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ABSTRACT

Combination therapies have shown remarkable success in preventing the evolution of resistance to
multiple drugs, including HIV, tuberculosis, and cancer. Nevertheless, the rise in drug resistance still
remains an important challenge. The capability to accurately predict the emergence of resistance, ei-
ther to one or multiple drugs, may help to improve treatment options. Existing theoretical approaches
often focus on exponential growth laws, which may not be realistic when scarce resources and com-
petition limit growth. In this work, we study the emergence of single and double drug resistance
in a model of combination therapy of two drugs. The model describes a sensitive strain, two types
of single-resistant strains, and a double-resistant strain. We compare the probability that resistance
emerges for three growth laws: exponential growth, logistic growth without competition between
strains, and logistic growth with competition between strains. Using mathematical estimates and nu-
merical simulations, we show that between-strain competition only affects the emergence of single
resistance when resources are scarce. In contrast, the probability of double resistance is affected by
between-strain competition over a wider space of resource availability. This indicates that competition
between different resistant strains may be pertinent to identifying strategies for suppressing drug resis-
tance, and that exponential models may overestimate the emergence of resistance to multiple drugs. A
by-product of our work is an efficient strategy to evaluate probabilities of single and double resistance
in models with multiple sequential mutations. This may be useful for a range of other problems in
which the probability of resistance is of interest.

1. Introduction
The rise of drug resistance has triggered studies into dif-

ferent treatment regimes, aimed to prevent or delay the emer-
gence of resistance. Combination therapies have attracted
special attention, due to their effectiveness against viral, bac-
terial, and fungal infections, as well in the context of cancer
(see e.g. Devita Jr et al. (1975); Bonhoeffer et al. (1997);
Livermore (2005); Baym et al. (2016)). Combination ther-
apies have also shown success in managing HIV (Richman
(2001)), malaria (Nosten and White (2007)), and tuberculo-
sis (Mitchison and Davies (2012)).

The ability of combination therapies to counteract an-
tibiotic resistance relies on the idea that simultaneous acqui-
sition of resistance to multiple antibiotics is extremely rare.
For independent resistance mutations, this occurs with a rate
equal to the product of mutation rates for resistance to each
drug. For bacteria these are in the range of approximately
10−6 to 10−10 per genome replication (see Krašovec et al.
(2017)). Multi-resistance is therefore more likely to emerge
via sequentially acquisition of resistance to each drug Bon-
hoeffer et al. (1997). This is what combination therapies
aim to prevent. These therapies can have limitations, how-
ever, for example due to differences between drugs in how
quickly they are absorbed (i.e. pharmacokinetics, see Yeh
et al. (2006); Peña-Miller et al. (2013)).
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Having the ability to predict the emergence of single or
double resistance frommathematical or computational mod-
els may help to develop strategies to reduce resistance. Since
mutations occur as random events, one of the main aims is
to compute or estimate the probability that resistant cells are
present in the population at a certain time after the drug treat-
ment has started. Several theoretical approaches have been
proposed, with a particular focus on drug treatments in can-
cer cells (see Altrock et al. (2015) for an overview). Other
modelling work has focused on resistance in viral dynamics
(see e.g. Alexander and Bonhoeffer (2012)). A systematic
review of models of antimicrobial resistance can be found in
Niewiadomska et al. (2019).

Michor et al. (Michor et al. (2006)) estimated the prob-
ability of extinction of a branching process with multiple
types of mutations, for populations consisting entirely of
sensitive cells at the start of the treatment. Their approach
allows one to obtain the probability of successful therapy,
that is, the therapy that kills both sensitive and mutant can-
cer strains at very long times after the treatment started. The
calculations are based on the work of Iwasa and co-authors
(see Iwasa et al. (2003, 2004)), where extinction probabil-
ities were derived for an exponential growth model from a
generating-function approach. Similarly, Iwasa et al. (2006),
estimated the probability of single resistance at the point in
time at which the total cell population reaches a certain size.
This was extended inHaeno et al. (2007) to a case with single
and double resistants. This latter approach succeeded in ob-
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taining the probability of having at least one double mutant
before the total population has reached a particular size.

Later, Foo and Michor (2010) proposed a simpler ap-
proach, based on using the extinction probability of a single-
type birth-death process, to estimate the emergence of single
resistance in dosing schedules that affect both birth and death
rates. Recently, the effects of pharmacokinetics were studied
by Chakrabarti andMichor (2017). Related work can also be
found in Bozic et al. (2013) for a process with multiple types
of resistance, see also Alexander andMacLean (2019) for an
experimental approach.

