Abstract
Hybridization of resin modified- glass ionomer cement (RMGIC) and bioactive glass (BAG) may result higher mechanical strength and resistance to disintegration, while less contain of polyacrylic acid would lead to bioactivity of the cement. In the present study we investigated the effect of BAG from the CaSiO3-Ca3(PO4)2 system addition to the bioactivity of RMGIC. The BAG containing 10, 15, and 20% of P2O5 (denoted as CSP10, 15, and 20) were used in the study to modify the powder of RMGIC, with apatite wollastonite (AWG) was chosen for a comparison. The surface bioactivity was assessed using XRD, FT-IR, and SEM analysis after specimen immersion in the simulated body fluid (SBF). Measurement of Ca, P, F, Sr, and Al was conducted for the remaining SBF. Cells studies were done to evaluate cell attachment, proliferation, and differentiation on the RMGIC containing BAG compared to the one without BAG. Results of Sr and Al analysis lead to the conclusion that addition of BAG may not influence stability of the matrix of the cement. It was also confirmed that addition of bioactive glass was positive factor indicating excellent ions exchange in SBF and spontaneous growth of apatite by consuming the Ca and P ions in the surrounding fluid. The ability of osteoblasts differentiation on the four types of bioactive cements were higher than that of RMGIC without BAG. These results might provide novel insights into the development of a new generation of osteoconductive biomedical materials.