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Abstract 13 

Error-based and reward-based processes are critical for motor learning, and are thought to be 14 

supported via distinct neural pathways. However, recent behavioral work in humans suggests that 15 

both learning processes are supported by cognitive strategies and that these contribute to 16 

individual differences in motor learning ability. While it has been speculated that medial temporal 17 

lobe regions may support this strategic component to learning, direct evidence is lacking. Here 18 

we first show that faster and more complete learning during error-based visuomotor adaptation is 19 

associated with better learning during reward-based shaping of reaching movements. This result 20 

suggests that strategic processes, linked to faster and better learning, drive individual differences 21 

in both error-based and reward-based motor learning. We then show that right entorhinal cortex 22 

volume was larger in good learning individuals—classified across both motor learning tasks—23 

compared to their poorer learning counterparts. This suggests that strategic processes underlying 24 

both error- and reward-based learning are linked to neuroanatomical differences in entorhinal 25 

cortex. 26 
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Significance Statement 30 

While it is widely appreciated that humans vary greatly in their motor learning abilities, li ttle is 31 

known about the processes and neuroanatomical bases that underlie these differences. Here, 32 

using a data-driven approach, we show that individual variability in error-based and reward-based 33 

motor learning is tightly linked, and related to the use of cognitive strategies. We further show that 34 

structural differences in entorhinal cortex predict this intersubject variability in motor learning, with 35 

larger entorhinal volumes being associated with better overall error-based and reward-based 36 

learning. Together, these findings provide support for the notion that the ability to recruit strategic 37 

processes underlies intersubject variability in both error-based and reward-based learning, which 38 

itself may be linked to structural differences in medial temporal cortex. 39 

Introduction 40 

The human brain’s capacity to learn new motor commands is fundamental to almost all activities 41 

we engage in. It is not only essential when we acquire novel skills, such as learning to play a 42 

musical instrument, but is also required on a daily basis as we refine existing motor skills and 43 

adapt to changes in our environment. To date, the vast majority of studies on motor learning have 44 

focused on characterizing learning across individuals at the group-level, treating individual 45 

variability as noise that obscures the main processes underlying learning. More recently, however, 46 

there has been increased interest in the potential sources of such intersubject variability (1–4), as 47 

they may provide insight into the specific mechanisms by which different people learn. While a 48 

handful of studies have helped uncover several of these mechanisms (1, 5, 6), little is known 49 

about their underlying neuroanatomical basis.  50 

 51 

Traditionally, motor learning has been viewed as an implicit, procedural process of the motor 52 

system, with neural studies focusing on brain areas in the frontoparietal cortex, striatum or 53 

cerebellum (7–9). The putative role of cognitive brain circuits in driving motor learning has often 54 

been neglected (though see 10). Ever since the classic finding that patient H.M. showed learning 55 

of a visuomotor skill despite a bilateral medial temporal lobectomy (11, 12), motor and cognitive 56 

brain circuits have been viewed as operating largely independently of one another. Only relatively 57 

recently have behavioral studies demonstrated the myriad ways in which cognitive systems 58 

support motor learning — showing, for example, that processes related to strategy use and 59 

declarative memory can bolster, or interfere with, aspects of motor learning (13–16).  60 

 61 
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When considering the neural bases of such interactions, it is important to distinguish between two 62 

main forms of learning. Error-based learning is the form of learning by which we refine and adjust 63 

our movements to changes in the body or the environment based on observable errors, such as 64 

when missing the bullseye in archery. Such learning is thought arise from two separate processes 65 

acting in parallel: An implicit process that is driven by the error between predicted and observed 66 

sensory feedback (17, 18) and an explicit process that is driven by the error between the target 67 

and the sensory feedback (i.e., the task error) (19). The implicit process is nonconscious (i.e., 68 

resistant to voluntary control), adapts and de-adapts gradually and is reliant on the cerebellum 69 

(20–22). The explicit process, by contrast, is declarative in nature, and linked to the use of 70 

cognitive strategies resulting in large, rapid changes during early learning (13, 23), such as when 71 

intentionally aiming the bow slightly to the left of the bulls eye when shooting in a strong wind. 72 

Recent evidence further suggests that, while the implicit component to learning is fairly stable 73 

across tasks and participants (24, 25), individual differences in the rate of learning largely reflects 74 

whether, and how effectively, a cognitive strategy is implemented (2, 3). To date, the neural 75 

systems associated with this explicit component of learning remain rather speculative. Evidence 76 

from neuroimaging, aging, and lesion studies have implicated areas in the prefrontal cortex in 77 

explicit strategies (7, 26–28). In addition, it has been speculated, but not yet shown, that regions 78 

in the MTL, given their role in declarative processes, may also be involved in the explicit 79 

component to motor learning (3, 7, 29).  80 

 81 

Reward-based learning is the form of learning that underlies the acquisition of many motor skills, 82 

such as when learning to swing on a playground set or learning to drink from a straw. When 83 

learning such skills, the mapping between success (reward) and motor commands is often highly 84 

complex, with no single error providing information about the required change in motor 85 

commands. Thus, in such cases, the brain must figure out the motor commands that increase 86 

success, often through active exploration and exploitation of the acquired knowledge (30–32). 87 

The neural circuits that drive reward-based learning are thought to be different from those involved 88 

in error-based learning, and critically rely on the basal ganglia and striatum (8, 33, 34). However, 89 

recent behavioral work suggests a key role for explicit strategies in reward-based motor learning 90 