The work mentioned so far focuses largely on models
with exponential growth, effectively ignoring interactions
between cells. This is an approximation, but it works well
for the early stages growth when non-linear interaction ef-
fects are not relevant (see e.g. Monod (1949)). In particular,
this assumption is valid when the population size has not yet
saturated at carrying capacity.

Although exponential growth can serve as a good ap-
proximation to study the emergence of single mutations, it
may not be appropriate when multiple mutations take place
in sequence. This is because the later mutations can occur
during advanced phases of growth. At that stage interac-
tions between cells may have become relevant, in particular
when the population approaches its carrying capacity. In or-
der to model such instances, one needs to go beyond sim-
ple unconstrained reproduction. The purpose of this work
is to show how the choice of growth model affects predic-
tions for the emergence of single and double resistance un-
der combination therapy. We describe the evolution of re-
sistance by means of three stochastic models: (i) A model
with no interactions between cells, leading to exponential
growth if growth rates are constant; (ii) A model in which
each strain follows a logistic growth law, but where there
are no interactions between the different strains; (iii) Logis-
tic growth with competition between strains for a common
resource. For each of the model we consider constant and
time-dependent per capita birth and death rates. We derive
analytical estimates for the probability of single and double
resistance, and compare these with numerical simulations.
The formalism to predict the emergence of resistance builds
upon the work in Foo and Michor (2010).

Our results show that the prediction of single resistance
in the logistic growth models is different from that for the
model with exponential growth when the availability of re-
sources is low. The probability of double resistance varies
across the different growth models for a larger range of pa-
rameters (such as birth rates of sensitive or resistant strains,
or the initial cell number). This difference to the exponential
model is more pronounced in the model with competition
between different strains. The growth of source strains for
double mutants may then saturate before double mutants ap-
pear. This earlier saturation can alter the optimum treatment
strategy, i.e., the therapy that maximises the time at which
first double mutants emerge.

The remainder of this paper is set out as follows. In
Section 2 we provide the mathematical background defini-

tions for our study. In particular, we describe the different
growth models and we define the model we use for the ef-
fects of treatments on these growth laws. Section 3 con-
tains our main analytical results. We derive approximations
for the probability of single and double resistance, and de-
scribe how we evaluate the resulting numerical expressions
efficiently. In Section 4 we then discuss the these predic-
tions for models with constant parameters. Time-dependent
dosing protocols are studied in Section 5. In Section 6 we
discuss limitations of our approach, before we conclude in
Section 7. Further details of our calculations, and additional
results can be found in the Supplementary Material.

2. Stochastic Model
2.1. General definitions

We focus on a cell population subjected to combination
therapy of two different types of drugs labeled  and  re-
spectively. The drugs may act concurrently, depending on
the dosing schedule. Cells can develop resistance to one
drug (single resistance) or to both drugs (double resistance)
via independent mutations. Double resistance is acquired
sequentially, that is, after acquiring first single resistance to
either of the two drugs. We will not consider the possibility
of acquiring resistance to both drugs through a single mu-
tation, as this is sufficiently rare (see e.g. Bonhoeffer et al.
(1997)). Our model excludes back mutations as these are
also very unlikely (see e.g. Allen et al. (2017)).

To model how the strains acquire resistance, we consider
a multi-strain continuous-time birth-death process with mu-
tations. The birth and death rates can vary over time, making
the dynamics a so-called ‘non-homogeneous’ process (Bai-
ley (1990)). There are four different strains in the population,
labeled S,A,B, andD. Strain S denotes sensitive cells, i.e.,
this strain does not exhibit resistance to either drug. Cells of
strain A are resistant to drug, but not to , and vice versa
for B. Strain D consists of double-resistant cells.

The process is described by random variables nS (t),
nA(t), nB(t), and nD(t), which represent the cell numbers (or
number of individuals) for each strain at time t. We write
n = (nS , nA, nB , nD). Members of different strains prolif-
erate and die with rates bi(t) and di(t) respectively, where
i ∈ {S,A,B,D}. These rates can be explicit functions of
time, reflecting time-dependent treatment strategies. In birth
events a single individual of the population reproduces, and
in death events a single individual is removed from the pop-
ulation.

In birth events, one of the two types of mutations can
occur. For example, an offspring of strain S will be of type
A with probability �A, and of type B with probability �B .
This is described by the events S → S + A or S → S + B,
respectively. With the remaining probability, 1 − �A − �B ,
the offspring is of type S (S → S + S). Similarly, an off-
spring of a parent type A is of type D with probability �B
(A → A + D), and an offspring of an individual of type
B is of type D with probability �A (B → B + D). The
per capita birth rate bi has an explicit dependence on ni in
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Table 1
Summary of the different birth and death events in the population, along with the associated rates per individual, and the
total rate for any type of event in the population. The symbol ∅ represents removal of an individual from the population
(i.e., death). The change of the state vector n(t) = (nS (t), nA(t), nB(t), nD(t)) in each of the different possible events is shown
in the last column.

