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Abstract 13 

Error-based and reward-based processes are critical for motor learning, and are thought to be 14 

mediated via distinct neural pathways. However, recent behavioral work in humans suggests that 15 

both learning processes are supported by cognitive strategies and that these contribute to 16 

individual differences in motor learning ability. While it has been speculated that medial temporal 17 

lobe regions may support this strategic component to learning, direct evidence is lacking. Here 18 

we first show that faster and more complete learning during error-based visuomotor adaptation is 19 

associated with better learning during reward-based shaping of reaching movements. This result 20 

suggests that strategic processes, linked to faster and better learning, drive individual differences 21 

in both error-based and reward-based motor learning. We then show that right entorhinal cortex 22 

volume was larger in good learning individuals—classified across both motor learning tasks—23 

compared to their poorer learning counterparts. This suggests that strategic processes underlying 24 

both error- and reward-based learning are linked to neuroanatomical differences in entorhinal 25 

cortex. 26 

 27 
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Significance Statement 30 

While it is widely appreciated that humans vary greatly in their motor learning abilities, little is 31 

known about the processes and neuroanatomical bases that underlie these differences. Here, 32 

using a data-driven approach, we show that individual variability in error-based and reward-based 33 

motor learning is tightly linked, and related to the use of cognitive strategies. We further show that 34 

structural differences in entorhinal cortex predict this intersubject variability in motor learning, with 35 

larger entorhinal volumes being associated with better overall error-based and reward-based 36 

learning. Together, these findings provide support for the notion that the ability to recruit strategic 37 

processes underlies intersubject variability in both error-based and reward-based learning, which 38 

itself may be linked to structural differences in medial temporal regions. 39 

Introduction 40 

The human brain’s capacity to learn new motor commands is fundamental to almost all activities 41 

we engage in. Traditionally, such learning has been viewed as an implicit, procedural process of 42 

the motor system, with neural studies focusing on brain areas in the frontoparietal cortex, striatum 43 

or cerebellum (Doya, 2000; Lalazar and Vaadia, 2008; Taylor and Ivry, 2014). Only relatively 44 

recently have studies demonstrated that cognitive systems, including processes related to 45 

strategy use and memory, can bolster or interfere with aspects of motor learning (Mazzoni and 46 

Krakauer, 2006; Keisler and Shadmehr, 2010; Taylor and Ivry, 2011; Seidler et al., 2012; Holland 47 

et al., 2018). It has been speculated, but not yet shown, that regions in the medial temporal lobe 48 

(MTL) may contribute to this cognitive component to motor learning.  49 

 50 

In error-based learning, the form of learning by which we refine and adjust our movements to 51 

changes in the body or the environment based on observable errors, the use of cognitive 52 

strategies (often termed the ‘explicit’ component) has been shown to drive large, rapid changes 53 

during early learning (Taylor and Ivry, 2011; Taylor et al., 2014). This is in contrast to the implicit 54 

process, which contributes to learning in parallel but in a nonconscious, gradual fashion. Whereas 55 

the reliance of the implicit process on the cerebellum is well established (Smith and Shadmehr, 56 

2005; Tseng et al., 2007), the neural basis of the explicit component remains speculative. 57 

Evidence from neuroimaging, aging, and lesion studies have implicated areas in the prefrontal 58 

cortex in explicit strategies (Shadmehr and Holcomb, 1997; Della-Maggiore and McIntosh, 2005; 59 

Taylor and Ivry, 2014). In addition, it has been suggested that regions in the MTL, given their role 60 
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in declarative processes, may be involved in the explicit component to motor learning (Doyon and 61 

Benali, 2005; Taylor and Ivry, 2014; de Brouwer et al., 2018).                                              62 

 63 

In reward-based learning, the form of learning in which motor commands are updated by signals 64 

related to success or failure (Sutton and Barto, 2018), the use of cognitive strategies have also 65 

been shown to play a pivotal role in performance (Codol et al., 2018; Holland et al., 2018). 66 

Conventionally, reward-based learning has been shown to involve neural circuits in the basal 67 

ganglia and striatum (Doya, 2000), but there is also some emerging evidence to suggest 68 

contributions from MTL regions (Gershman and Daw, 2017; Duncan et al., 2018). A key feature 69 

of reward-based learning is that it is achieved through exploration (i.e., the brain figuring out motor 70 

commands that increase success). Insofar as such exploration is facilitated by strategies, MTL 71 

structures may also contribute to performance during reward-based motor learning.  72 

 73 

The role of MTL regions in declarative memory and spatial navigation have been well established 74 

(Eichenbaum and Cohen, 2014). In humans, for example, anatomical imaging methods have 75 

demonstrated clear links between individual differences in hippocampus and/or entorhinal cortex 76 

volume with performance in memory and navigation tasks (Maguire et al., 2000; Rodrigue and 77 

Raz, 2004; Whiteman et al., 2016; Sherrill et al., 2018). It is increasingly recognized, however, 78 

that the hippocampal-entorhinal system can support more abstract relational representations 79 

(Tavares et al., 2015; Constantinescu et al., 2016; Horner et al., 2016; Aronov et al., 2017), and 80 

forms a ‘cognitive’ map for representing goals and relating objects and actions within a spatial 81 

context (Tolman, 1948; O’Keefe and Nadel, 1978). Such maps are likely to be critical when 82 

forming new action-outcome associations, as is the case when searching for and implementing 83 

strategies during motor learning.  84 

 85 

Here we asked whether individual differences in motor learning performance are linked to 86 

hippocampal and entorhinal volume in humans. To examine this, we had human participants 87 

undergo a structural neuroimaging session in addition  to performing separate error-based and 88 

reward-based learning tasks, both known to elicit the use of strategies. We show that learning 89 

performance in both motor tasks is directly related and that better overall learning across tasks is 90 

associated with larger entorhinal cortex volume. 91 
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Materials and Methods 92 

Participants 93 

The current study used a subset of participants (N=34; 18 men and 16 women, aged 20-35 years) 94 

from a larger cohort study (registered at https://osf.io/y8649) in which 66 right-handed paid 95 

volunteers underwent structural and resting state MRI scans.  Our thirty-four participants took part 96 

in an error-based and reward-based motor learning testing session in addition to participation in 97 

the main study. One of these participants was excluded from further analysis because of a high 98 

number of invalid trials in the error-based learning task (>25%), thus leaving 33 participants for 99 

analysis.  100 

 101 

The main experiment and motor learning follow-up tasks were approved by the Queen’s 102 

University Health Sciences Research Ethics Board, and participants provided written informed 103 

consent before participating in the main experiment and in the motor learning session. The motor 104 

learning session took approximately an hour and 45 minutes and participants were compensated 105 

$20 for their time. The methods, hypotheses and data analyses for the current study were pre-106 

registered on OSF (https://osf.io/7prq5).  107 

Neuroimaging 108 

Procedure 109 

The day prior to each participants’ MRI scan, participants completed a biofeedback session in a 110 

simulated (mock) MRI scanner to become familiar with the MRI environment and to learn to 111 

minimize head movement. During the biofeedback session, participants viewed a 45-minute 112 

documentary with a live readout trace of their head motion overlaid. When their head motion 113 

exceeded an adaptive threshold, the documentary was paused for several seconds while static 114 

was played on the screen along with a loud, unpleasant noise. The next day, MRI data were 115 

collected over the course of a 1.5-hour session using a 3T whole-body MRI scanner (Magnetom 116 

Tim Trio; Siemens Healthcare). We gathered high-resolution whole-brain T1-weighted (repetition 117 

time [TR] 2400 ms; echo time [TE] 2.13 ms; flip angle 8°; echo spacing 6.5 ms) and T2-weighted 118 

(TR 3200 ms; TE 567 ms; variable flip angle; echo spacing 3.74 ms) anatomical images (in-plane 119 

resolution 0.7 ⨉ 0.7 mm2; 320 ⨉ 320 matrix; slice thickness 0.7 mm; 256 AC-PC transverse slices; 120 

anterior-to-posterior encoding; 2 ⨉ acceleration factor) and an ultra-high resolution T2-weighted 121 
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volume centred on the medial temporal lobes (resolution 0.5 x 0.5 mm2; 384 ⨉ 384 matrix; slice 122 

thickness 0.5 mm; 104 transverse slices acquired parallel to the hippocampus long axis; anterior-123 

to-posterior encoding; 2 x acceleration factor; TR 3200 ms; TE 351 ms; variable flip angle; echo 124 

spacing 5.12 ms). The whole brain protocols were selected on the basis of protocol optimizations 125 

designed by Sortiropoulos and colleagues (2013). The hippocampal protocols were modeled after 126 

Chadwick and colleagues (2014). In addition, we acquired two sets (right-left direction and left-127 

right direction) of whole-brain diffusion-weighted volumes (64 directions, b = 1200 s/mm2, 93 128 

slices, voxel size = 1.5 ⨉ 1.5 ⨉ 1.5 mm3, TR 5.18 s, TE 103.4 ms; 3 times multiband acceleration), 129 

plus two extra B0 scans gathered separately for each orientation.  130 

Data analysis 131 

Automated cortical and subcortical segmentation of the T1-weighted and T2-weighted brain data 132 

was performed in Freesurfer (v6.0) (Fischl et al., 2002, 2004). For each hemisphere, we obtained 133 

the volume of the hippocampus (HC) and entorhinal cortex (EC) in the MTL for our main analysis. 134 