(35, 36) and there is some emerging evidence from human neuroimaging to suggest links 91 

between the MTL and reward-based learning (37, 38). Insofar as active motor exploration may 92 

involve the use of strategies, it is plausible that MTL structures also contribute to success in 93 

reward-based motor learning. 94 

 95 
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To date, the role of MTL regions in declarative memory and spatial navigation have been well 96 

established (39–42). In humans, for example, anatomical imaging methods have demonstrated 97 

clear links between individual differences in hippocampus and/or entorhinal cortex volume and 98 

performance in memory and navigation tasks (43–50). It is increasingly recognized, however, that 99 

the hippocampal-entorhinal system is not solely dedicated to declarative memory or spatial 100 

navigation processes per se, but can support more abstract relational representations (51–54). 101 

Influential theories posit that this system forms a flexible ‘cognitive’ map for representing goals 102 

and relating objects and actions within a spatial context (41, 55, 56). Such maps are likely to be 103 

critical when forming new action-outcome associations, as is the case when searching for and 104 

implementing strategies during motor learning. Extending this notion of a cognitive map, here we 105 

asked whether individual differences in performance during motor learning are linked to 106 

hippocampal and entorhinal volume in humans. To examine this, we had human participants 107 

undergo a structural neuroimaging session prior to performing separate error-based and reward-108 

based learning tasks, both known to elicit the use of strategies during learning. We show that 109 

learning performance in both motor tasks is directly related and that faster and better overall 110 

learning across tasks is associated with larger entorhinal cortex volume. 111 

Results 112 

In order to determine the relationship between motor performance in reward-based and error-113 

based learning tasks, and the extent to which the size of hippocampal and entorhinal cortex may 114 

be associated to such learning, we collected high-resolution structural MRI scans from 115 

participants (N=34) prior to performing two separate motor learning tasks outside the scanner. In 116 

the reward-based learning task, inspired by Dam and colleagues (57), participants learned to copy 117 

an invisible, curved path through trial and error, using only a score (between 0 and 100 points) to 118 

improve their performance. This score, presented at the end of each trial, indicated how closely 119 

the participants’ drawn path corresponded to the invisible path (Fig. 1B). Participants drew these 120 

paths on a digital drawing tablet from a start to a target position displayed on a vertical monitor 121 

(Fig. 1A), and were instructed to maximize their score. To obtain a representative measure of 122 

each participant’s reward-based learning rate and ability, we had participants perform this task 123 

for 12 different invisible paths, with 20 attempts for each. Participants were naive to the possible 124 

shapes of the paths, which were shaped as single curves (i.e., half sine waves) and double curves 125 

(i.e., full sine waves) between the start and target position, with different amplitudes (see Fig. 1C). 126 

Because participants received only visual feedback about their path trajectory—and never the 127 
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rewarded path—they did not receive error-based information that could be used to guide learning. 128 

By design, this reward-based task requires implementing a search strategy to first find the invisible 129 

path and then refine the drawn path, and we thus predict that participants who perform well in this 130 

task are better at implementing such strategies.  131 

 132 

In the error-based learning task, we used the classic visuomotor rotation learning paradigm (58), 133 

wherein participants had to adjust their movements to a 45° rotation of the cursor movement, 134 

which represented participants’ hand movements, in order to hit visual targets (Fig. 1D). 135 

Participants performed center-out reaching movements on the drawing tablet to one of eight 136 

targets displayed on a monitor. After a baseline phase with veridical cursor feedback, participants 137 

were exposed to the 45° visuomotor rotation of the movement of the cursor, requiring an 138 

adjustment of the reaching movement in the opposite direction. Learning in this task consists of 139 

two components: automatic, implicit adjustments of the reach direction, resulting in gradual 140 

changes in performance, and the implementation of an aiming strategy to counteract the rotation, 141 

resulting in fast changes in performance (19, 23). Our previous work has shown (3) — and we 142 

predict here — that faster and more complete learning across participants will be largely driven 143 

by the use of an aiming strategy, used to counteract the rotation. At the end of the first block of 144 

rotation trials, we assessed this aiming strategy by asking participants to report the intended 145 

aiming angle by turning a knob with their left hand to rotate a line on the screen at the start of the 146 

trial, before executing the reach (19). Learning was then ‘washed out’ by restoring veridical cursor 147 

feedback, after which the visuomotor rotation was re-instantiated to assess the rate of re-learning. 148 

 149 

 150 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.27.119529doi: bioRxiv preprint 

https://paperpile.com/c/rbo3su/gikj
https://paperpile.com/c/rbo3su/ovMt+BSEu
https://paperpile.com/c/rbo3su/vjDc
https://paperpile.com/c/rbo3su/ovMt
https://doi.org/10.1101/2020.05.27.119529
http://creativecommons.org/licenses/by/4.0/