Transition Rate per individual Total event rate Change of n(t)

S → S + S bS (t)(1 − �A − �B) nS (t)bS (t)(1 − �A − �B) (1, 0, 0, 0)
S → ∅ dS (t) nS (t)dS (t) (−1, 0, 0, 0)
S → S + A bS (t)�A nS (t)bS (t)�A (0, 1, 0, 0)
S → S + B bS (t)�B nS (t)bS (t)�B (0, 0, 1, 0)
A → A + A bA(t)(1 − �B) nA(t)bA(t)(1 − �B) (0, 1, 0, 0)
A → ∅ dA(t) nA(t)dA(t) (0,−1, 0, 0)
A → A +D bA(t)�B nA(t)bA(t)�B (0, 0, 0, 1)
B → B + B bB(t)(1 − �A) nB(t)bB(t)(1 − �A) (0, 0, 1, 0)
B → ∅ dB(t) nB(t)dB(t) (0, 0,−1, 0)
B → B +D bB(t)�A nB(t)bB(t)�A (0, 0, 0, 1)
D → D +D bD(t) nD(t)bD(t) (0, 0, 0, 1)
D → ∅ dD(t) nD(t)dD(t) (0, 0, 0,−1)

the model with logistic growth without competition between
strains. Each bi depends on all components of n in the model
with competition between strains. This will be detailed fur-
ther below. The rates associated with the possible events are
summarised in Table 1. The last column of the table indi-
cates how entries of the state vector (nS , nA, nB , nD) change
in the different types of events.

2.2. Mean growth laws and production rates of
mutants

The quantities nS (t), nA(t), nB(t), and nD(t) above are
random variables, and differ from realisation to realisation
of the stochastic birth-death dynamics. We write n̄i(t), i ∈
{S,A,B,D} for the average cell numbers at time t across
realisations. In the limit of infinite populations these follow
the ordinary differential equations

dn̄S
dt
(t) = rS (t)n̄S (t),

dn̄A
dt
(t) = bS (t)�An̄S (t) + rA(t)n̄A(t),

dn̄B
dt
(t) = bS (t)�B n̄S (t) + rB(t)n̄B(t),

dn̄D
dt
(t) = bA(t)�B n̄A(t) + bB(t)�An̄B(t) + rD(t)n̄D(t).

(1)

The quantities

rS (t) ≡ bS (t) (1 − �A − �B) − dS (t) ,
rA(t) ≡ bA (t) (1 − �B) − dA (t) ,
rB(t) ≡ bB (t) (1 − �A) − dB (t) ,
rD(t) ≡ bD(t) − dD(t)

(2)

represent the net growth rates for the different strains, and re-
sult from the balance of birth and death. In the exponential
growth model the bi(t) do not depend on n̄. In the logistic
model without competition between strains bi is of the form
bi = bi(n̄i(t), t) in the deterministic limit. In the model with

competition between strains, finally, we have bi = bi(n̄(t), t).
This is obtained from factorising averages in the determin-
istic limit, e.g. bini = bi ni, and using bi(ni, t) = bi(ni, t). In
Eq. (2) we have simply written bi = bi(t) to keep the notation
compact.

To proceed we will assume that the probabilities �A and
�B are small compared to one, values below 10−2 can serve
as a reference for real-world biological systems, see e.g.
Krašovec et al. (2017). We use this to approximate the terms
1−�A, 1−�B , and 1−�A−�B in Eq. (2) by a value of unity.
This means that we overestimate the number of non-mutant
offspring by a small fraction. In related models it has been
shown that this simplification does not significantly alter the
outcome (Foo and Michor (2010)). With this simplification,
the net growth rates in Eq. (2) become ri = bi − di. The
mutation rates are still present in Eqs. (1), in the terms asso-
ciated with mutations from source strains (the first term in
each of the growth laws for strains A,B and D).

The rates with which single-resistants of type A or B
are produced by mutations are given by the total rates of the
events S → S+A and S → S+B, respectively. In the fully
stochastic model these are random quantities themselves,
given byWA(t) = bS (t)�AnS (t) andWB(t) = bS (t)�BnS (t)
(see Table 1). Within the deterministic approximation we
can replace this by

W A(t) = bS (t)�AnS (t) (3)

and

W B(t) = bS (t)�BnS (t). (4)

The production rate of double mutants, resulting from mu-
tations arising in the offspring of either A or B, is the sum
of the rates for the two events A→ A+D and B → B +D.
Focusing on mean values again, this becomes

W D(t) = bA(t)�BnA(t) + bB(t)�AnB(t). (5)
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The deterministic approximation we have made effec-
tively amounts to writing W i(n(t)) ≈ Wi(n̄(t)). The result-
ing equations for the mean cell numbers are then closed in
the {n̄i(t)}, with no dependence on higher-order moments
of ni(t). This approximation is only necessary in the logistic
growth models defined below. For the range of parameters
we explore in this paper, theoretical predictions calculated
based on this simplification are typically in good agreement
with numerical simulations as we will see below. We dis-
cuss limitations below in Section 6, and we show instances
in which the predictions of the theory deviate from numeri-
cal simulations in Section S6 of the SupplementaryMaterial.