We also obtained striatal volumes, including left and right globus pallidus, putamen, caudate and 135 

accumbens for exploratory analyses (see Supplemental Information). Segmentations of these 136 

areas were checked visually and manually adjusted if necessary.  137 

 138 

In addition to the Freesurfer segmentations, we obtained separate volumetric measures of the 139 

anterior and posterior hippocampus in each hemisphere. The ultra-high-resolution T2-weighted 140 

0.5mm isotropic medial temporal lobe scans were submitted to automated segmentation using 141 

HIPS, an algorithm previously validated to human raters specialized in segmenting detailed 142 

neuroanatomical scans of the hippocampus (Romero et al., 2017). Three independent raters were 143 

trained on segmenting the hippocampus at the uncal apex into aHC and pHC segments, and 144 

achieved a Dice coefficient of absolute agreement of 80%. Two of these raters independently 145 

segmented all participants using the 0.5 mm T1-weighted scans. The T2-weighted medial 146 

temporal lobe scans were registered to the T2-weighted whole-brain scans, which were in turn 147 

registered to the T1-weighted whole-brain scans, and the combined transform was used to place 148 

the rater landmarks on the detailed medial temporal lobe scans. Finally, the total number of voxels 149 

in each subregion was multiplied by the volume of each voxel to obtain a total aHC and pHC 150 

volume.  151 

 152 

To account for differences in head size, all regional volumes were corrected for total intracranial 153 

(IC) volume obtained from Freesurfer. This was done by first estimating the slope b of the 154 
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regression line of each regional volume on the IC volume across the 33 participants included in 155 

the analysis. Next, each regional volume was adjusted for the IC volume as: adjusted volume = 156 

raw volume - b ⨉ (IC volume - mean IC volume).  157 

Motor learning tasks 158 

General procedure 159 

Thirty-four participants performed an error-based and a reward-based motor learning task. We 160 

attempted to fully counterbalance the tasks across participants; The first 19 participants 161 

performed the error-based motor learning task before performing the reward-based motor 162 

learning task, with the next 15 participants performing the reward-based motor learning task 163 

before the error-based motor learning task. The reward-based task took about 25 minutes to 164 

complete and the error-based task took about 65 minutes to complete.  165 

Setup 166 

Participants were seated at a table, with their chin and forehead supported by a headrest placed 167 

~50 cm in front of a vertical LCD monitor (display size 47.5 × 26.5 cm; resolution 1920 × 1080 168 

pixels) on which the stimuli were presented (Fig. 1A). Participants performed reaching movements 169 

by sliding a stylus across a digital drawing tablet (active area 311 x 216 mm; Wacom Intuous) 170 

placed on the table in front of the participant. Movement trajectories were sampled at 100 Hz by 171 

the digitizing tablet. Vision of the hand and tablet was occluded by a piece of black cardboard 172 

attached to the headrest. In the error-based learning task, eye movements were tracked at 500 173 

Hz using a video-based eye tracker (Eyelink 1000; SR Research) placed beneath the monitor. 174 

The eye movement data were not analyzed in this study. The stimuli and motor learning tasks are 175 

described in detail below.  176 

Reward-based motor learning 177 

Task 178 

Our task was inspired by the reward-based learning task designed by Dam and colleagues (Dam 179 

et al., 2013). Participants performed reaching movements from a start position to a target line by 180 

sliding the stylus across the tablet. They were instructed to “find an invisible curved path by 181 

drawing paths on the tablet and evaluating your score for each attempt”. Participants started with 182 

a practice block of 10 trials, in which they traced a visible, straight line between the start position 183 
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and the target, to become familiar with the task and the timing requirement of performing the 184 

movement within 2 s. Next, participants performed 12 blocks, each containing 20 attempts to copy 185 

an invisible path, which differed in each block.  186 

 187 

Each trial started with the presentation of a start position (5 mm radius circle; Fig. 1B). After the 188 

participant had moved the cursor to the start position and held it there for 200 ms, a horizontal 189 

target line (30 x 1 mm) would appear 15 cm in front of the start position, and a rectangular outlined 190 

box (320 x 170 mm) would appear around the start position and target. Next, participants drew a 191 

path from the start position to the target line while remaining in the box. After crossing the target 192 

line, the cursor disappeared, and a score between 0 and 100 was displayed centrally (for 1 s), 193 

indicating how close they were to the invisible path. Following this, all stimuli disappeared, and a 194 

new trial would start with the presentation of the start position and the reappearance of the cursor. 195 

If the movement duration was longer than 2 s, the score was not presented and the trial was 196 

repeated. 197 

 198 

The invisible paths consisted of single curves (i.e., half sine waves; 6 blocks) and double curves 199 

(i.e., full sine waves; 6 blocks) of different amplitudes (± 0.2, 0.5 and 0.8 times the target distance; 200 

see inset of Fig. 1C), drawn between the start position and the center of the target line. 201 

Participants were not informed about the possible shapes of the invisible lines. The trial score 202 

was computed by taking the x position of the cursor at every cm travelled in the y-direction (i.e., 203 

1, 2, 3, … and 15 cm), and computing the absolute difference in x position between the cursor 204 

and the invisible line at the corresponding y-distance. The sum of these errors was then 205 

normalized by dividing it by the sum of distances between a straight line and a curve with an 206 

amplitude of 0.5 times the target distance, and multiplied by 100 to obtain a score between 0 and 207 

100 (negative scores were presented as 0).  208 

 209 

All participants performed one practice block and 12 experimental blocks of trials. Ten different 210 

randomized orders of experimental blocks were created. Participant 1, 11, 21, and 31 performed 211 

the first order, participant 2, 12, 22, and 32 performed the second order, etc. 212 

Data analysis 213 

The median score in trials 11 to 20 of each block of 20 attempts were used as a measure of 214 

learning performance. We did not use trials 1-10 in our analysis based on our frequent observation 215 

that participants who learned fairly quickly often used exploratory strategies when encountering 216 
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a new path, which often resulted in scores of, or around, zero on several trials (Fig. 2A provides 217 

a good example of such a participant). For each participant, we averaged the median scores 218 

across all single curves and across all double curves with the same amplitude. This resulted in 219 

two scores per participant.  220 

Error-based motor learning 221 

Task 222 

Participants performed center-out reaching movements from a start position to one of eight visual 223 

targets presented on a 10 cm radius ring around the start position. Participants were instructed to 224 

hit the target with their cursor by making a fast reaching movement on the tablet, ‘slicing’ through 225 

the target. The ratio between movement of the tip of the stylus and movement of the cursor 226 

presented on the screen was 1:2, so that a movement of 5 cm on the tablet corresponded to a 227 

movement of 10 cm of the cursor. Participants first performed a baseline block in which they 228 

received veridical feedback about the position of the tip of the stylus, shown as a cursor on the 229 

screen. After performing a baseline block, participants performed a visuomotor rotation task, a 230 

task that has been used extensively to assess error-based learning (e.g., Cunningham, 1989; 231 

Krakauer et al., 2005). In this task, the movement of the cursor representing the hand position is 232 

rotated about the hand start location, in this experiment by 45º clockwise, requiring that a 233 

counterclockwise adjustment of movement direction be learned.  234 

 235 

Each trial started with the participant moving the stylus to a central start position (5 mm radius 236 

circle; Fig. 1D). When the (unseen) cursor was within 5 cm of the start position, a ring was 237 

presented around the start position to indicate the distance of the cursor, so that the participant 238 

had to reduce the size of the ring to move to the start position. The cursor (4 mm radius circle) 239 

appeared when the cursor ‘touched’ the start position (9 mm distance). After the cursor was held 240 

within the start position for 500 ms, the target (6 mm radius open circle) was presented on an 241 

(imaginary) 10 cm radius ring around the start position at one of eight locations, separated by 45º 242 

(i.e., 0, 45, 90, 135, 180, 225, 270 and 315º). In addition, 64 non-target ‘landmarks’ (3 mm radius 243 

outlined circles, spaced 5.625º apart) were presented, forming a 10 cm radius ring around the 244 

start position. After a 2 s delay, the target would ‘fill in’ (i.e., color red), providing the cue for the 245 

participant to perform a fast movement to the target. If the participant started the movement before 246 

the cue, or more than 1 s after the cue, the trial was aborted and a feedback message indicating 247 

“Too early” or “Too late” appeared on the screen, respectively. In correctly timed trials, the cursor 248 
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was visible during the movement to the ring and then became stationary for 1 s when it reached 249 

the ring, providing the participant with visual feedback of their endpoint error. When any part of 250 

the cursor overlapped with any part of the target, the target would color green to indicate a hit. If 251 

the duration of the movement was longer than 300 ms, a feedback message “Too slow” would 252 

appear on the screen.  253 

 254 

In trials in the rotation block, the movement of the cursor was rotated by 45º clockwise around the 255 

start position. To assess the contribution of the explicit process of learning, participants performed 256 

several ‘reporting’ trials. These trials were performed at the end of the first rotation block to ensure 257 

that participants’ learning behavior would not be influenced, as the reporting procedure itself can 258 

increase the proportion of participants that implement a cognitive strategy (3). In reporting trials,  259 

participants were instructed to, before each reach movement, report the aiming direction of their 260 

hand for the cursor to hit the target. They did this by turning a knob with their left hand, to rotate 261 

a line on the screen, positioned between the start position and the ring, to align it with their 262 

strategic aimpoint. When satisfied with the direction of the line, the participant clicked a button 263 

positioned next to the knob, and the line disappeared. After a 1 s delay, the target filled in as a 264 

cue to execute the reach. 265 

 266 

All participants performed 4 blocks of trials in total, where within each block, target locations were 267 

randomized within sets of eight: (1) A baseline block (5 sets of 8 trials; 40 in total), (2) a rotation 268 

block (10 sets of 8 trials without report + 2 sets of 8 reporting trials + 2 sets of 8 trials without 269 

report; 112 trials in total), (3) a washout block in which veridical cursor feedback was restored (10 270 