6 

Figure 1. Experimental setup and task. (A) Setup. Participants made reaching movements by sliding a 151 

pen across a digitizing tablet without vision of the hand. The stimuli and a cursor representing the hand 152 

position were presented on a monitor. (B) Reward-based motor learning task. Participants were instructed 153 

to ‘copy’ an invisible path (dashed grey line), with a score between 0 and 100 indicating how close their 154 

drawn path (blue line) was to the hidden path. (C) Learning across trials for single (left panel) and double 155 

invisible paths (right panel). Each grey line is an individual participant (n=33), with the black line 156 

representing the average across participants. Insets depict the six single curve invisible paths and the six 157 

double curve invisible paths used in the task. (D) Error-based motor learning task. Participants made center-158 

out reaching movements to visual targets (red dot) on a ring of landmarks (small grey dots) with veridical 159 

cursor feedback (not shown) or under a 45° rotation of the cursor feedback (blue line; hand direction is 160 

shown in green). (E) Learning curve (left panel) across the baseline, rotation 1, washout, and rotation 2 161 

block, and reported aiming angle (right panel) measured at the end of the first rotation block. Each grey line 162 

or dot represents an individual participant (n=33), the black lines represent the mean across participants. 163 

The shaded grey area in the right panel represents the standard deviation.  164 

Performance in reward-based and error-based motor learning is related 165 

The black traces in Figure 1C and 1E show the learning curves, averaged across all participants, 166 

for the reward-based and error-based learning tasks, respectively. These figures demonstrate 167 

that participants learned to increase their scores in the reward-based task and change their hand 168 

angle in the error-based task across trials. However, these group-averaged results may be 169 

somewhat misleading, as they obscure significant intersubject variability in both the rates and 170 

levels of learning obtained (see gray traces in Fig. 1C,E, which depict single participants). For 171 

example, Figure 2 shows the behavior of two participants, one ‘good’ overall learner and one 172 

‘poor’ overall learner, in both the reward-based learning task and the error-based learning task. 173 

Figure 2A and 2B depict the paths that the participants drew (left panel) and the corresponding 174 

scores (right panel), in two blocks of the reward-based learning task for a single (top) and double 175 

curve (bottom) with the largest amplitude (blocks 4 and 11 for the participant in Fig. 2A; blocks 11 176 

and 10 for the participant in Fig. 2B). While both participants quickly converged on a good solution 177 

for the single curve, resulting in scores close to 100, the movements of the participant in Figure 178 

2A resemble the invisible curve more closely. In addition, while the participant in Figure 2A quickly 179 

converges upon a solution that has a similar shape to the invisible double curve, the participant 180 

in Figure 2B never learns to draw that same double curve, and their score remains low.  181 

 182 

Figure 2C and 2D show, for the same two participants, the median hand angle (in blue) for each 183 

bin of eight trials across the error-based learning task, as well as the reported aiming angle (in 184 
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purple) assessed near the end of the first rotation block. Appropriate corrections for the 185 

visuomotor rotation are plotted as positive values; that is, a hand angle of 45° corresponds to full 186 

compensation for the rotation. The participant in Figure 2C shows quick adjustment of the hand 187 

angle towards 45° in the first and second rotation block, and a quick return towards 0° in the 188 

washout block. Such fast learning is associated with a large contribution of an aiming strategy, 189 

consistent with their reported aiming angles around 39°. The participant in Figure 2D, by contrast, 190 

shows only gradual adjustments of the hand angle in the rotation and washout blocks, and 191 

correspondingly reports aiming values around 0°, suggesting that learning in this participant is 192 

mainly driven by the implicit process. Overall, the participant in Figure 2A,C showed better 193 

learning performance in both tasks than the participant in Figure 2B,D.  194 

 195 

For each participant, we obtained six learning scores for the reward-based learning task (single 196 

and double curves ⨉ three amplitudes, positive and negative amplitudes were averaged) and 197 

seven learning scores for the error-based learning task (early and late learning in rotation block 198 

1, washout, and rotation block 2, and the reported aiming angle). Across the entire group, we 199 

found significant correlations in the learning scores within and between the two tasks (Fig. 2E). 200 

To derive single participant measures of learning that capture these relationships across both 201 

tasks, and that can be used to relate learning to the neuroanatomical data collected in these same 202 

participants, we performed a principal component analysis (PCA) on the learning scores (see 203 

Methods for details). We found that the first (PC1) and second principal components (PC2) 204 

explained 42.4% and 13.4% of the variance in the data, respectively. The projection plots in Figure 205 

2F allows for straightforward interpretation of these PCs, directly showing both the magnitude and 206 

sign of the loading of each of our 13 learning measures (six from the reward-based task and 207 

seven from the error-based task) onto PC1 and PC2. PC1 has positive loadings for all of the 208 

learning measures, indicating that this component captures overall learning performance. In other 209 

words, it provides a single measure that distinguishes between relatively ‘good’ and ‘poor’ learning 210 

performance in both the reward-based and error-based learning tasks. Indeed, PC1 shows 211 

significant positive correlations with all behavioral measures (ranging from r=0.37 to r=0.77, 212 

p=0.032 to p<0.001). The second principal component (PC2) broadly distinguishes between 213 

performance in the reward-based and error-based learning task, with positive loadings for the 214 

reward-based learning scores, negative loadings for learning in the rotation blocks, and little 215 

contribution of learning in the washout blocks. However, it explains only a small portion of the 216 

behavioral variance (13.4%), limiting the interpretational value of this component and its use in 217 

further analyses. Taken together, our approach demonstrates that performance in both tasks is 218 
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highly related; a single measure captures whether participants are good learners in the reward-219 

based learning and in the error-based learning task. 220 

 221 

 222 
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Figure 2. Learning performance in the error-based and reward-based tasks is related and is 223 

captured by a single latent variable. (A,C) Data of an example ‘good learner’. (A) shows the hidden path 224 