2.3. Specific growth laws
We will explore three different scenarios. The first is ex-

ponential growth, and describes, for example, bacterial pop-
ulations with unlimited resources so that growth can con-
tinue indefinitely (e.g. as it is the case in so-called ‘con-
tinuous’ culture systems with constant growth rates, see
Hoskisson and Hobbs (2005)). The second scenario entails
logistic growth for each strain, but with no competition be-
tween individuals of different strains. This describes situa-
tions where resources are limited, but each strain exploits a
different resource (such as may occur if a resistance muta-
tion allows a strain to occupy a new ecological or spatial
niche, Moreno-Gamez et al. (2015); Feder et al. (2019)).
The growth of any one strain is then limited by the number
of individuals of that strain, but not by individuals of other
strains. The third scenario is logistic growth with competi-
tion within and between strains. The different strains com-
pete for the same resources, such that the growth of any one
strain is limited by the presence of all strains. This leads
to competitive Lotka-Volterra equations (Schoener (1976)).
We provide detailed mathematical definitions for each of the
three scenarios below.

Throughout this paper and for every type of growth law,
the initial population at time t = 0 is assumed to consist
of n0 sensitive cells and no resistant mutants, i.e., the initial
condition is n(t = 0) = (n0, 0, 0, 0).

2.3.1. Exponential growth model (EG)
In this model, the per capita birth and death rates do not

depend on the cell number of any of the strains, i.e., the bi(t)
and di(t) may be time-dependent (reflecting time-varying
drug concentrations), but they are not functions of n. The
differential equations for the ni are then linear in n̄i. In the
special case of constant per capita growth and death rates,
the equations admit analytical solutions in the form of ele-
mentary exponential functions (see Section S2 of the Sup-
plementary Material). When the rates are time-dependent,

the solutions can be expressed as

n̄S (t) = n0 exp
[

∫

t

0
rS

(

t′
)

dt′
]

,

n̄A(t) = ∫

t

0
W A

(

t′
)

exp
[

∫

t

t′
rA

(

t′′
)

dt′′
]

dt′,

n̄B(t) = ∫

t

0
W B

(

t′
)

exp
[

∫

t

t′
rB

(

t′′
)

dt′′
]

dt′,

n̄D(t) = ∫

t

0
W D

(

t′
)

exp
[

∫

t

t′
rD

(

t′′
)

dt′′
]

dt′.

(6)

Even though these are not strictly exponential functions in
the case of time-dependent rates we will nevertheless refer
to this type of growth law as ‘exponential growth’, and use
the shorthand ‘EG’.

It is straightforward to interpret the first relation in
Eq. (6). The growth of strain S is described by a single-
strain birth-death process with initial condition n0, and the
net growth rate at time t′ is rS (t′) (this may be negative,
in which case the number of individuals of type S reduces
with time). For the resistant strains (A,B and D) the term
W i(t′) represents the (mean) rate with which individuals of
this strain are produced in mutation events at time t′. The
exponential term then accounts for their replication (or re-
moval) between times t′ and t through a birth-death process
with net reproduction rate ri(t′′) at time t′′. Thus, the inte-
gral over t′ counts all new mutations, and the offspring the
mutant produces between the time of the mutant’s appear-
ance, t′, and time t.

The ni are not bounded in this model, implying that the
cell numbers can grow to arbitrary values. This situation is
not realistic as resources are limited in practice; in an infec-
tion for example, cell numbers are constrained by nutrients
provided by the host (Smith and Holt, 1996; Smith, 2007).
The two scenarios that we describe next hence account for
limited growth.

2.3.2. Logistic growth model without competition
between strains (LG)

In this scenario each strain follows a logistic growth law,
that is to say, the cell number grows exponentially initially,
but then approaches a carrying capacity at later times. We
write ki for the carrying capacity of strain i, and assume that
the net growth rate ri for strain i depends on ni, but not on the
cell numbers of the remaining strains. This can describe mi-
crobial communities in which the different strains consume
different resources. We will use the shorthand ‘LG’ to refer
to this setup (logistic growth).