+ 10 sets with a 30 s break in between; 160 trials in total) and (4) a second rotation block to 271 

assess participants’ rates of re-learning (10 sets of 8 trials; 80 in total). Ten different randomized 272 

trial orders were created for the full experiment. Participant 1, 11, 21, and 31 performed the first 273 

order, participant 2, 12, 22, and 32 performed the second order, etc. 274 

Data analysis 275 

Trials in which the movement was initiated too early or too late (as detected online; 4% of trials) 276 

or in which the movement duration was longer than 300 ms (4% of trials), were discarded from 277 

the analysis. The median endpoint hand angle (i.e., the difference in angle between the target 278 

and the hand when the cursor crossed the ring) per set of eight trials was used as a measure of 279 

learning performance. To capture individual differences in the rate of early learning that 280 

correspond to the implementation of aiming strategies (Taylor et al., 2014; de Brouwer et al., 281 
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2018), we computed, for each participant, early learning scores in the first and second rotation 282 

block. To do this, we averaged the median in sets 2 and 3 of each of these blocks (excluding the 283 

first set in which participants often showed highly variable behavior). To derive a direct measure 284 

of the magnitude of the explicit component of learning, we used the average of the median 285 

reported aiming angle with respect to the target, obtained in the reporting trials (sets 11 and 12 in 286 

the rotation block). This resulted in three measures per participant.  287 

Relating learning measures and neuroanatomy 288 

Data and statistical analysis 289 

As a first exploratory step to determine relationships in subject performance across the error-290 

based and reward-based learning tasks, we calculated Pearson correlations between the five 291 

learning scores across participants. Having identified patterns of covariation in subject-level 292 

performance across the two tasks, for our main analysis, we submitted the learning scores to a 293 

principal component analysis (PCA). This approach has three important advantages: (1) it 294 

identifies the main patterns of covariation both within and between tasks, (2) it reduces the number 295 

of behavioural variables to be used in further analyses, and (3) it provides us with uncorrelated 296 

measures of learning performance (i.e, principal components), suitable to use in linear regression. 297 

To do the PCA, we first transformed the variables from the error-based learning task, whereby all 298 

angles were converted to errors with respect to the target, such that zero corresponds to a target 299 

hit, negative errors (i.e., between -45º and 0º) correspond to no or partial compensation of the 300 

rotation, and positive errors correspond to overcompensation of the rotation. This transformation 301 

ensured that higher values on both the error-based and reward-based motor learning tasks were 302 

associated with better learning performance. We then standardized all scores before submitting 303 

them to the PCA. The principal components (PCs) were obtained using the pca function in Matlab, 304 

which uses a singular value decomposition algorithm to find PCs that capture the maximal 305 

variance in the data.  306 

 307 

To test the hypothesis that better performance in the motor learning tasks is related to greater 308 

volumes of brain areas in the medial temporal lobe, we performed multiple linear regression 309 

analyses. All models were estimated using the fitlm function in Matlab, which returns a least-310 

squares fit of the scores to the data. Our primary analysis included the left and right HC and EC 311 

volumes. To control for a potential effect of overall head size on learning performance, we also 312 

included each participant’s total intracranial volume, making a total of five neuroanatomical 313 
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measures. For the first and second PC, we fitted a multiple linear regression model with the PC 314 

as the dependent variable, and the set of four regional volumes plus the IC volume as predictors. 315 

Previous studies have reported differential relationships between the anterior and posterior parts 316 

of the hippocampus and memory (e.g., Maguire et al., 2000). Therefore, we performed a 317 

secondary analysis, including the left and right anterior and posterior HC volume as predictors, 318 

and the IC volume as a confounder.  319 

Results 320 

In order to determine the relationship between motor performance in reward-based and error-321 

based learning tasks, and the extent to which the size of hippocampal and entorhinal cortex may 322 

be associated to such learning, we collected high-resolution structural MRI scans from 323 

participants (N=34) prior to performing two separate motor learning tasks outside the scanner. In 324 

the reward-based learning task, participants learned to copy an invisible, curved path through trial 325 

and error, using only a score (between 0 and 100 points) to improve their performance. This score, 326 

presented at the end of each trial, indicated how closely the participants’ drawn path 327 

corresponded to the invisible path (Fig. 1B). Participants drew these paths on a digital drawing 328 

tablet from a start to a target position displayed on a vertical monitor (Fig. 1A), and were instructed 329 

to maximize their score. To obtain a representative measure of each participant’s reward-based 330 

learning rate and ability, we had participants perform this task for 12 different invisible paths, with 331 

20 attempts for each. Participants were naive to the possible shapes of the paths, which were 332 

shaped as single curves (i.e., half sine waves) and double curves (i.e., full sine waves) between 333 

the start and target position, with different amplitudes (see Fig. 1C). Because participants received 334 

only visual feedback about their path trajectory—and never the rewarded path—they did not 335 

receive error-based information that could be used to guide learning. By design, this reward-336 

based task requires implementing a search strategy to first find the invisible path and then refine 337 

the drawn path, and we thus predict that participants who perform well in this task are better at 338 

implementing such strategies.  339 

 340 

For the error-based learning task, we used the classic visuomotor rotation learning paradigm 341 

(Cunningham, 1989), wherein participants had to adjust their movements to a 45° rotation of the 342 

cursor movement, which represented participants’ hand movements, in order to hit visual targets 343 

(Fig. 1D). Participants performed center-out reaching movements on the drawing tablet to one of 344 

eight targets displayed on a monitor. After a baseline phase with veridical cursor feedback, 345 
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participants were exposed to the 45° visuomotor rotation of the movement of the cursor, requiring 346 

an adjustment of the reaching movement in the opposite direction. Learning in this task consists 347 

of two components: automatic, implicit adjustments of the reach direction, resulting in gradual 348 

changes in performance, and the implementation of an aiming strategy to counteract the rotation, 349 

resulting in fast changes in performance (Redding and Wallace, 1993; Taylor et al., 2014). Our 350 

previous work has shown (de Brouwer et al., 2018) — and we predict here — that faster and more 351 

complete learning is largely driven by the use of an aiming strategy, used to counteract the 352 

rotation. At the end of the first block of rotation trials, we assessed this aiming strategy by asking 353 

participants to report the intended aiming angle by turning a knob with their left hand to rotate a 354 

line on the screen at the start of the trial, before executing the reach (Taylor et al., 2014). Learning 355 

was then ‘washed out’ by restoring veridical cursor feedback, after which the visuomotor rotation 356 

was re-instantiated to assess the rate of re-learning. 357 
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 358 
Figure 1. Experimental tasks and learning curves averaged across participants. (A) Setup. 359 

Participants made reaching movements by sliding a pen across a digitizing tablet without vision of the hand. 360 

The stimuli and a cursor representing the hand position were presented on a monitor. (B) Reward-based 361 

motor learning task. Participants were instructed to ‘copy’ an invisible path (dashed black line), with a score 362 

between 0 and 100 indicating how close their drawn path (blue line) was to the hidden path. (C) Learning 363 

across trials for single (left panel) and double invisible paths (right panel). Each grey line is an individual 364 

participant (n=33), with the black line representing the average across participants. Insets depict the six 365 

single curve invisible paths and the six double curve invisible paths used in the task. (D) Error-based motor 366 

learning task. Participants made center-out reaching movements to visual targets (red dot) on a ring of 367 

landmarks (small grey dots) with veridical cursor feedback (not shown) or under a 45° rotation of the cursor 368 
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feedback (blue line; hand direction is shown in light blue). (E) Learning curves (left panel) across the 369 

baseline, rotation 1, washout, and rotation 2 block. Each grey line represents an individual participant 370 

(n=33), the black line represents the mean across participants. 371 

Performance in reward-based and error-based motor learning is related 372 

The black traces in Figure 1C and 1E show the learning curves, averaged across all participants, 373 

for the reward-based and error-based learning tasks, respectively. These figures demonstrate 374 

that participants learned to increase their scores in the reward-based task and change their hand 375 

angle in the error-based task across trials. However, these group-averaged results may be 376 

somewhat misleading, as they obscure significant intersubject variability in both the rates and 377 

levels of learning obtained (see gray traces in Fig. 1C,E, which depict single participants). For 378 

example, Figure 2 shows the behavior of two participants, one ‘good’ overall learner and one 379 

‘poor’ overall learner, in both the reward-based learning task and the error-based learning task. 380 

Figure 2A and 2B depict the paths that the participants drew (left panel) and the corresponding 381 

scores (right panel), in two blocks of the reward-based learning task for a single (top) and double 382 

curve (bottom) with the largest amplitude (blocks 4 and 11 for the participant in Fig. 2A; blocks 11 383 

and 10 for the participant in Fig. 2B). While both participants quickly converged on a good solution 384 

for the single curve, resulting in scores close to 100, the movements of the participant in Figure 385 

2A resemble the invisible curve more closely. In addition, while the participant in Figure 2A quickly 386 

converges upon a solution that has a similar shape to the invisible double curve, the participant 387 

in Figure 2B never learns to draw that same double curve, and their score remains low.  388 