(dashed black line), drawn paths (blue and green lines), and score (blue to green gradient) for two blocks 225 

in the reward-based learning task. The median score in the last 10 trials of each block (grey shaded area) 226 

was used in further analyses. (C) shows the hand angle (light blue) and reported aiming angle (purple) 227 

relative to the target angle during the error-based learning task. Each data point represents the median of 228 

a set of eight trials, and the shading represents ± one standard deviation. The mean scores across sets 2 229 

and 3 (early learning) and 9 and 10 (late learning) of the rotation and washout blocks were used in further 230 

analyses, as well as the averaged aiming angle (grey shaded areas). In the baseline and washout blocks, 231 

a hand angle of zero would result in a target hit, and in the rotation blocks, a hand angle of 45° results in 232 

perfect compensation of the rotated cursor path, and thus a target hit. (B,D) Same as (A,C), but for a ‘poor 233 

learner’. (E) Correlations between scores in the reward-based and error-based motor learning task across 234 

participants (n=33). (F) Principal component analysis loadings for the first and second principal component.  235 

Larger entorhinal volume is associated with better motor learning  236 

Having clearly established that performance in reward-based and error-based learning is related, 237 

our next aim was to determine whether such performance is associated with the neuroanatomy 238 

of the MTL. To this end, we performed multiple linear regression analyses to predict PC1 and 239 

PC2 based on the right and left hippocampus (HC) and entorhinal cortex (EC) volumes (Fig. 3AB), 240 

corrected for total intracranial volume (see Methods). We also included total intracranial (IC) 241 

volume in our model to account for a potential effect of overall head size. Figure 3C shows the 242 

standardized regression coefficients and 95% confidence interval of the regression models for 243 

each PC. For PC1— our measure of performance in both tasks—the model explained 36.0% of 244 

the variance in PC1 score (model F(5)=3.030, p=0.027; Table S1), with right EC volume being 245 

the only significant predictor of PC1 score (t=3.318, p=0.003). That is, greater right entorhinal 246 

volume corresponded with higher scores on PC1, or better learning in both tasks. Notably, we 247 

found no significant predictors of PC2 score (model F(5)=0.454, p=0.806, R2=7.8%). This lack of 248 

effect might not be surprising given that the percentage of variance in our motor learning data that 249 

was explained by the second principal component was quite small (13.4%).  250 

 251 

As a secondary analysis, we performed a linear regression with the anterior and posterior 252 

hippocampus as separate predictors, as previous studies have reported differential relationships 253 

between these individual parts of the hippocampus and memory (e.g., 50). However, here we 254 

again did not find significant relationships between left and right aHC and pHC volume and the 255 

score on PC1 (model F(5)=0.358, p=0.427, R2=6.2%) or PC2 (F(5)=0.939, p=0.472, R2=14.8%; 256 
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Table S2). See the Supplemental Results for exploratory regression analyses using participants' 257 

striatal volumes as predictors. 258 

 259 

Taken together, the results of these regression analyses indicate that better performance in both 260 

reward-based and error-based learning is associated with larger right entorhinal volume. 261 

 262 

 263 

Figure 3. Larger entorhinal volumes are uniquely associated with better overall motor learning. (A) 264 

Illustration of the segmented hippocampus (orange) and entorhinal cortex (blue) in an example participant. 265 

(B) Volume of the left (L) and right (R) hippocampus (HC) and entorhinal cortex (EC), corrected for total 266 

intracranial volume (see Methods). Each dot depicts an individual participant (n=33), the dark grey line 267 

indicates the mean across participants, and the light grey area indicates the standard deviation. (C) 268 

Standardized regression coefficients and their corresponding 95% confidence intervals of the regression 269 

models to predict principal component 1 (PC 1; left panel) and principal component 2 (PC 2; right panel) 270 

based on the left and right hippocampus and entorhinal volumes, and the total intracranial volume (IC). (D) 271 

Individual partial correlation between right entorhinal volume and PC 1 score. The line represents the best 272 

fit regression line.  273 

Discussion 274 

While previous work in motor learning has often studied error-based and reward-based learning 275 

processes in isolation from one another, recently there has been increased interest in 276 
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understanding how these separate learning processes interact at the behavioral and neural levels. 277 

Here we find a strong relationship in intersubject variability between error-based and reward-278 

based motor learning, showing that learning performance across tasks can be explained by a 279 

single, latent variable. Our measures of learning and the nature of the tasks used suggest that 280 

this latent variable captures participants’ use of cognitive strategies during learning, with higher 281 

scores on this variable being associated with faster and better overall learning in both tasks. We 282 

further show, using structural neuroimaging and regression analyses with participants’ 283 

hippocampus and entorhinal cortical volumes as predictors, that higher scores on this latent 284 

variable, and thus faster and better overall learning, are associated with larger right entorhinal 285 

volume. Together, these findings suggest that a shared strategic process underlies individual 286 

differences in error-based and reward-based motor learning, and that this process is associated 287 

with structural differences in entorhinal cortex.  288 

 289 

Considerable computational and neural work has argued for a division of labor between the neural 290 

circuits that support error-based and reward-based learning (8, 31, 34, 59–61). According to this 291 

prevailing view, cortico-cerebellar pathways are responsible for error-based learning whereas 292 

cortico-striatal pathways are responsible for reward-based learning. Such distinctions, however, 293 

have often been reliant on indirect comparisons between different studies, and have been 294 

influenced by sampling biases in neural recording sites across different tasks. For instance, 295 

conventional views on error-based learning have suggested that adaptation is a primarily 296 

automatic mechanism, immune to reward-based feedback (8, 34). However, more recent 297 

behavioral evidence suggests that these two learning processes, while separable (62, 63), 298 

interact during sensorimotor learning (7, 64–66). Such interactions are likely to be supported by 299 

the recent demonstration of direct anatomical connections between the cerebellum and striatum 300 