There are several ways of choosing birth and death
rates so that the resulting mean cell number follows a lo-
gistic growth law, see e.g. Smith and Tuckwell (1974);
Parthasarathy and Krishna Kumar (1991); Goel and Richter-
Dyn (2016). For example, the model could be such that the
birth and death rates for strain i both become zero when
the cell number ni reaches the carrying capacity ki. In a
stochastic model this would mean that the birth-death dy-
namics comes to a complete halt when the carrying capac-
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ity is reached. As a consequence ni will remain fixed at
ni = ki, and no fluctuations around the carrying capacity
are observed.

In our model, we make less restrictive assumptions. We
only require that the cell number of a strain does not grow
on average when it exceeds its carrying capacity (i.e. ri =
bi − di = 0 when ni ≥ ki for i ∈ {S,A,B,D}). We make
the choice ri = 0 for ni > ki for reasons of consistency with
the logistic growth model with competition between strains.
This will be explained inmore detail below. In order to allow
fluctuations of the cell numbers around the carrying capac-
ity, we choose both birth and death rates to be non-zero at
and above the carrying capacity.

To specify the birth and death rates, we start from a given
per capita death rate di(t), and assume that the per capita
birth rate bi(t) equals di(t) when ni(t) ≥ ki. This implies
ri(t) = bi(t)−di(t) = 0 for ni ≥ ki, i.e. zero net growth. The
net growth for strain i is chosen to be positive when ni < ki,
with net growth rate ri(t) = �i(t)[1− ni(t)∕ki]. The factor in
the square bracket ensures that the net growth rate reduces
to zero as ni approaches the carrying capacity ki. The quan-
tity �i(t) is the intrinsic growth rate of strain i, describing
the per capita net growth rate of the strain in the limit of
small cell numbers (ni ≪ ki). A similar approach was used
in Parthasarathy and Krishna Kumar (1991) for a stochastic
version of the Gompertz model. Other related works of sim-
ilar models with coupled birth and death rates can be found
in Matis and Kiffe (1996); Matis et al. (2003, 1998). Sum-
marising, we use

bi(t) =

⎧

⎪

⎨

⎪

⎩

di(t) + �i(t)
(

1 −
ni(t)
ki

)

if ni(t) ≤ ki

di(t) if ni(t) > ki.

(7)

The specifics of the external influence of drug therapy
are reflected in the choice of the functions di(t) and �i(t).
This is discussed further in Sections 5.1 and 5.2.

The dynamics discussed above only describes changes
in ni due to reproduction and death of strain i, but it does not
cover production of strainsA,B andD due to mutations. For
example, strain A may have reached carrying capacity and
hence there is no intrinsic net growth of this strain (rA = 0),
but additional individuals of type A are still produced when
mutations occur in reproduction events of strain S. This is
reflected by the first term on the right-hand side of the growth
laws for n̄A, n̄B and n̄D in Eq. (1). For example bS (t)�An̄S (t)
will generally be positive, even when strain A has reached
carrying capacity. In this situation, the cell number of strain
A fluctuates stochastically, with a net increase over time due
to mutations from strain S. The latter occurs with a rate
proportional to �A, which is assumed to be much smaller
than one. As a consequence mutants will be generated at
a rate which is slow compared to the reproduction rate of
type-A individuals in the growth phase before saturation.

2.3.3. Logistic growth model with competition between
strains (CLG)

This model is similar to the one in the previous section.
Crucially though, the growth of any one strain can now be
affected by the total cell number of all strains in the popula-
tion. We write nT (t) = nS (t) + nA(t) + nB(t) + nD(t) for this
total cell number. The model captures scenarios in which
the different strains all compete for the same resource. We
make the simplifying assumption that the interaction is the
same between any pair of strains, such as for example pure
scramble competition. There is no direct interference, cross-
feeding or similar (see e.g. Jørgensen and Fath (2014)). We
will use ‘CLG’ to refer to this class of growth law (‘compet-
itive logistic growth’).

Similar to the previous section, we use the per capita
birth rate

bi(t) =

⎧

⎪

⎨

⎪

⎩

di(t) + �i(t)
(

1 −
nT (t)
ki

)

if nT (t) ≤ ki

di(t) if nT (t) > ki
(8)

for strain i. The net birth-death growth rates are ri = bi − di
as before. The term ki is the carrying capacity of strain i in
absence of its competitors.

This choice indicates that the growth rate for strain iwill
reduce to zero (ri = 0) when the total cell number nT exceeds
ki. In an alternative setup with ri < 0 for nT > ki only
the strain with highest coefficient ki would survive at long
times. To see this, consider the case in which nT > ki for
species i, but nT < kj for species j. The abundance of the
first species would decline, that of the second species would
continue to grow. Our approach ensures that the growth laws
are such that the mean abundance n̄i saturates when n̄T ≥ ki.
The birth and death rates for strain iwill nevertheless remain
non-zero, and hence the number of cells of type i will keep
fluctuating in the individual-based model.

