02, mean= 0.02), P (min= 0.4043, max= 0.4246, n<0.05= 0/10)]. Likewise, 264 
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PERMANOVA analysis accounting for host status did not alter the significance of host identity 265 

(PERMANOVA: Bray-Curtis, R2= 0.56, F= 4.73, P= 0.001; Jaccard, R2= 0.59, F= 2.96, P= 0.001). 266 

Discussion 267 

Two different metagenomic approaches support a major role of infrapopulation identity (ringed 268 

seal host individual) in explaining microbiome variation among individuals of the seal louse.  In 269 

addition, highly similar results were found for approaches using either presence-absence or 270 

quantitative matrices, suggesting that not only is bacterial composition, but also bacterial 271 

abundance explained by infrapopulation identity.  Our analyses were done on whole louse 272 

individuals and, thus, we cannot confidently differentiate between bacterial taxa inhabiting the lice 273 

(e.g., Wolbachia or Hodgkinia) from transient taxa present in the host blood meal (e.g., 274 

Chlamydia).  Nevertheless, in line with current evidence on the determinants of microbiome 275 

composition of bloodsucking parasites, the louse blood meal from individual seals is the most 276 

likely candidate in explaining the patterns of microbiome variation across the louse 277 

infrapopulations found here.  Indeed, many of the taxa found in our analyses have already been 278 

found in other bloodsucking parasites, thus supporting the influence of blood in shaping the 279 

composition of parasite microbiomes studied here (Jiménez-Cortés et al. 2018).   280 

However, other factors in addition to blood may have contributed to the similarity of microbiomes 281 

between individual lice from the same seal host individual.  Some similarity may have arisen from 282 

shared environmental bacteria, those on the surface of the louse from a shared environment (skin 283 

and fur of the host), or contamination between louse individuals in screw-cap tubes, and not filtered 284 

by our decontamination procedures.  There may also be insect-specific bacterial taxa, independent 285 

from the host blood, that are shared horizontally between individual lice from the same 286 

infrapopulation.  Finally, louse infrapopulations are known to typically be highly inbred, with a 287 
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high level of relatedness between individuals (Koop et al. 2014, DiBlasi et al 2018, Virrueta 288 

Herrera et al., in prep.).  It may be that there are louse genetic factors that interact with the 289 

microbiome to produce a specific composition (Blekhman et al. 2015; Dobson et al. 2015; Suzuki 290 

et al. 2019). 291 

Our results are congruent with previous findings on the influence of host blood on microbiomes 292 

of bloodsucking parasites.  Specifically, several studies have found a major role of the specific 293 

host species from which a blood meal is taken in shaping microbiomes of other bloodsucking 294 

organisms, such as ticks (Ixodes scapularis, Ixodes pacificus) and mosquitoes (Aedes aegypti) 295 

(Swei and Kwan 2017; Landesman et al. 2019; Muturi et al. 2019).  Furthermore, Landesman et 296 

al. (2019) showed that microbiomes of deer tick (Ixodes scapularis) nymphs were largely 297 

explained by the individual hosts of the tick, a result similar to the one obtained here.  Interestingly, 298 

in that study, the percentage of variation explained was considerably lower (45%) than that found 299 

here (>77%).  It may be that differences in parasite ecology, such as the whether the parasite is a 300 

permanent or a recurrent feeder (as are both the case in sucking lice) may modulate the extent to 301 

which host blood shapes parasite microbiomes. The differences in the proportion of variance 302 

explained by infrapopulation identity between the two studies could also be due to differences in 303 

experimental design, such as the number of sampled infrapopulations (3 in ticks, and 17 in the seal 304 

lice here) and whether the sample design is balanced (i.e., the same number of individual parasites 305 

sampled per infrapopulation). 306 

The knowledge that blood from the same individual seal host may influence the similarity of the 307 

microbiome of blood-feeding lice from that host can potentially provide new insights into the 308 

influence of host blood on such parasites.  There are least two not necessarily mutually exclusive 309 

processes may explain the influence of a host individual’s blood on louse microbiomes.  First, the 310 
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blood from a particular host individual may contain a specific composition of bacterial loads that 311 

enter the louse on consumption of blood.  Indeed, anopluran lice might have a higher likelihood 312 

of being colonized by bacteria from host blood because they do not possess a peritrophic 313 

membrane, an extracellular layer in the midgut that is composed of chitin, proteoglycans, and 314 

proteins, which in most other insects surrounds the ingested food bolus and separates the gut 315 

content, including bacteria, from the epithelium (Terra 2001; Waniek 2009).  Indeed, the idea that 316 

a lack of a peritrophic membrane may facilitate colonization of blood-feeding parasites by bacteria 317 

present in the host blood has potentially also been supported by work on mouse fleas 318 