(67). These bidirectional connections could explain recent neural findings from rodents showing 301 

that the cerebellum, besides processing direction-related errors, also represents various aspects 302 

of reward-related information during task performance (68–71). Together, this emerging evidence 303 

suggests that error-based and reward-based learning processes are closely intertwined at both 304 

the behavioral and neural levels. 305 

 306 

There is also emerging evidence to suggest that both error-based and reward-based processes 307 

are mediated through the use of cognitive strategies implemented during learning. In error-based 308 

adaptation, the contribution of this explicit, declarative process to learning has been well-309 

established behaviorally (2, 3, 13, 19, 23, 24, 72). Recent evidence from our group further 310 
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indicates that faster learning across participants is linked to individual differences in the magnitude 311 

of the cognitive strategy (3), which drives rapid changes early in the learning process. In reward-312 

based learning, by contrast, the contribution of cognitive strategies have received comparably 313 

little attention, and is only beginning to be established. As one example, recent work (36) using a 314 

visuomotor rotation task, wherein participants were only provided with reward-based feedback 315 

(binary success/failure), has shown that good versus poor learning is related to the 316 

implementation of a large cognitive component. This was evidenced by the observed reduction in 317 

reach angle when participants were required to remove their aiming strategy (see also 35). It was 318 

also evidenced by the observation that the reward-based learning was impaired when (1) 319 

participants had to perform a dual task (a separate mental rotation task) that divided their cognitive 320 

load (36), or when (2) participants’ reaction times were constrained (35), such that they could not 321 

implement the strategy (72). To date, work examining the link between error- and reward-based 322 

(63, 64, 66), has focused on how reinforcement signals (e.g., binary success/failure) shape both 323 

forms of learning. By contrast, our current behavioral findings show that, even when distinct 324 

reward- and error-based learning tasks are used, there is a single latent variable that explains a 325 

significant proportion of intersubject variability in performance across both types of learning.  326 

 327 

We found that a larger right entorhinal volume was associated with better overall learning in both 328 

the reward-based and error-based motor learning tasks. The entorhinal cortex has been shown 329 

to support a wide range of cognitive functions that would have bearing on various features of our 330 

motor learning tasks. Classically, the entorhinal cortex, together with neighboring areas in the 331 

medial temporal lobe, has been implicated in spatial navigation and memory through 332 

electrophysiological studies in rodents. These studies showed that place cells in the hippocampus 333 

(73) and grid cells in the entorhinal cortex (74) form a map-like representation of the environment. 334 

Grid cells have also been demonstrated in primate entorhinal cortex, even in the absence of 335 

locomotion, when the animal is simply exploring a visual scene with its eyes (75, 76). Such 336 

observations have recently been extended to humans with functional MRI (77, 78), and there is 337 

even evidence suggesting that mere shifts in covert attention (i.e., in the absence of overt eye 338 

movements), also elicits grid-cell-like responses in the entorhinal cortex (79). Together, these and 339 

other findings (51, 52, 80) have begun to reshape our understanding of the role of the entorhinal 340 

cortex in visual-spatial memory, and more generally in cognitive operations. An influential 341 

hypothesis is that the hippocampal-entorhinal system supports a cognitive map, an idea that was 342 

originally proposed to explain findings in rodents (55, 56) and later extended to humans (for review 343 
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see 81). This hypothesis proposes that the brain creates flexible representations of the 344 

environment to not only support memory but also guide effective (motor) behavior (42, 82, 83).  345 

 346 

In the context of the current study, we expect cognitive and spatial maps to be utilized during the 347 

exploration of visuomotor space in our curve drawing and visuomotor rotation tasks. Studies using 348 

fMRI in healthy adults, and neural recordings or electrical stimulation in pre-surgical patients, have 349 

provided evidence that the entorhinal cortex supports the encoding of goal direction and distance, 350 

relative locations, and the clockwise or counterclockwise direction of routes (84–90). While our 351 

motor learning tasks did not involve navigation in VR, the encoding of goal directions (in the 352 

visuomotor rotation task) and trajectories to the goal (in the curve drawing task) were critical to 353 

learning. If the entorhinal cortex is important for representing such spatial information, then its 354 

size may predict the ability to perform tasks — perceptual and motor — that recruit such 355 

representations. Studies investigating the relation between neuroanatomy and performance have 356 

associated greater gray matter volume in the entorhinal cortex with better scene recognition (46), 357 

spatial memory (45), navigation to memorized object locations in VR (47), as well as the lifetime 358 

amount of video gaming (91). Here, we extend these general observations to include the domain 359 

of motor learning, showing an association between entorhinal volume and overall performance in 360 

error-based and reward-based learning tasks. Although the basis for our lateralized right 361 

hemispheric effects are unclear, we find it noteworthy that it is primarily the right, and not left, 362 

regions of the medial temporal lobe that are associated with the processing of spatial information 363 