 389 

Figure 2C and 2D show, for the same two participants, the median hand angle (in blue) for each 390 

bin of eight trials across the error-based learning task, as well as the reported aiming angle (in 391 

purple) assessed near the end of the first rotation block. Appropriate corrections for the 392 

visuomotor rotation are plotted as positive values; that is, a hand angle of 45° corresponds to full 393 

compensation for the rotation. The participant in Figure 2C shows quick adjustment of the hand 394 

angle towards 45° in the first and second rotation block, and a quick return towards 0° in the 395 

washout block. Such fast learning is associated with a large contribution of an aiming strategy, 396 

consistent with their reported aiming angles around 39°. The participant in Figure 2D, by contrast, 397 

shows only gradual adjustments of the hand angle in the rotation and washout blocks, and 398 

correspondingly reports aiming values around 0°, suggesting that learning in this participant is 399 

mainly driven by the implicit process. Overall, the participant in Figure 2A,C showed better 400 

learning performance in both tasks than the participant in Figure 2B,D.  401 

 402 
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 403 

Figure 2. Example data of a ‘good learner’ and a ‘poor learner’. (A,C) Data of an example ‘good learner’. 404 

(A) Hidden path (dashed black line), drawn paths (blue and green lines), and score (blue to green gradient) 405 

for two blocks in the reward-based learning task. The median score in the last 10 trials of each block (grey 406 

shaded area) was used in further analyses. (C) Hand angle (light blue) and reported aiming angle (purple) 407 

relative to the target angle during the error-based learning task. Each data point represents the median of 408 

a set of eight trials, and the shading represents ± one standard deviation. The mean scores across sets 2 409 

and 3 (early learning) of the rotation blocks were used in further analyses, as well as the averaged aiming 410 

angle (grey shaded areas). In the baseline and washout blocks, a hand angle of zero would result in a 411 

target hit, and in the rotation blocks, a hand angle of 45° results in perfect compensation of the rotated 412 

cursor path, and thus a target hit. (B,D) Same as (A,C), but for a ‘poor learner’. 413 

 414 

For each participant, we obtained two learning scores for the reward-based learning task (single 415 

and double curves) and three learning scores for the error-based learning task (early and late 416 

learning in rotation block 1 and 2, and the reported aiming angle; Fig 3A). Across the entire group 417 

of participants, we observed several significant correlations in the learning scores both within and 418 
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between the two tasks (Fig. 3B). Notably, the latter demonstrates clear patterns of covariation in 419 

subject-level performance across both the error-based and reward-based motor learning tasks. 420 

To derive single participant measures of learning that capture these patterns of covariation, and 421 

that can be used to relate overall learning performance to the neuroanatomical data collected in 422 

these same participants, we performed a principal component analysis (PCA) on the learning 423 

scores (see Methods for details). We found that the first (PC1) and second principal components 424 

(PC2) explained 53.8% and 22.3% of the variance in the data (76.1% overall), respectively. The 425 

projection plots in Figure 3C (left panel) allows for a straightforward interpretation of these PCs, 426 

directly showing both the magnitude and sign of the loading of each of our 5 learning measures 427 

onto PC1 and PC2. Notably, PC1 has positive loadings for all of the learning measures, indicating 428 

that this single component captures overall learning performance. Indeed, PC1 shows significant 429 

positive correlations with all behavioral learning measures from both tasks (ranging from r=0.55 430 

to r=0.82, all p<0.001, see Fig. 3C, right panel). In other words, PC1 provides a single scalar 431 

measure that distinguishes between relatively ‘good’ versus ‘poor’ learning performance across 432 

both the reward-based and error-based learning tasks. The second principal component (PC2) 433 

broadly distinguishes between performance in the reward-based and error-based learning task, 434 

with positive loadings for the reward-based learning scores and negative loadings for learning in 435 

the rotation blocks. However, PC2 explains a relatively small portion of the overall behavioral 436 

variance (22.3%), limiting its interpretational value and its use in further analyses. Taken together, 437 

our dimensionality-reduction approach on the behavioral learning data demonstrates that subject-438 

level performance in both tasks is highly related, as a single latent variable (PC1) captures 439 

whether participants are good learners in both the reward-based learning and in the error-based 440 

learning task. 441 
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Figure 3. Learning performance in the error-based 442 

and reward-based tasks is related and is captured 443 

by a single latent variable. (A) Distribution of scores 444 

for single and double curve performance in the reward-445 

based learning task, and distribution of angular errors 446 

during early learning in the first and second rotation 447 

block, and reported aiming errors. Each dot indicates 448 

the mean value of one participant, the horizontal line 449 

indicates the mean across participants, and the shaded 450 

area indicates the standard error of the mean. (B) 451 

Scatterplots and associated Pearson correlations 452 

(uncorrected) within and between scores in the reward-453 

based and error-based motor learning tasks across 454 

participants (n=33). This demonstrates subject-level 455 

covariation in learning performance both within and 456 

between the two tasks. (C) Principal component 457 

analysis loadings for the first and second principal 458 

component (PC) at left, and Pearson correlations 459 

between the first principal component and learning 460 

scores at right. This shows that PC1 provides a useful 461 

proxy for learning performance across both tasks. In 462 

(B) and (C), each dot represents one participant, and 463 

the black line represents the best fit regression line.  464 
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Larger entorhinal volume is associated with better error- and reward-based motor 465 

learning  466 

Having clearly established that subject-level performance in reward-based and error-based 467 

learning is related and that this pattern of covariation can be captured by a single measure (i.e., 468 

PC1), our next aim was to determine whether this variation in performance is associated with the 469 

neuroanatomy of the MTL. To this end, we performed multiple linear regression analyses using 470 

right and left hippocampus (HC) and entorhinal cortex (EC) volumes as predictors and PC1 as 471 

the outcome variable (Fig. 4AB), corrected for total intracranial volume (see Methods). We also 472 

included total intracranial (IC) volume in our model to account for a potential effect of overall head 473 

size. Figure 4C shows the standardized regression coefficients and 95% confidence interval of 474 

the regression models for each PC. For PC1 — our measure of good vs. poor performance in 475 

both tasks — the model significantly explained the variance in PC1 score (model F(5)=4.050, 476 

p=0.007; R2=42.9%), with right EC volume being a significant predictor (t=3.689, p=0.001; see 477 

Figure 4-1). That is, larger right entorhinal volume corresponded with higher scores on PC1, or 478 

better overall learning in both tasks. Notably, we found no significant predictors of PC2 score 479 

(model F(5)=0.410, p=0.806, R2=7.1%), the measure that broadly distinguished between 480 

performance in the reward-based and error-based learning task. This lack of effect might not be 481 

surprising given that the percentage of variance in our motor learning data that was explained by 482 

the second principal component was fairly small (22.3%).  483 

 484 

As a secondary analysis, we performed a linear regression with the anterior and posterior 485 

hippocampus as separate predictors, as previous studies have reported differential relationships 486 

between these individual parts of the hippocampus and memory (e.g., Maguire et al., 2000). 487 

However, here we again did not find significant relationships between left and right aHC and pHC 488 

volume and the score on PC1 (model F(5)=0.360, p=0.871, R2=6.2%) or PC2 (F(5)=0.440, 489 

p=0.817, R2=7.5%; Figure 4-2).  490 

 491 

Taken together, the results of these regression analyses indicate that better performance in both 492 

reward-based and error-based learning is associated with larger right entorhinal volume. 493 
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 494 

Figure 4. Larger entorhinal volumes are uniquely associated with better overall motor learning. (A) 495 

Illustration of the segmented hippocampus (orange) and entorhinal cortex (blue) in an example participant. 496 

(B) Volume of the left (L) and right (R) hippocampus (HC) and entorhinal cortex (EC), corrected for total 497 

intracranial volume (see Methods). Each dot depicts an individual participant (n=33), the dark grey line 498 

indicates the mean across participants, and the light grey area indicates the standard deviation. (C) 499 

Standardized regression coefficients and their corresponding 95% confidence intervals of the regression 500 

models to predict principal component 1 (PC 1; left panel) and principal component 2 (PC 2; right panel) 501 

based on the left and right hippocampus and entorhinal volumes, and the total intracranial volume (IC). See 502 

Figure 4-1 and 4-2 for all model coefficients and significance values. (D) Individual partial correlation 503 

between right entorhinal volume and PC 1 score. The line represents the best fit regression line.  504 

Discussion 505 

While previous work in motor learning has often studied error-based and reward-based learning 506 

processes in isolation from one another, recently there has been increased interest in 507 

understanding how these separate learning processes interact at the behavioral and neural levels. 508 

Here we find a strong relationship in intersubject variability between error-based and reward-509 

based motor learning, showing that learning performance across tasks is correlated and can be 510 

explained by a single, latent variable. Our measures of learning and the nature of the tasks used 511 

suggest that this latent variable captures participants’ use of cognitive strategies during learning, 512 

with higher scores on this variable being associated with faster and better overall learning in both 513 
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tasks. We further show, using structural neuroimaging and regression analyses with participants’ 514 

hippocampus and entorhinal cortical volumes as predictors, that higher scores on this latent 515 

variable, and thus faster and better overall learning, is associated with larger right entorhinal 516 

cortex volumes. Together, these findings suggest that a shared strategic process underlies 517 

individual differences in error-based and reward-based motor learning, and that this process is 518 

associated with structural differences in entorhinal cortex.  519 

 520 

Considerable computational and neural work has argued for a division of labor between the neural 521 

circuits that support error-based and reward-based learning (Doya, 1999, 2000; Daw and Doya, 522 