This model is based on the competitive Lotka-Volterra
equations (Schoener (1976)). In their general form (see e.g.
Gilpin and Ayala (1973)), these equations include an inter-
action matrix that accounts for the competition of any strain
with any other; the interaction coefficients can – in princi-
ple – be different for different pairs of strains. We have here
focused on the simple case, with all interaction coefficients
set equal to unity. In previous work Gifford et al. (2019) we
have used a similar setup to model growth curves obtained
experimentally in populations of bacteria.

2.4. Effect of drug treatment on growth rates
What effects drugs have on the different strains may de-

pend on factors such as environmental conditions, drug in-
teractions, type of drugs used, etc. We assume synergistic
effects of both drugs on the sensitive strain, i.e., the effect
of the combination of both drugs on S is stronger than the
effect of any one drug in isolation. We also assume that the
growth of strain S will be suppressed by a larger amount in
the presence of both drugs than that of any of the single-
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resistant strains. Growth of the double-resistant strain is not
affected by any drugs in our model.

Net growth is described by the balance of birth and death
rates. Depending on the type of drugs used, net growth
can be affected in different ways. Bactericidal drugs (which
kill bacteria) will primarily increase death rates even though
birth rates may also be affected (Kohanski et al. (2010). Bac-
teriostatic drugs (which do not necessarily kill bacteria but
slow their reproduction) will mostly affect birth rates.

In practice, however, drugs will often affect birth and
death rates simultaneously. In our model drug reduces the
birth rates of the sensitive strain S and of the single-mutant
strain B (bS and bB , respectively). Strain A is resistant to
drug . Similarly, drug  reduces bS and bA, but not bB .
At the same time drug will also increase the death rate of
strains S and B (dS and dB , respectively), and drug  in-
creases dS and dA. The birth and death rates for the double-
resistant strain (bD and dD) are not affected by either drug.

In order to capture this scenario, we write CA and CB
for the (dimensionless) concentrations of the two drugs, and
introduce

fA(t) = 1 + CA(t), fB(t) = 1 + CB(t). (9)

We allow drug concentrations to be a function of time to ac-
count for dosing schedules and drug pharmacokinetics. The
quantities fA(t) and fA(t) describe the relative factors by
which birth and death rates are reduced or enhanced, respec-
tively. We note that fA = 1 in the absence of drug , and
similarly for fB .

To model the effects of drugs in the exponential model
we start from constant birth and death rates, labelled b0i , d

0
i .

These coefficients describe the birth and death rates in the
absence of any drugs (CA = CB = 0). The reduction of
growth rates and increase of death rates is then captured as
follows:

bS (t) =
b0S

fA(t)fB(t)
, dS (t) = d0SfA(t)fB(t),

bA(t) =
b0A
fB(t)

, dA(t) = d0AfB(t),

bB(t) =
b0B
fA(t)

, dB(t) = d0BfA(t),

bD(t) = b0D, dD(t) = d0D. (10)

We will refer to this as an ‘exponential growth model
with time-dependent drug concentrations’, even though the
growth process is no longer strictly exponential when CA
and CB are functions of time.

Equation (10) defines the di(t) and bi(t) for the exponen-
tial model in the presence of drugs. For the logistic models
with drug treatment, we use the same death rate di(t) as in
the exponential model. We then define the intrinsic growth
rates �i(t) ≡ bi(t) − di(t), with bi(t) and di(t) as in Eq. (10).
In this definition of �i(t)we use the birth rate bi(t) for the ex-
ponential model. The birth rates bi(t) for the logistic models
are then constructed from di(t) and �i(t) using Eqs. (7) and

(8) respectively. This allows one to compare the outcome of
the different growth models. When cell numbers are much
smaller than the relevant carrying capacities the suppression
of growth in the logistic models does not yet set in. The three
models then exhibit similar behaviour.

The relations in the first line of Eq. (10) represent the
reduction of the birth rate for strain S in the presence of
any of the two drugs; similarly the death rate for strain S
is increased. For simplicity we assume that the factors by
which bS is reduced are the same as the those by which dS
is increased. A similar approach is taken for the remaining
strains. In principle, more general choices are possible, but
in the spirit of constructing a stylised model capturing the
essential effects, we proceed on the basis of Eq. (10).

Themultiplicative setup in Eq. (10) ensures that the birth
and death rates remain non-negative, even for very high drug
concentrations. This is harder to ensure in an additivemodel,
for example of the form bA = b0A − CB .