(92). 364 

Methods 365 

This study was part of a larger cohort study (registered at https://osf.io/y8649) in which 66 right-366 

handed paid volunteers underwent structural and resting state MRI scans. We anticipated that a 367 

subgroup of ~40 participants would agree to perform the error-based and reward-based motor 368 

learning tasks following participation in this main study. Thirty-four participants (18 men and 16 369 

women, aged 20-35 years) actually took part in these separate sessions (51 days before to 98 370 

days after the MRI session, mean absolute difference 38 days). One of these participants was 371 

excluded from further analysis because of a high number of invalid trials in the error-based 372 

learning task (>25%), thus leaving 33 participants for analysis.  373 

 374 
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The main experiment and motor learning follow-up tasks were approved by the Queen’s 375 

University Health Sciences Research Ethics Board, and participants provided written informed 376 

consent before participating in the MRI session and in the motor learning sessions. The methods 377 

and data analyses for the current study are pre-registered on OSF (https://osf.io/7prq5).  378 

Neuroimaging 379 

Procedure 380 

The day prior to each participants’ MRI scan, participants completed a biofeedback session in a 381 

simulated (mock) MRI scanner to become familiar with the MRI environment and to learn to 382 

minimize head movement. During the biofeedback session, participants viewed a 45-minute 383 

documentary with a live readout trace of their head motion overlaid. When their head motion 384 

exceeded an adaptive threshold, the documentary was paused for several seconds while static 385 

was played on the screen along with a loud, unpleasant noise. The next day, MRI data were 386 

collected over the course of a 1.5-hour session using a 3T whole-body MRI scanner (Magnetom 387 

Tim Trio; Siemens Healthcare). We gathered high-resolution whole-brain T1-weighted (repetition 388 

time [TR] 2400 ms; echo time [TE] 2.13 ms; flip angle 8°; echo spacing 6.5 ms) and T2-weighted 389 

(TR 3200 ms; TE 567 ms; variable flip angle; echo spacing 3.74 ms) anatomical images (in-plane 390 

resolution 0.7 ⨉ 0.7 mm2; 320 ⨉ 320 matrix; slice thickness 0.7 mm; 256 AC-PC transverse slices; 391 

anterior-to-posterior encoding; 2 ⨉ acceleration factor) and an ultra-high resolution T2-weighted 392 

volume centred on the medial temporal lobes (resolution 0.5 x 0.5 mm2; 384 ⨉ 384 matrix; slice 393 

thickness 0.5 mm; 104 transverse slices acquired parallel to the hippocampus long axis; anterior-394 

to-posterior encoding; 2 x acceleration factor; TR 3200 ms; TE 351 ms; variable flip angle; echo 395 

spacing 5.12 ms). The whole brain protocols were selected on the basis of protocol optimizations 396 

designed by Sortiropoulos and colleagues (93). The hippocampal protocols were modeled after 397 

Chadwick and colleagues (94). In addition, we acquired two sets (right-left direction and left-right 398 

direction) of whole-brain diffusion-weighted volumes (64 directions, b = 1200 s/mm2, 93 slices, 399 

voxel size = 1.5 ⨉ 1.5 ⨉ 1.5 mm3, TR 5.18 s, TE 103.4 ms; 3 times multiband acceleration), plus 400 

two extra B0 scans gathered separately for each orientation.  401 

Data analysis 402 

Automated cortical and subcortical segmentation of the T1-weighted and T2-weighted brain data 403 

was performed in Freesurfer (v6.0) (95, 96). For each hemisphere, we obtained the volume of the 404 

hippocampus (HC) and entorhinal cortex (EC) in the MTL for our main analysis. We also obtained 405 
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striatal volumes, including left and right globus pallidus, putamen, caudate and accumbens for 406 

exploratory analyses (see Supplemental Information). Segmentations of these areas were 407 

checked visually and manually adjusted if necessary.  408 

 409 

In addition to the Freesurfer segmentations, we obtained separate volumetric measures of the 410 

anterior and posterior hippocampus in each hemisphere. The ultra-high-resolution T2-weighted 411 

0.5mm isotropic medial temporal lobe scans were submitted to automated segmentation using 412 

HIPS, an algorithm previously validated to human raters specialized in segmenting detailed 413 

neuroanatomical scans of the hippocampus (97). Three independent raters were trained on 414 

segmenting the hippocampus at the uncal apex into aHC and pHC segments, and achieved a 415 

Dice coefficient of absolute agreement of 80%. Two of these raters independently segmented all 416 

participants using the 0.5 mm T1-weighted scans. The T2-weighted medial temporal lobe scans 417 

were registered to the T2-weighted whole-brain scans, which were in turn registered to the T1-418 

weighted whole-brain scans, and the combined transform was used to place the rater landmarks 419 

on the detailed medial temporal lobe scans. Finally, the total number of voxels in each subregion 420 

was multiplied by the volume of each voxel to obtain a total aHC and pHC volume.  421 

 422 

To account for differences in head size, all regional volumes were corrected for total intracranial 423 

(IC) volume obtained from Freesurfer. This was done by first estimating the slope b of the 424 

regression line of each regional volume on the IC volume across the 33 participants included in 425 

the analysis. Next, each regional volume was adjusted for the IC volume as: adjusted volume = 426 

raw volume - b ⨉ (IC volume - mean IC volume).  427 

Motor Learning Tasks 428 

Procedure 429 

Thirty-four participants performed an error-based and a reward-based motor learning task. We 430 

attempted to fully counterbalance the tasks across participants; The first 19 participants 431 

performed the error-based motor learning task before performing the reward-based motor 432 

learning task, with the next 15 participants performing the reward-based motor learning task 433 

before the error-based motor learning task. The reward-based task took about 25 minutes to 434 

complete and the error-based task took about 65 minutes to complete.  435 
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Setup 436 