2006; Shadmehr and Krakauer, 2008; Ito and Doya, 2011; Makino et al., 2016). According to this 523 

prevailing view, cortico-cerebellar pathways are responsible for error-based learning whereas 524 

cortico-striatal pathways are responsible for reward-based learning. Such distinctions, however, 525 

have often been reliant on indirect comparisons between different studies, and have been 526 

influenced by sampling biases in neural recording sites across different tasks. For instance, 527 

conventional views on error-based learning have suggested that adaptation is a primarily 528 

automatic mechanism, immune to reward-based feedback (Doya, 2000; Shadmehr and Krakauer, 529 

2008). However, more recent behavioral evidence suggests that these two learning processes, 530 

while separable (Izawa and Shadmehr, 2011; Cashaback et al., 2017), interact during 531 

sensorimotor learning (Shmuelof et al., 2012; Taylor and Ivry, 2014; Galea et al., 2015; Nikooyan 532 

and Ahmed, 2015). Such interactions are likely to be supported by the recent demonstration of 533 

direct anatomical connections between the cerebellum and striatum (Bostan and Strick, 2018). 534 

These bidirectional connections could explain recent neural findings from rodents showing that 535 

the cerebellum, besides processing direction-related errors, also represents various aspects of 536 

reward-related information during task performance (Wagner et al., 2017; Heffley et al., 2018; 537 

Kostadinov et al., 2019; Larry et al., 2019). Together, this emerging evidence suggests that error-538 

based and reward-based learning processes are closely intertwined at both the behavioral and 539 

neural levels. 540 

 541 

There is also emerging evidence to suggest that both error-based and reward-based processes 542 

are mediated through the use of cognitive strategies implemented during learning. In error-based 543 

adaptation, the contribution of this explicit, declarative process to learning has been well-544 

established behaviorally (Redding and Wallace, 1993; Fernandez-Ruiz et al., 2011; Taylor and 545 

Ivry, 2011; Taylor et al., 2014; Bond and Taylor, 2015; Haith et al., 2015; de Brouwer et al., 2018). 546 

Recent evidence from our group further indicates that faster learning across participants is linked 547 
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to individual differences in the magnitude of the cognitive strategy (de Brouwer et al., 2018), which 548 

drives rapid changes early in the learning process. In reward-based learning, by contrast, the 549 

contribution of cognitive strategies to performance have received comparably little attention, and 550 

is only beginning to be established. As one example, recent work, wherein participants were only 551 

provided with reward-based feedback (binary success/failure) to perform a visuomotor rotation 552 

task, has shown that good versus poor learning is related to the implementation of a cognitive 553 

component (Holland et al., 2018). This was evidenced by the observed reduction in reach angle 554 

when participants were required to remove their aiming strategy (see also Codol et al., 2018). It 555 

was also evidenced by the observation that the reward-based learning was impaired when (1) 556 

participants had to perform a dual task (a separate mental rotation task) that divided their cognitive 557 

load (Holland et al., 2018), or when (2) participants’ reaction times were constrained (Codol et al., 558 

2018), such that they could not implement the strategy (Haith et al., 2015). To date, work 559 

examining the link between error- and reward-based learning has focused on how reinforcement 560 

signals (e.g., binary success/failure) shape  learning in traditionally error-based tasks (Shmuelof 561 

et al., 2012; Galea et al., 2015; Cashaback et al., 2017). By contrast, our current behavioral 562 

findings show that, even when reward- and error-based learning is studied separately (and in very 563 

different tasks), learning performance in both tasks is highly related — so much so that a single 564 

latent variable can explain a significant proportion of intersubject variability in performance across 565 

both types of learning.  566 

 567 

Another novel result in our study was our finding that a larger right entorhinal volume was 568 

associated with better overall learning in both the reward-based and error-based motor learning 569 

tasks. The entorhinal cortex has been shown to support a wide range of cognitive functions that 570 

would have bearing on various features of our motor learning tasks. Classically, the entorhinal 571 

cortex, together with neighboring areas in the medial temporal lobe, has been implicated in spatial 572 

navigation and memory through electrophysiological studies in rodents. These studies showed 573 

that place cells in the hippocampus (O’Keefe and Dostrovsky, 1971) and grid cells in the 574 

entorhinal cortex (Hafting et al., 2005) form a map-like representation of the environment. Grid 575 

cells have also been demonstrated in primate entorhinal cortex, even in the absence of 576 

locomotion, when the animal is simply exploring a visual scene with its eyes (Killian et al., 2012, 577 

2015). Such observations have recently been extended to humans with functional MRI (Julian et 578 

al., 2018; Nau et al., 2018), and there is even evidence suggesting that mere shifts in covert 579 

attention (i.e., in the absence of overt eye movements), also elicits grid-cell-like responses in the 580 

entorhinal cortex (Wilming et al., 2018). Together, these and other findings (Bellmund et al., 2016; 581 
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Constantinescu et al., 2016; Horner et al., 2016) have begun to reshape our understanding of the 582 

role of the entorhinal cortex in visual-spatial memory, and in cognitive operations more generally. 583 

An influential hypothesis is that the hippocampal-entorhinal system supports a cognitive map, an 584 

idea that was originally proposed to explain findings in rodents (Tolman, 1948; O’Keefe and 585 

Nadel, 1978) and later extended to humans (for review see Epstein et al., 2017). This hypothesis 586 

proposes that the brain creates flexible representations of the environment to not only support 587 

memory but also guide future decisions and effective (motor) behavior (Schiller et al., 2015; 588 

Garvert et al., 2017; Bellmund et al., 2018).  589 

 590 

In the context of the current study, we expect cognitive and spatial maps to be utilized during the 591 

exploration of visuomotor space in our curve drawing (reward-based) and visuomotor rotation 592 

(error-based) tasks. Studies using fMRI in healthy adults, and neural recordings or electrical 593 

stimulation in pre-surgical patients, have provided evidence that the entorhinal cortex supports 594 

the encoding of goal direction and distance, relative locations, and the clockwise or 595 

counterclockwise direction of routes (Jacobs et al., 2010, 2016; Miller et al., 2013, 2015; Chadwick 596 

et al., 2015; Goyal et al., 2018; Qasim et al., 2019). While our motor learning tasks did not involve 597 

navigation in VR, the encoding of goal directions (in the visuomotor rotation task) and trajectories 598 

to the goal (in the curve drawing task) were critical to learning. If the entorhinal cortex is important 599 

for representing such spatial information, then its size may predict the ability to perform tasks — 600 

perceptual and motor — that recruit such representations. Studies investigating the relation 601 

between neuroanatomy and performance have associated greater gray matter volume in the 602 

entorhinal cortex with better scene recognition (Whiteman et al., 2016), spatial memory (Hartley 603 

and Harlow, 2012), navigation to memorized object locations in VR (Sherrill et al., 2018), as well 604 

as the lifetime amount of video gaming (Kühn and Gallinat, 2014). Here, we extend these general 605 

observations to include the previously unexplored domain of motor learning, showing an 606 

association between right entorhinal volume and overall performance in error-based and reward-607 

based learning tasks. Given that motor learning has a strong visual-spatial component 608 

(particularly so in our tasks), we find it noteworthy that it is the right, and not left, entorhinal cortex 609 

that is associated with the processing and integration of visual-spatial information (Dalton et al., 610 

2016). 611 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.05.27.119529doi: bioRxiv preprint 

https://paperpile.com/c/JEbcTt/Q5xQ5+cXslj+OdWEx
https://paperpile.com/c/JEbcTt/efRzC+b2Ekz
https://paperpile.com/c/JEbcTt/efRzC+b2Ekz
https://paperpile.com/c/JEbcTt/n9AHD/?prefix=for%20review%20see
https://paperpile.com/c/JEbcTt/0fElq+bSuuc+xDncI
https://paperpile.com/c/JEbcTt/0fElq+bSuuc+xDncI
https://paperpile.com/c/JEbcTt/UwbBo+h5n8Q+5ti80+Bcnih+H7eoX+2JTXa+6coGf
https://paperpile.com/c/JEbcTt/UwbBo+h5n8Q+5ti80+Bcnih+H7eoX+2JTXa+6coGf
https://paperpile.com/c/JEbcTt/9c4de
https://paperpile.com/c/JEbcTt/sxVBD
https://paperpile.com/c/JEbcTt/sxVBD
https://paperpile.com/c/JEbcTt/XQz8v
https://paperpile.com/c/JEbcTt/teQ20
https://paperpile.com/c/JEbcTt/lLXqw
https://paperpile.com/c/JEbcTt/lLXqw
https://doi.org/10.1101/2020.05.27.119529
http://creativecommons.org/licenses/by/4.0/


23 

Author contributions 612 

Conceptualization and methodology AJdB, JP, JPG, JRF; investigation AJdB; software AJdB; 613 

formal analysis AJdB, JP, MRR; visualization AJdB, JPG, MRR; writing - original draft AJdB, 614 

JPG; writing - review and editing AJdB, JP, JPG, JRF, MRR; supervision AJdB, JP, JPG; project 615 

administration AJdB, JP, JPG; resources JP, JPG, JRF; funding acquisition JP, JPG, JRF. 616 

Acknowledgements 617 

This work was supported by operating grants from the Canadian Institutes of Health Research 618 

(CIHR) awarded to J.R.F. and J.P.G. (MOP126158). J.P.G. and J.P. were supported by Natural 619 