3. Probability of single and double resistance
In this section, we present analytical approximations for

the probability that the population has developed resistance
at a given time. More specifically, we calculate the probabil-
ities that there is at least one individual of type A or of type
B in the population at time t (P [nA(t) + nB(t) > 0]), and
the probability that there is at least one double-resistant D
in the population P [nD(t) > 0]). The method to derive these
probabilities is based on Foo and Michor (2010), where the
probability of having at least one single-resistant was calcu-
lated for a linear model with exponential growth and only
one type of single-resistant strain. Our contribution consists
of extending this method to the non-linear growth models
described in the previous section, and additionally, we also
obtain the probability to find double resistance. We note that
double mutantsD can be generated from two parent sources
(A andB) viamutations. We here only outline themain steps
and results. Further details of the calculations can be found
in the Supplementary Material (Section S1).

3.1. Extinction probability of single strains
The method of Foo and Michor (2010) makes use of the

extinction probability in a single-species birth-death process
with time-dependent birth and death rates. This is the prob-
ability that one single individual present at time t becomes
extinct by time T , along with its lineage (i.e, the cell itself
and all its descendants).

For strain i, and using the previous notation bi(t′) and
di(t′) for the per capita birth and death rates at time t′, this
probability is given by Bailey (1990); Parzen (1999)

Pext,i(t, T ) =
∫

T

t
di
(

t′
)

e−�i(t,t
′)dt′

1 + ∫

T

t
di
(

t′
)

e−�i(t,t
′)dt′

, (11)
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with

�i
(

t, t′
)

≡ ∫

t′

t
ri
(

t′′
)

dt′′, (12)

and ri(t) = bi(t) − di(t) as before. This result is exact, pro-
vided the rates bi(t) and di(t) are deterministic functions (for
example externally determined birth and death rates). When
one or both of these rates depend on the cell numbers n one
can proceed based on an approximation in which one re-
places n by the mean cell numbers n̄. We will make use of
this approximation for the logistic growth models. If di = 0,
the extinction probability is zero trivially, as there is no death
process. The extinction probability in Eq. (11) tends to unity
for T → ∞ if and only if ∫ Tt di

(

t′
)

e−�i(t,t′)dt′ → ∞. This
can occur, for example, when the death rate is higher than
the birth rate at all times, i.e., ri(t) is consistently negative
and with it also �i(t, t′).

In order to calculate the probabilities of single or dou-
ble resistance one needs to evaluate Pext,i (i ∈ {A,B,D}) as
defined above for each growth model, for both constant and
time-dependent rates. Although this can be done numeri-
cally for cases which do not admit an analytical solution, the
repeated evaluation of the integrals in Eqs. (11) and (12) can
become very costly. One aspect of our work is the strategy
developed to carry out these integrals efficiently. This is ex-
plained below in Section 3.4, after we first describe the main
steps we follow to obtain the probabilities of single and dou-
ble resistance.

3.2. Single resistance
As described in more detail in Section S1.2.1 of the Sup-

plementary Material, the probability of having at least one
single-resistant cell of either type A or B at time T after the
treatment has started can be expressed in the form

P single
R (T ) = 1−exp

[

−∫

T

0

{

ΦA (t, T ) + ΦB (t, T )
}

dt
]

,

(13)

where

ΦA (t, T ) = bS (t)n̄S (t)�A
[

1 − Pext,A(t, T )
]

, (14)

and

ΦB (t, T ) = bS (t)n̄S (t)�B
[

1 − Pext,B(t, T )
]

. (15)

The term Φi (t, T ) represents the rate with which mutants of
type i ∈ {A,B} are produced at time t through mutations of
strain S, requiring that the resulting mutant lineage survives
until the later time T . We will refer to the expression in Eq.
(13) as the probability of single resistance.

Broadly speaking the above expressions indicate that the
appearance of single mutants is guaranteed (P single

R (T ) →
1 for T → ∞) if mutation events from the sensitive strain
continue indefinitely, and if mutants produced in this way
do not all die out in the long run. We would expect the latter

to be the case when the growth rate ri(t) remains positive
throughout for either strainA or strainB (or both). Examples
of such situations are shown in Figure 1. In the absence of
mutation (�A = �B = 0) one has ΦA = ΦB = 0, and
P single
R (T ) = 0 trivially as mutants never appear.

3.3. Double resistance
The procedure to obtain the probability of double resis-

tance is analogous to that for single resistance. The main
difference is now that there are two sources, strains A and
B. The probability of having at least one double-resistant
cell at time T becomes (see Section S1.2.2 of the Supple-
mentary Material)

P double
R (T ) = 1−exp

[

−∫

T

0

(

ΨA (t, T ) + ΨB (t, T )
)

dt
]

,

(16)

with

ΨA (t, T ) = bA(t)�B n̄A(t)
(

1 − Pext,D(t, T )
)

(17)

and

ΨB (t, T ) = bB(t)�An̄B(t)
(

1 − Pext,D(t, T )
)

. (18)

The terms ΨA (t, T ) and ΨB (t, T ) represent the rates with
which double-resistants are produced by mutation of strains
A and B at time t, respectively, and requiring that their lin-
eage survives until time T . We will refer to P double

R (T ) in
Eq. (16) as the probability of double resistance.