Participants were seated at a table, with their chin and forehead supported by a headrest placed 437 

~50 cm in front of a vertical LCD monitor (display size 47.5 × 26.5 cm; resolution 1920 × 1080 438 

pixels) on which the stimuli were presented (Fig. 1A). Participants performed reaching movements 439 

by sliding a stylus across a digital drawing tablet (active area 311 x 216 mm; Wacom Intuous) 440 

placed on the table in front of the participant. Movement trajectories were sampled at 100 Hz by 441 

the digitizing tablet. Vision of the hand and tablet was occluded by a piece of black cardboard 442 

attached to the headrest. In the error-based learning task, eye movements were tracked at 500 443 

Hz using a video-based eye tracker (Eyelink 1000; SR Research) placed beneath the monitor. 444 

The eye movement data were not analyzed in this study. The stimuli and motor learning tasks are 445 

described in detail below.  446 

Reward-based motor learning 447 

Task 448 

The task was inspired by the reward-based learning task designed by Dam and colleagues (57). 449 

Participants performed reaching movements from a start position to a target line by sliding the 450 

stylus across the tablet. They were instructed to “find an invisible curved path by drawing paths 451 

on the tablet and evaluating your score for each attempt”. Participants started with a practice 452 

block of 10 trials, in which they traced a visible, straight line between the start position and the 453 

target, to become familiar with the task and the timing requirement of performing the movement 454 

within 2 s. Next, participants performed 12 blocks, each containing 20 attempts to copy an invisible 455 

path, which differed in each block.  456 

 457 

Each trial started with the presentation of a start position (5 mm radius circle). After the participant 458 

had moved the cursor to the start position and held it there for 200 ms, a horizontal target line (30 459 

x 1 mm) would appear 15 cm in front of the start position, and a rectangular outlined box (320 x 460 

170 mm) would appear around the start position and target (Fig. 1B). Next, participants drew a 461 

path from the start position to the target line while remaining in the box. After crossing the target 462 

line, the cursor disappeared, and a score between 0 and 100 was displayed centrally (for 1 s), 463 

indicating how close they were to the invisible path. Following this, all stimuli disappeared, and a 464 

new trial would start with the presentation of the start position and the reappearance of the cursor. 465 

If the movement duration was longer than 2 s, the score was not presented and the trial was 466 

repeated. 467 
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 468 

The invisible paths consisted of single curves (i.e., half sine waves; 6 blocks) and double curves 469 

(i.e., full sine waves; 6 blocks) of different amplitudes (± 0.2, 0.5 and 0.8 times the target distance), 470 

drawn between the start position and the center of the target line. Participants were not informed 471 

about the possible shapes of the invisible lines. The trial score was computed by taking the x 472 

position of the cursor at every cm travelled in the y-direction (i.e., 1, 2, 3, … and 15 cm), and 473 

computing the absolute difference in x position between the cursor and the invisible line at the 474 

corresponding y-distance. The sum of these errors was then normalized by dividing it by the sum 475 

of distances between a straight line and a curve with an amplitude of 0.5 times the target distance, 476 

and multiplied by 100 to obtain a score between 0 and 100 (negative scores were presented as 477 

0).  478 

 479 

All participants performed one practice block and 12 experimental blocks of trials. Ten different 480 

randomized orders of experimental blocks were created. Participant 1, 11, 21, and 31 performed 481 

the first order, participant 2, 12, 22, and 32 performed the second order, etc. 482 

Data analysis 483 

The median score in trials 11 to 20 of each block of 20 attempts were used as a measure of 484 

learning performance. We did not use trials 1-10 in our analysis based on our observation that, 485 

for participants who learned fairly quickly, they often used exploratory strategies when 486 

encountering a new path, which frequently resulted in scores of, or around, zero (Fig. 2A provides 487 

a good example of such a participant). For each participant, we averaged the median scores 488 

across single curves with the same amplitude (i.e. ‘leftward’ and ‘rightward’ curves) and across 489 

double curves with the same amplitude. This resulted in six scores per participant.  490 

Error-based motor learning 491 

Task 492 

Participants performed center-out reaching movements from a start position to one of eight visual 493 

targets presented on a 10 cm radius ring around the start position. Participants were instructed to 494 

hit the target with their cursor by making a fast reaching movement on the tablet, ‘slicing’ through 495 

the target. The ratio between movement of the tip of the stylus and movement of the cursor 496 

presented on the screen was 1:2, so that a movement of 5 cm on the tablet corresponded to a 497 

movement of 10 cm of the cursor. Participants first performed a baseline block in which they 498 
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received veridical feedback about the position of the tip of the stylus, shown as a cursor on the 499 

screen. After performing a baseline block, participants performed a visuomotor rotation task, a 500 

task that has been used extensively to assess error-based learning (e.g., 58, 98). In this task, the 501 

movement of the cursor representing the hand position is rotated about the hand start location, in 502 

this experiment by 45º clockwise, requiring that a counterclockwise adjustment of movement 503 

direction be learned.  504 

 505 

Each trial started with the participant moving the stylus to a central start position (5 mm radius 506 

circle). When the (unseen) cursor was within 5 cm of the start position, a ring was presented 507 

around the start position to indicate the distance of the cursor, so that the participant had to reduce 508 

the size of the ring to move to the start position. The cursor (4 mm radius circle) appeared when 509 

the cursor ‘touched’ the start position (9 mm distance). After the cursor was held within the start 510 

position for 500 ms, the target (6 mm radius open circle) was presented on an (imaginary) 10 cm 511 

radius ring around the start position at one of eight locations, separated by 45º (i.e., 0, 45, 90, 512 