Sciences and Engineering Research Council (NSERC) Discovery Grants, as well as funding from 620 

the Canadian Foundation for Innovation. The authors thank Mohammed Albaghdadi, Olivia Broda, 621 

Sydney Dore, Kate McKenzie and Reem Toubache for help with data collection, and Martin York 622 

for technical support. 623 

References 624 

Aronov D, Nevers R, Tank DW (2017) Mapping of a non-spatial dimension by the hippocampal-625 
entorhinal circuit. Nature 543:719–722. 626 

Bellmund JLS, Deuker L, Schröder TN, Doeller CF (2016) Grid-cell representations in mental 627 
simulation. eLife 5 Available at: http://dx.doi.org/10.7554/elife.17089. 628 

Bellmund JLS, Gärdenfors P, Moser EI, Doeller CF (2018) Navigating cognition: Spatial codes 629 
for human thinking. Science 362 Available at: http://dx.doi.org/10.1126/science.aat6766. 630 

Bond KM, Taylor JA (2015) Flexible explicit but rigid implicit learning in a visuomotor adaptation 631 
task. Journal of Neurophysiology 113:3836–3849 Available at: 632 
http://dx.doi.org/10.1152/jn.00009.2015. 633 

Bostan AC, Strick PL (2018) The basal ganglia and the cerebellum: nodes in an integrated 634 
network. Nat Rev Neurosci 19:338–350. 635 

Cashaback JGA, McGregor HR, Mohatarem A, Gribble PL (2017) Dissociating error-based and 636 
reinforcement-based loss functions during sensorimotor learning. PLoS Comput Biol 637 
13:e1005623. 638 

Chadwick MJ, Bonnici HM, Maguire EA (2014) CA3 size predicts the precision of memory recall. 639 
Proc Natl Acad Sci U S A 111:10720–10725. 640 

Chadwick MJ, Jolly AEJ, Amos DP, Hassabis D, Spiers HJ (2015) A goal direction signal in the 641 
human entorhinal/subicular region. Curr Biol 25:87–92. 642 

Codol O, Holland PJ, Galea JM (2018) The relationship between reinforcement and explicit 643 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.05.27.119529doi: bioRxiv preprint 

http://paperpile.com/b/JEbcTt/OugE3
http://paperpile.com/b/JEbcTt/OugE3
http://paperpile.com/b/JEbcTt/cXslj
http://paperpile.com/b/JEbcTt/cXslj
http://dx.doi.org/10.7554/elife.17089
http://paperpile.com/b/JEbcTt/cXslj
http://paperpile.com/b/JEbcTt/0fElq
http://paperpile.com/b/JEbcTt/0fElq
http://dx.doi.org/10.1126/science.aat6766
http://paperpile.com/b/JEbcTt/0fElq
http://paperpile.com/b/JEbcTt/lgCKt
http://paperpile.com/b/JEbcTt/lgCKt
http://dx.doi.org/10.1152/jn.00009.2015
http://paperpile.com/b/JEbcTt/lgCKt
http://paperpile.com/b/JEbcTt/A67S8
http://paperpile.com/b/JEbcTt/A67S8
http://paperpile.com/b/JEbcTt/ERp7W
http://paperpile.com/b/JEbcTt/ERp7W
http://paperpile.com/b/JEbcTt/ERp7W
http://paperpile.com/b/JEbcTt/A9PE8
http://paperpile.com/b/JEbcTt/A9PE8
http://paperpile.com/b/JEbcTt/UwbBo
http://paperpile.com/b/JEbcTt/UwbBo
http://paperpile.com/b/JEbcTt/TQKAv
https://doi.org/10.1101/2020.05.27.119529
http://creativecommons.org/licenses/by/4.0/


24 

control during visuomotor adaptation. Sci Rep 8:9121. 644 

Constantinescu AO, O’Reilly JX, Behrens TEJ (2016) Organizing conceptual knowledge in 645 
humans with a gridlike code. Science 352:1464–1468. 646 

Cunningham HA (1989) Aiming error under transformed spatial mappings suggests a structure 647 
for visual-motor maps. J Exp Psychol Hum Percept Perform 15:493–506. 648 

Dalton MA, Hornberger M, Piguet O (2016) Material specific lateralization of medial temporal 649 
lobe function: An fMRI investigation. Hum Brain Mapp 37:933–941. 650 

Dam G, Kording K, Wei K (2013) Credit assignment during movement reinforcement learning. 651 
PLoS One 8:e55352. 652 

Daw ND, Doya K (2006) The computational neurobiology of learning and reward. Curr Opin 653 
Neurobiol 16:199–204. 654 

de Brouwer AJ, Albaghdadi M, Flanagan JR, Gallivan JP (2018) Using gaze behavior to 655 
parcellate the explicit and implicit contributions to visuomotor learning. J Neurophysiol 656 
120:1602–1615. 657 

Della-Maggiore V, McIntosh AR (2005) Time course of changes in brain activity and functional 658 
connectivity associated with long-term adaptation to a rotational transformation. J 659 
Neurophysiol 93:2254–2262. 660 

Doya K (1999) What are the computations of the cerebellum, the basal ganglia and the cerebral 661 
cortex? Neural Netw 12:961–974. 662 

Doya K (2000) Complementary roles of basal ganglia and cerebellum in learning and motor 663 
control. Curr Opin Neurobiol 10:732–739. 664 

Doyon J, Benali H (2005) Reorganization and plasticity in the adult brain during learning of 665 
motor skills. Curr Opin Neurobiol 15:161–167. 666 

Duncan K, Doll BB, Daw ND, Shohamy D (2018) More Than the Sum of Its Parts: A Role for the 667 
Hippocampus in Configural Reinforcement Learning. Neuron 98:645–657.e6. 668 

Eichenbaum H, Cohen NJ (2014) Can we reconcile the declarative memory and spatial 669 
navigation views on hippocampal function? Neuron 83:764–770. 670 

Epstein RA, Patai EZ, Julian JB, Spiers HJ (2017) The cognitive map in humans: spatial 671 
navigation and beyond. Nat Neurosci 20:1504–1513. 672 

Fernandez-Ruiz J, Wong W, Armstrong IT, Flanagan JR (2011) Relation between reaction time 673 
and reach errors during visuomotor adaptation. Behav Brain Res 219:8–14. 674 

Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, 675 
Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM (2002) Whole brain 676 
segmentation: automated labeling of neuroanatomical structures in the human brain. 677 
Neuron 33:341–355. 678 

Fischl B, van der Kouwe A, Destrieux C, Halgren E, Ségonne F, Salat DH, Busa E, Seidman LJ, 679 
Goldstein J, Kennedy D, Caviness V, Makris N, Rosen B, Dale AM (2004) Automatically 680 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.05.27.119529doi: bioRxiv preprint 

http://paperpile.com/b/JEbcTt/TQKAv
http://paperpile.com/b/JEbcTt/Q5xQ5
http://paperpile.com/b/JEbcTt/Q5xQ5
http://paperpile.com/b/JEbcTt/C5UuY
http://paperpile.com/b/JEbcTt/C5UuY
http://paperpile.com/b/JEbcTt/lLXqw
http://paperpile.com/b/JEbcTt/lLXqw
http://paperpile.com/b/JEbcTt/BWXJT
http://paperpile.com/b/JEbcTt/BWXJT
http://paperpile.com/b/JEbcTt/adkyj
http://paperpile.com/b/JEbcTt/adkyj
http://paperpile.com/b/JEbcTt/SlOa
http://paperpile.com/b/JEbcTt/SlOa
http://paperpile.com/b/JEbcTt/SlOa
http://paperpile.com/b/JEbcTt/ShaHI
http://paperpile.com/b/JEbcTt/ShaHI
http://paperpile.com/b/JEbcTt/ShaHI
http://paperpile.com/b/JEbcTt/U9Fu5
http://paperpile.com/b/JEbcTt/U9Fu5
http://paperpile.com/b/JEbcTt/p9fJS
http://paperpile.com/b/JEbcTt/p9fJS
http://paperpile.com/b/JEbcTt/W9f9j
http://paperpile.com/b/JEbcTt/W9f9j
http://paperpile.com/b/JEbcTt/vkX2g
http://paperpile.com/b/JEbcTt/vkX2g
http://paperpile.com/b/JEbcTt/y57fL
http://paperpile.com/b/JEbcTt/y57fL
http://paperpile.com/b/JEbcTt/n9AHD
http://paperpile.com/b/JEbcTt/n9AHD
http://paperpile.com/b/JEbcTt/Toox
http://paperpile.com/b/JEbcTt/Toox
http://paperpile.com/b/JEbcTt/Vf9L9
http://paperpile.com/b/JEbcTt/Vf9L9
http://paperpile.com/b/JEbcTt/Vf9L9
http://paperpile.com/b/JEbcTt/Vf9L9
http://paperpile.com/b/JEbcTt/z6VC7
http://paperpile.com/b/JEbcTt/z6VC7
https://doi.org/10.1101/2020.05.27.119529
http://creativecommons.org/licenses/by/4.0/


25 

parcellating the human cerebral cortex. Cereb Cortex 14:11–22. 681 

Galea JM, Mallia E, Rothwell J, Diedrichsen J (2015) The dissociable effects of punishment and 682 
reward on motor learning. Nat Neurosci 18:597–602. 683 

Garvert MM, Dolan RJ, Behrens TE (2017) A map of abstract relational knowledge in the human 684 
hippocampal-entorhinal cortex. Elife 6 Available at: http://dx.doi.org/10.7554/eLife.17086. 685 