(Rhadinopsylla dahurica), which also lack this membrane (Li et al. 2018).  In this case, there was 319 

evidence of homogenization (i.e., similar bacterial communities) between the host blood and the 320 

parasite (whole flea individuals).  The lack of a peritrophic membrane is often associated with 321 

permanent parasites, such as blood-feeding lice, for which the continual availability of food means 322 

that there is less selection for efficiency of digestion.  Therefore, the presence versus absence of a 323 

peritrophic membrane may explain the differences between lice and ticks (of which the latter 324 

possess a peritrophic membrane) with regards to the influence of host blood on the composition of 325 

the parasite microbiome.  326 

A second possibility that could explain why host blood may influence louse microbiome 327 

composition is that the conditions during blood digestion may alter bacterial taxa that were already 328 

present in the louse.  The specifics of blood digestion may have an individual host-specific 329 

signature.  Specifically, catabolism of blood meal leads to the generation of reactive oxygen 330 

species that are known to alter the midgut bacterial composition and diversity of bloodsucking 331 

parasites (Souza et al. 1997; Wang et al. 2011; Muturi et al. 2019).  Also, the blood meals of 332 

different host species are also known to differ in composition (e.g., total protein, hemoglobin, and 333 
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hematocrit content), and these differences may lead to a differential proliferation of microbial taxa 334 

during digestion by the parasite (Souza et al. 1997; Wang et al. 2011; Muturi et al. 2019).  It may 335 

be the case that differences in blood composition among individuals even within the same host 336 

species may be shaping the bacterial composition of lice in a manner that is specific to host 337 

individuals.  338 

Bloodsucking organisms, and anopluran lice in particular, are well known to rely on mutualistic 339 

endosymbionts to complement deficiencies in their diet (Perotti et al. 2008; Boyd and Reed 2012; 340 

Boyd et al. 2017; Jiménez-Cortés et al. 2018).  Notwithstanding that several of the bacterial taxa 341 

we found may not be stable inhabitants of lice, we did find evidence for the presence of several 342 

louse-specific bacterial taxa.  These include the obligate intracellular arthropod bacteria Wolbachia 343 

(Werren 1997) and Hodgkinia (for which only endosymbionts of Cicadas are known; McCutcheon 344 

et al. 2009).  Accordingly, we explored our MAGs for genome characteristics typical of 345 

endosymbionts.  In particular, because endosymbiont genomes typically are small and have an AT 346 

bias, we explored the relative position of the observed MAGs in a "Genome size ~ GC content" 347 

correlation plot (Wernegreen 2015; Figure 4).  Bin 1 appears to be the best candidate to be a 348 

mutualistic endosymbiont, according to its relative position in the correlation plot.  This MAG was 349 

100% complete (according to CheckM; Parks et al. 2015), detected in most samples (prevalence = 350 

71%), and classified with confidence as Flavobacteriaceae.  MiGA analyses suggest it may even 351 

belong to Chryseobacterium (p-value 0.585).  Endosymbionts belonging to Chryseobacterium are 352 

known in other arthropods (e.g., termites, mosquitoes, cockroaches, and ticks; Eutick et al. 1978; 353 

Dugas et al. 2001; Campbell et al. 2004; Montasser 2005; Burešová et al. 2006).  Additionally, we 354 

conducted a preliminary investigation of the metabolic capabilities of this bacterium by 355 

investigating the completeness of metabolic pathways using GhostKOALA (Kanehisa et al. 2016) 356 
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and KEGG-Decoder (Graham et al. 2018).  This MAG has complete routes for synthesis of vitamin 357 

B (riboflavin), an essential amino acid (lysine), and several non-essential amino acids (e.g., serine; 358 

see Table S4), as well as many fully or partially missing routes that may be redundant or potentially 359 

shared (or synthesized along) with the louse (Table S4).   360 

Overall, these results are congruent with what has been found for endosymbionts of bloodsucking 361 

parasites (Moriyama et al. 2015; Boyd et al. 2016; Santos-Garcia et al. 2017; Duron et al. 2018).  362 

Another anopluran pinniped louse (Proechinophthirus fluctus) has been found to have a Sodalis 363 

endosymbiont (Boyd et al. 2016), but we found no evidence of Sodalis in Echinophthirius 364 

horridus.  Other species of Anoplura have yet other endosymbionts (Boyd et al. 2017, Ríhová et 365 

al. 2017), suggesting that endosymbiont replacement is an ongoing and relatively common process 366 

within the order.  Further research, including phylogenomic studies improving the phylogenetic 367 

placement of this potentially mutualistic bacterium and studies using fluorescence in situ 368 

hybridization (FISH) to ascertain the location of this bacterium in louse individuals, is needed to 369 

get deeper insight into the interaction of this bacterium with E. horridus.  370 

Finally, at a broader scale, our results are congruent with previous studies that have found a major 371 

role of different levels of subdivision in shaping microbiomes in a wide range of systems.  For 372 

instance, population identity has been found to largely explain microbiome composition of great 373 

apes (Campbell et al. 2020), American pikas (Ochotona princeps) (Kohl et al. 2018), and humans 374 