135, 180, 225, 270 and 315º). In addition, 64 non-target ‘landmarks’ (3 mm radius outlined circles, 513 

spaced 5.625º apart) were presented, forming a 10 cm radius ring around the start position. After 514 

a 2 s delay, the target would ‘fill in’ (i.e., color red), providing the cue for the participant to perform 515 

a fast movement to the target. If the participant started the movement before the cue, or more 516 

than 1 s after the cue, the trial was aborted and a feedback message indicating “Too early” or 517 

“Too late” appeared on the screen, respectively. In correctly timed trials, the cursor was visible 518 

during the movement to the ring and then became stationary for 1 s when it reached the ring, 519 

providing the participant with visual feedback of their endpoint error. When any part of the cursor 520 

overlapped with any part of the target, the target would color green to indicate a hit. If the duration 521 

of the movement was longer than 300 ms, a feedback message “Too slow” would appear on the 522 

screen.  523 

 524 

In trials in the rotation block, the movement of the cursor was rotated by 45º clockwise around the 525 

start position. To assess the contribution of the explicit process of learning, participants performed 526 

several ‘reporting’ trials. These trials were performed at the end of the first rotation block to ensure 527 

that participants’ learning behavior would not be influenced, as the reporting procedure itself can 528 

increase the proportion of participants that implement a cognitive strategy (3). In reporting trials,  529 

participants were instructed to, before each reach movement, report the aiming direction of their 530 

hand for the cursor to hit the target. They did this by turning a knob with their left hand, to rotate 531 

a line on the screen, positioned between the start position and the ring, to align it with their 532 
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strategic aimpoint. When satisfied with the direction of the line, the participant clicked a button 533 

positioned next to the knob, and the line disappeared. After a 1 s delay, the target filled in as a 534 

cue to execute the reach. 535 

 536 

All participants performed 4 blocks of trials in total, where within each block, target locations were 537 

randomized within sets of eight: (1) A baseline block (5 sets of 8 trials; 40 in total), (2) a rotation 538 

block (10 sets of 8 trials without report + 2 sets of 8 reporting trials + 2 sets of 8 trials without 539 

report; 112 trials in total), (3) a washout block in which veridical cursor feedback was restored (10 540 

+ 10 sets with a 30 s break in between; 160 trials in total) and (4) a second rotation block to 541 

assess participants’ rates of re-learning (10 sets of 8 trials; 80 in total). Ten different randomized 542 

trial orders were created for the full experiment. Participant 1, 11, 21, and 31 performed the first 543 

order, participant 2, 12, 22, and 32 performed the second order, etc. 544 

Data analysis 545 

Trials in which the movement was initiated too early or too late (as detected online; 4% of trials) 546 

or in which the movement duration was longer than 300 ms (4% of trials), were discarded from 547 

the analysis. The median endpoint hand angle (i.e., the difference in angle between the target 548 

and the hand when the cursor crossed the ring) per set of eight trials was used as a measure of 549 

learning performance. For each participant, we computed early and late learning scores in the 550 

first rotation block, washout block, and second rotation block. To do this, we averaged the median 551 

in sets 2 and 3 and in sets 9 and 10 of each of these blocks (excluding the first set in which 552 

participants often showed highly variable behavior). To derive a measure of the magnitude of the 553 

explicit component of learning, we used the average of the median reported aiming angle with 554 

respect to the target, obtained in the reporting trials (sets 11 and 12 in the rotation block). This 555 

resulted in seven measures per participant.  556 

Relating learning measures and neuroanatomy 557 

Since the learning scores within and between the two learning tasks showed significant 558 

correlations across participants, we first submitted the scores to a principal component analysis 559 

(PCA) to obtain measures of learning performance across single dimensions. To do this, we first 560 

transformed the variables. For the error-based learning task, all angles were converted to 561 

absolute errors with respect to the target, and then multiplied by -1 so that positive values 562 

correspond to better performance. We then standardized all scores before submitting them to the 563 

PCA. The principal components (PCs) were obtained using the pca function in Matlab, which uses 564 
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a singular value decomposition algorithm. PCA reduces the dimensionality of the data by finding 565 

PCs that capture the maximal variance in the data.  566 

 567 

To test the hypothesis that better performance in the motor learning tasks is related to greater 568 

volumes of brain areas in the medial temporal lobe, we performed multiple linear regression 569 

analyses. All models were estimated using the fitlm function in Matlab, which returns a least-570 

squares fit of the scores to the data. Our primary analysis included the left and right HC and EC 571 

volumes. To control for a potential effect of overall head size on learning performance, we also 572 

included each participant’s total intracranial volume, making a total of five neuroanatomical 573 

measures. For the first and second PC, we fitted a multiple linear regression model with the PC 574 

as the dependent variable, and the set of four regional volumes plus the IC volume as predictors. 575 

Previous studies have reported differential relationships between the anterior and posterior parts 576 

of the hippocampus and memory (e.g., 50). Therefore, we performed a secondary analysis, 577 

including the left and right anterior and posterior HC volume as predictors, and the IC volume as 578 

a confounder.  579 
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