Gershman SJ, Daw ND (2017) Reinforcement Learning and Episodic Memory in Humans and 686 
Animals: An Integrative Framework. Annu Rev Psychol 68:101–128. 687 

Goyal A et al. (2018) Electrical Stimulation in Hippocampus and Entorhinal Cortex Impairs 688 
Spatial and Temporal Memory. J Neurosci 38:4471–4481. 689 

Hafting T, Fyhn M, Molden S, Moser M-B, Moser EI (2005) Microstructure of a spatial map in 690 
the entorhinal cortex. Nature 436:801–806. 691 

Haith AM, Huberdeau DM, Krakauer JW (2015) The influence of movement preparation time on 692 
the expression of visuomotor learning and savings. J Neurosci 35:5109–5117. 693 

Hartley T, Harlow R (2012) An association between human hippocampal volume and 694 
topographical memory in healthy young adults. Front Hum Neurosci 6:338. 695 

Heffley W, Song EY, Xu Z, Taylor BN, Hughes MA, McKinney A, Joshua M, Hull C (2018) 696 
Coordinated cerebellar climbing fiber activity signals learned sensorimotor predictions. Nat 697 
Neurosci 21:1431–1441. 698 

Holland P, Codol O, Galea JM (2018) Contribution of explicit processes to reinforcement-based 699 
motor learning. J Neurophysiol 119:2241–2255. 700 

Horner AJ, Bisby JA, Zotow E, Bush D, Burgess N (2016) Grid-like Processing of Imagined 701 
Navigation. Curr Biol 26:842–847. 702 

Ito M, Doya K (2011) Multiple representations and algorithms for reinforcement learning in the 703 
cortico-basal ganglia circuit. Curr Opin Neurobiol 21:368–373. 704 

Izawa J, Shadmehr R (2011) Learning from sensory and reward prediction errors during motor 705 
adaptation. PLoS Comput Biol 7:e1002012. 706 

Jacobs J et al. (2016) Direct Electrical Stimulation of the Human Entorhinal Region and 707 
Hippocampus Impairs Memory. Neuron 92:983–990. 708 

Jacobs J, Kahana MJ, Ekstrom AD, Mollison MV, Fried I (2010) A sense of direction in human 709 
entorhinal cortex. Proc Natl Acad Sci U S A 107:6487–6492. 710 

Julian JB, Keinath AT, Frazzetta G, Epstein RA (2018) Human entorhinal cortex represents 711 
visual space using a boundary-anchored grid. Nat Neurosci 21:191–194. 712 

Keisler A, Shadmehr R (2010) A shared resource between declarative memory and motor 713 
memory. J Neurosci 30:14817–14823. 714 

Killian NJ, Jutras MJ, Buffalo EA (2012) A map of visual space in the primate entorhinal cortex. 715 
Nature 491:761–764. 716 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.05.27.119529doi: bioRxiv preprint 

http://paperpile.com/b/JEbcTt/z6VC7
http://paperpile.com/b/JEbcTt/dg3ba
http://paperpile.com/b/JEbcTt/dg3ba
http://paperpile.com/b/JEbcTt/bSuuc
http://paperpile.com/b/JEbcTt/bSuuc
http://dx.doi.org/10.7554/eLife.17086
http://paperpile.com/b/JEbcTt/bSuuc
http://paperpile.com/b/JEbcTt/ckcjD
http://paperpile.com/b/JEbcTt/ckcjD
http://paperpile.com/b/JEbcTt/5ti80
http://paperpile.com/b/JEbcTt/5ti80
http://paperpile.com/b/JEbcTt/6jgcO
http://paperpile.com/b/JEbcTt/6jgcO
http://paperpile.com/b/JEbcTt/jJF1V
http://paperpile.com/b/JEbcTt/jJF1V
http://paperpile.com/b/JEbcTt/sxVBD
http://paperpile.com/b/JEbcTt/sxVBD
http://paperpile.com/b/JEbcTt/FQr87
http://paperpile.com/b/JEbcTt/FQr87
http://paperpile.com/b/JEbcTt/FQr87
http://paperpile.com/b/JEbcTt/XXN0t
http://paperpile.com/b/JEbcTt/XXN0t
http://paperpile.com/b/JEbcTt/OdWEx
http://paperpile.com/b/JEbcTt/OdWEx
http://paperpile.com/b/JEbcTt/Mywj5
http://paperpile.com/b/JEbcTt/Mywj5
http://paperpile.com/b/JEbcTt/eGGm0
http://paperpile.com/b/JEbcTt/eGGm0
http://paperpile.com/b/JEbcTt/h5n8Q
http://paperpile.com/b/JEbcTt/h5n8Q
http://paperpile.com/b/JEbcTt/6coGf
http://paperpile.com/b/JEbcTt/6coGf
http://paperpile.com/b/JEbcTt/nXxec
http://paperpile.com/b/JEbcTt/nXxec
http://paperpile.com/b/JEbcTt/hcxbi
http://paperpile.com/b/JEbcTt/hcxbi
http://paperpile.com/b/JEbcTt/gDLj9
http://paperpile.com/b/JEbcTt/gDLj9
https://doi.org/10.1101/2020.05.27.119529
http://creativecommons.org/licenses/by/4.0/


26 

Killian NJ, Potter SM, Buffalo EA (2015) Saccade direction encoding in the primate entorhinal 717 
cortex during visual exploration. Proc Natl Acad Sci U S A 112:15743–15748. 718 

Kostadinov D, Beau M, Blanco-Pozo M, Häusser M (2019) Predictive and reactive reward 719 
signals conveyed by climbing fiber inputs to cerebellar Purkinje cells. Nat Neurosci 22:950–720 
962. 721 

Krakauer JW, Ghez C, Ghilardi MF (2005) Adaptation to visuomotor transformations: 722 
consolidation, interference, and forgetting. J Neurosci 25:473–478. 723 

Kühn S, Gallinat J (2014) Amount of lifetime video gaming is positively associated with 724 
entorhinal, hippocampal and occipital volume. Mol Psychiatry 19:842–847. 725 

Lalazar H, Vaadia E (2008) Neural basis of sensorimotor learning: modifying internal models. 726 
Curr Opin Neurobiol 18:573–581. 727 

Larry N, Yarkoni M, Lixenberg A, Joshua M (2019) Cerebellar climbing fibers encode expected 728 
reward size. Elife 8 Available at: http://dx.doi.org/10.7554/eLife.46870. 729 

Maguire EA, Gadian DG, Johnsrude IS, Good CD, Ashburner J, Frackowiak RS, Frith CD 730 
(2000) Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl 731 
Acad Sci U S A 97:4398–4403. 732 

Makino H, Hwang EJ, Hedrick NG, Komiyama T (2016) Circuit Mechanisms of Sensorimotor 733 
Learning. Neuron 92:705–721. 734 

Mazzoni P, Krakauer JW (2006) An implicit plan overrides an explicit strategy during visuomotor 735 
adaptation. J Neurosci 26:3642–3645. 736 

Miller JF, Fried I, Suthana N, Jacobs J (2015) Repeating Spatial Activations in Human 737 
Entorhinal Cortex. Current Biology 25:1080–1085 Available at: 738 
http://dx.doi.org/10.1016/j.cub.2015.02.045. 739 

Miller JF, Neufang M, Solway A, Brandt A, Trippel M, Mader I, Hefft S, Merkow M, Polyn SM, 740 
Jacobs J, Kahana MJ, Schulze-Bonhage A (2013) Neural activity in human hippocampal 741 
formation reveals the spatial context of retrieved memories. Science 342:1111–1114. 742 

Nau M, Navarro Schröder T, Bellmund JLS, Doeller CF (2018) Hexadirectional coding of visual 743 
space in human entorhinal cortex. Nat Neurosci 21:188–190. 744 

Nikooyan AA, Ahmed AA (2015) Reward feedback accelerates motor learning. J Neurophysiol 745 
113:633–646. 746 

O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from 747 
unit activity in the freely-moving rat. Brain Research 34:171–175. 748 

O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Oxford University Press, USA. 749 