(Rothschild et al. 2018).  Similar results have also been found across subdivision levels other than 375 

populations, such as ecotypes (human lice Pediculus humanus; Agany et al. 2020), or by spatial 376 

proximity (North American moose Alces alces; Fountain"Jones et al. 2020).  On the other hand, 377 

while the influence of subdivision on microbiome composition is widely supported, much less is 378 

known about whether signs of phylosymbiosis can be found at these levels.  Kohl et al. (2018) 379 
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found that populations largely explained microbiome variation in American pikas along with a 380 

phylosymbiotic pattern (i.e., closely related hosts had similar microbial communities).  381 

Interestingly, while we did not investigate the presence of phylosymbiosis here, our results suggest 382 

that a phylosymbiotic pattern is not always found at an intraspecific level.  For instance, this may 383 

be the case of subdivided systems in which the food source (which allows the dispersal of microbes 384 

from one organism to another) constitutes the main determinant of microbiome composition, and 385 

populations are not necessarily composed of closely related organisms.  However, phylosymbiotic 386 

patterns across species have been found in relatively similar systems.  Therefore, bacterial 387 

dispersal, ecological drift, diversification, or microbe-microbe interactions may be the main factors 388 

explaining phylosymbiosis in these systems.  More studies on the origin and prevalence of 389 

phylosymbiotic patterns within and across species are clearly needed. 390 
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Figure and table legend: 699 

Table 1. Statistics of the MAGs assembled.  MAG name indicates the name given to that bin for 700 
this study (e.g., in Figure 1).  The highest taxonomic rank with p-value $ 0.5 is shown in MiGA 701 
ID.  RPD ID is the result of the identification analysis using rRNA genes (16S) implemented in 702 
MiGA; % indicates confidence in identification.  Taxonomic novelty is a MiGA analysis that 703 
indicates the taxonomic rank at which the MAG represents a novel taxon with respect to the NCBI 704 
Genome database; highest taxonomic rank with p-value $ 0.01 are shown. 705 

MAG name Completeness 

(%) 
Contamination 

(%) 
N50 

(bp) 
Size (bp) Taxator tk ID MiGA ID RDP ID Taxonomic 

novelty 

bin.1 100 1.07 57370 1869975 Flavobacteriaceae Flavobacteriaceae* NA Species**** 

bin.4 99.26 0.24 81315 2500734 Flavobacteriaceae Chryseobacterium* Chryseobacterium 

(100.0%) 
Species**** 

bin.2 98.51 0.42 36844 3101576 Deinococcus Deinococcus grandis* Deinococcus 

(100.0%) 
Subspecies**** 

bin.7 97.75 0 16123 2650064 Moraxellaceae Psychrobacter sp. 

PRwf-1* 
NA Subspecies**** 

bin.3 97.41 1.33 32961 4014303 Neisseriales Pseudogulbenkiania* NA Species**** 

bin.11 95.65 0.92 69243 2786419 Moraxellaceae Psychrobacter* NA Species**** 

bin.10 95.12 0 13409 2459723 Deinococcaceae Deinococcus* NA Species**** 

bin.12 93.14 0.85 24793 2851493 Deinococcaceae Deinococcus* NA Species**** 

bin.6 88.74 1.45 7283 1988194 Micrococcales Arthrobacter* NA Species**** 

bin.13 77.11 0.64 3045 2627969 Deinococcaceae Deinococcus* NA Species**** 

bin.5 74.13 0.61 24837 1635952 Moraxellaceae unclassified 

Moraxellaceae* 
Alkanindiges (99 

%) 
Species**** 

bin.8 67.76 0 10934 2837743 Deinococcaceae Deinococcus* NA Species**** 
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bin.9 61.13 0.30 2210 2110411 Janthinobacterium Janthinobacterium sp. 

SNU WT3*** 
NA Subspecies**** 

Significance at p-value below: *0.5, **0.1, ***0.05, ****0.01 706 
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Figure 1. Genome-resolved metagenomic data.  a) Stacked bar plot showing the relative 708 
abundances of MAGs in each louse sample.  Note that samples are ordered according to host 709 
(i.e., samples from the same host are next to each other).  b) Boxplot summarizing the relative 710 
abundance of each MAG across the louse samples. 711 
/ 712 
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Figure 2. Kaiju data.  a) Stacked bar plot showing bacterial relative abundances in each seal 714 
louse sample.  Note that samples are sorted according to host individual (i.e., samples from the 715 
same host are next to each other).  b) Boxplot summarizing the relative abundance of each taxon 716 
across all louse samples. 717 

/  718 
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Figure 3. NMDS ordinations of seal louse microbiomes base on Bray–Curtis dissimilarity 720 
matrices.  a) MAG matrix, and b) Kaiju matrix (species level). Lice originating from the same 721 
seal individual are colored similarly and connected by a line. 722 
/ 723 

  724 

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

−0.5

0.0

0.5

−0.5 0.0 0.5
NMDS1

N
M
D
S2

a)

● ●

●

●

●
●

●

●

●●
●

●

●
●
●● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.5

0.0

0.5

1.0

0.0 0.5 1.0
NMDS1

N
M
D
S2

b)

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.05.27.118331doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.27.118331
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

32 

Figure 4. Scatter plot showing the relationship between genome size (Mb) and GC content (i.e., 725 
proportion of G and C sites) for sequenced MAGs. 726 
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