Qasim SE, Miller J, Inman CS, Gross RE, Willie JT, Lega B, Lin J-J, Sharan A, Wu C, Sperling 750 
MR, Sheth SA, McKhann GM, Smith EH, Schevon C, Stein JM, Jacobs J (2019) Memory 751 
retrieval modulates spatial tuning of single neurons in the human entorhinal cortex. Nat 752 
Neurosci 22:2078–2086. 753 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.05.27.119529doi: bioRxiv preprint 

http://paperpile.com/b/JEbcTt/PXrqU
http://paperpile.com/b/JEbcTt/PXrqU
http://paperpile.com/b/JEbcTt/T538D
http://paperpile.com/b/JEbcTt/T538D
http://paperpile.com/b/JEbcTt/T538D
http://paperpile.com/b/JEbcTt/of1zz
http://paperpile.com/b/JEbcTt/of1zz
http://paperpile.com/b/JEbcTt/teQ20
http://paperpile.com/b/JEbcTt/teQ20
http://paperpile.com/b/JEbcTt/EPNYN
http://paperpile.com/b/JEbcTt/EPNYN
http://paperpile.com/b/JEbcTt/5fysE
http://paperpile.com/b/JEbcTt/5fysE
http://dx.doi.org/10.7554/eLife.46870
http://paperpile.com/b/JEbcTt/5fysE
http://paperpile.com/b/JEbcTt/U0Xff
http://paperpile.com/b/JEbcTt/U0Xff
http://paperpile.com/b/JEbcTt/U0Xff
http://paperpile.com/b/JEbcTt/gp7qG
http://paperpile.com/b/JEbcTt/gp7qG
http://paperpile.com/b/JEbcTt/FtG3d
http://paperpile.com/b/JEbcTt/FtG3d
http://paperpile.com/b/JEbcTt/H7eoX
http://paperpile.com/b/JEbcTt/H7eoX
http://dx.doi.org/10.1016/j.cub.2015.02.045
http://paperpile.com/b/JEbcTt/H7eoX
http://paperpile.com/b/JEbcTt/Bcnih
http://paperpile.com/b/JEbcTt/Bcnih
http://paperpile.com/b/JEbcTt/Bcnih
http://paperpile.com/b/JEbcTt/KsUE5
http://paperpile.com/b/JEbcTt/KsUE5
http://paperpile.com/b/JEbcTt/C1BqN
http://paperpile.com/b/JEbcTt/C1BqN
http://paperpile.com/b/JEbcTt/omaY8
http://paperpile.com/b/JEbcTt/omaY8
http://paperpile.com/b/JEbcTt/efRzC
http://paperpile.com/b/JEbcTt/2JTXa
http://paperpile.com/b/JEbcTt/2JTXa
http://paperpile.com/b/JEbcTt/2JTXa
http://paperpile.com/b/JEbcTt/2JTXa
https://doi.org/10.1101/2020.05.27.119529
http://creativecommons.org/licenses/by/4.0/


27 

Redding GM, Wallace B (1993) Adaptive coordination and alignment of eye and hand. J Mot 754 
Behav 25:75–88. 755 

Rodrigue KM, Raz N (2004) Shrinkage of the entorhinal cortex over five years predicts memory 756 
performance in healthy adults. J Neurosci 24:956–963. 757 

Romero JE, Coupé P, Manjón JV (2017) HIPS: A new hippocampus subfield segmentation 758 
method. Neuroimage 163:286–295. 759 

Schiller D, Eichenbaum H, Buffalo EA, Davachi L, Foster DJ, Leutgeb S, Ranganath C (2015) 760 
Memory and Space: Towards an Understanding of the Cognitive Map. J Neurosci 761 
35:13904–13911. 762 

Seidler RD, Bo J, Anguera JA (2012) Neurocognitive contributions to motor skill learning: the 763 
role of working memory. J Mot Behav 44:445–453. 764 

Shadmehr R, Holcomb HH (1997) Neural correlates of motor memory consolidation. Science 765 
277:821–825. 766 

Shadmehr R, Krakauer JW (2008) A computational neuroanatomy for motor control. Exp Brain 767 
Res 185:359–381. 768 

Sherrill KR, Chrastil ER, Aselcioglu I, Hasselmo ME, Stern CE (2018) Structural Differences in 769 
Hippocampal and Entorhinal Gray Matter Volume Support Individual Differences in First 770 
Person Navigational Ability. Neuroscience 380:123–131. 771 

Shmuelof L, Huang VS, Haith AM, Delnicki RJ, Mazzoni P, Krakauer JW (2012) Overcoming 772 
motor “forgetting” through reinforcement of learned actions. J Neurosci 32:14617–14621. 773 

Smith MA, Shadmehr R (2005) Intact ability to learn internal models of arm dynamics in 774 
Huntington’s disease but not cerebellar degeneration. J Neurophysiol 93:2809–2821. 775 

Sotiropoulos SN, Jbabdi S, Xu J, Andersson JL, Moeller S, Auerbach EJ, Glasser MF, 776 
Hernandez M, Sapiro G, Jenkinson M, Feinberg DA, Yacoub E, Lenglet C, Van Essen DC, 777 
Ugurbil K, Behrens TEJ, WU-Minn HCP Consortium (2013) Advances in diffusion MRI 778 
acquisition and processing in the Human Connectome Project. Neuroimage 80:125–143. 779 

Sutton RS, Barto AG (2018) Reinforcement Learning: An Introduction. A Bradford Book. 780 

Tavares RM, Mendelsohn A, Grossman Y, Williams CH, Shapiro M, Trope Y, Schiller D (2015) 781 
A Map for Social Navigation in the Human Brain. Neuron 87:231–243. 782 

Taylor JA, Ivry RB (2011) Flexible cognitive strategies during motor learning. PLoS Comput Biol 783 
7:e1001096. 784 

Taylor JA, Ivry RB (2014) Cerebellar and prefrontal cortex contributions to adaptation, 785 
strategies, and reinforcement learning. Prog Brain Res 210:217–253. 786 

Taylor JA, Krakauer JW, Ivry RB (2014) Explicit and implicit contributions to learning in a 787 
sensorimotor adaptation task. J Neurosci 34:3023–3032. 788 

Tolman EC (1948) Cognitive maps in rats and men. Psychol Rev 55:189–208. 789 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.05.27.119529doi: bioRxiv preprint 

http://paperpile.com/b/JEbcTt/DHng8
http://paperpile.com/b/JEbcTt/DHng8
http://paperpile.com/b/JEbcTt/A4xYb
http://paperpile.com/b/JEbcTt/A4xYb
http://paperpile.com/b/JEbcTt/Ro5Gd
http://paperpile.com/b/JEbcTt/Ro5Gd
http://paperpile.com/b/JEbcTt/xDncI
http://paperpile.com/b/JEbcTt/xDncI
http://paperpile.com/b/JEbcTt/xDncI
http://paperpile.com/b/JEbcTt/BNKOz
http://paperpile.com/b/JEbcTt/BNKOz
http://paperpile.com/b/JEbcTt/nZgzN
http://paperpile.com/b/JEbcTt/nZgzN
http://paperpile.com/b/JEbcTt/MyIeP
http://paperpile.com/b/JEbcTt/MyIeP
http://paperpile.com/b/JEbcTt/XQz8v
http://paperpile.com/b/JEbcTt/XQz8v
http://paperpile.com/b/JEbcTt/XQz8v
http://paperpile.com/b/JEbcTt/GkCqz
http://paperpile.com/b/JEbcTt/GkCqz
http://paperpile.com/b/JEbcTt/dr3AT
http://paperpile.com/b/JEbcTt/dr3AT
http://paperpile.com/b/JEbcTt/aZlqG
http://paperpile.com/b/JEbcTt/aZlqG
http://paperpile.com/b/JEbcTt/aZlqG
http://paperpile.com/b/JEbcTt/aZlqG
http://paperpile.com/b/JEbcTt/HtuhF
http://paperpile.com/b/JEbcTt/qE4T6
http://paperpile.com/b/JEbcTt/qE4T6
http://paperpile.com/b/JEbcTt/4I59R
http://paperpile.com/b/JEbcTt/4I59R
http://paperpile.com/b/JEbcTt/hRtJc
http://paperpile.com/b/JEbcTt/hRtJc
http://paperpile.com/b/JEbcTt/hxWy7
http://paperpile.com/b/JEbcTt/hxWy7
http://paperpile.com/b/JEbcTt/b2Ekz
https://doi.org/10.1101/2020.05.27.119529
http://creativecommons.org/licenses/by/4.0/


28 

Tseng Y-W, Diedrichsen J, Krakauer JW, Shadmehr R, Bastian AJ (2007) Sensory prediction 790 
errors drive cerebellum-dependent adaptation of reaching. J Neurophysiol 98:54–62. 791 

Wagner MJ, Kim TH, Savall J, Schnitzer MJ, Luo L (2017) Cerebellar granule cells encode the 792 
expectation of reward. Nature 544:96–100. 793 

Whiteman AS, Young DE, Budson AE, Stern CE, Schon K (2016) Entorhinal volume, aerobic 794 
fitness, and recognition memory in healthy young adults: A voxel-based morphometry 795 
study. Neuroimage 126:229–238. 796 

Wilming N, König P, König S, Buffalo EA (2018) Entorhinal cortex receptive fields are modulated 797 
by spatial attention, even without movement. Elife 7 Available at: 798 
http://dx.doi.org/10.7554/eLife.31745. 799 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.05.27.119529doi: bioRxiv preprint 

http://paperpile.com/b/JEbcTt/M2qYR
http://paperpile.com/b/JEbcTt/M2qYR
http://paperpile.com/b/JEbcTt/Lmwod
http://paperpile.com/b/JEbcTt/Lmwod
http://paperpile.com/b/JEbcTt/9c4de
http://paperpile.com/b/JEbcTt/9c4de
http://paperpile.com/b/JEbcTt/9c4de
http://paperpile.com/b/JEbcTt/MHLAZ
http://paperpile.com/b/JEbcTt/MHLAZ
http://dx.doi.org/10.7554/eLife.31745
http://paperpile.com/b/JEbcTt/MHLAZ
https://doi.org/10.1101/2020.05.27.119529
http://creativecommons.org/licenses/by/4.0/

	Abstract
	Significance Statement
	Introduction
	Materials and Methods
	Participants
	Neuroimaging
	Procedure
	Data analysis

	Motor learning tasks
	General procedure
	Setup
	Reward-based motor learning
	Task
	Data analysis

	Error-based motor learning
	Task
	Data analysis


	Relating learning measures and neuroanatomy
	Data and statistical analysis


	Results
	Performance in reward-based and error-based motor learning is related
	Larger entorhinal volume is associated with better error- and reward-based motor learning

	Discussion
	Author contributions
	Acknowledgements
	References