We stress again that we are using the mean numbers of
source cells as an input for these expressions (n̄A and n̄B).
The limitations of this approach are discussed in Section 6.

3.4. Numerical integration of the probabilities of
resistance

The previous expressions for the probabilities of resis-
tance cannot always be reduced further. In addition, if the
birth or death rates depend on the cell number of one or more
strains, it is necessary tomake a deterministic approximation
(involving the replacement of the rates by their mean values)
in order to compute the integrals in Eqs. (11), (13), and (16).
In many cases it is not possible to do this analytically, and
one has to resort to evaluating the integrals numerically.

Evaluating the probabilities of single or double resis-
tance at time T requires the calculation of the functions
ΦA(t, T ), ΦB(t, T ) and ΨA(t, T ) and ΨB(t, T ) in Eqs. (13)
and (16) for all times t up to T . These objects in turn in-
volve Pext,i(t, T ) for i ∈ {A,B,D}, and evaluating these
would require access to the objects �i(t, t′) for all combi-
nations of times t, t′ up to T [Eq. (11)]. We recall that
�i
(

t, t′
)

= ∫ t
′

t ri(t′′)dt′′ is the integrated net growth rate for
strain i, see Eq. (12). As a consequence we would have to
integrate the net growth rate ri over the intervals [t′, t] for all
combinations of t′ < t in the range up to T .

To make this process more efficient we first notice that –
in absence of additional production of strain i through mu-
tation – one has dn̄i(t)∕dt = ri(t)n̄i(t). As a consequence
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n̄i(t′) = n̄i(t) exp
[

�i(t, t′)
]

. If we set n̄i(t) = 1, then the
quantity �i(t, t′) can directly be expressed in terms of n̄i(t′),

�i
(

t, t′
)

= ln n̄i
(

t′
)

. (19)

Therefore, the calculation of �i
(

t, t′
)

for a fixed combina-
tion of t and t′ (t′ > t) reduces to the problem of finding
n̄i
(

t′
)

for the initial condition n̄i(t) = 1. In principle this can
be obtained from numerically integrating the growth law for
strain i from the deterministic equations for n̄i, but it would
imply separate integration runs for each initial time t due to
the required initial condition n̄i(t) = 1. For the model with
competition between strains, this also involves integrating
the growth laws for all other strains.

In order to streamline this approach, our strategy con-
sists of expressing the quantity n̄i(t′) (with initial condition
n̄i(t) = 1) in terms of the solution n̄0i of the deterministic
mean growth law for strain i with initial condition n̄0i (0) = 1
at time 0. The details of this are described in Section S3.2
of the Supplementary Material.

For the LG model we find (t′ > t),

n̄i
(

t′
)

=

ki

(

ki
n̄0i (t)

− 1

)

(ki − 1)

(

ki
n̄0i (t′)

− 1

)

+

(

ki
n̄0i (t)

− 1

) . (20)

We re-iterate that this is the solution of the growth law for
strain i for times t′ > t, subject to the initial condition
n̄i(t) = 1. This initial condition can be verified directly from
Eq. (20). We stress that n0i (t) and n

0
i (t

′) both feature on the
right-hand side of Eq. (20).

Combining Eq. (20) with Eq. (19) we can find the in-
tegrated growth rate �i(t, t′) for all combinations t < t′ in
the range up to T , provided we know the solution n̄0i (t

′′) of
the growth law for strain i with initial condition n̄0i (0) = 1
(t′′ < T ). This trajectory can be obtained from one single
numerical integration, significantly reducing the computa-
tional effort.

A similar approach can be taken for the model with com-
petition between strains. This is discussed in more detail in
Section S4 of the Supplementary Material.

In the next section we proceed to analyse the probabil-
ities of single and double resistance for each growth model
and compare the theoretical predictions with results from nu-
merical simulations. The simulations are carried out using
the Gillespie algorithm (Gillespie (1977, 1976)). For pro-
cesses with constant reaction rates this algorithm generates
a statistically faithful ensemble of sample paths. For pro-
cesses with time-dependent rates, the algorithm can still be
used as an approximation. To do this we disregard the time
dependence of the reaction rates during each Gillespie step,
but then update the rates once a birth or death event has been
executed. This is not an exact procedure, but the approxima-
tion works well if the rates do not change significantly during
each Gillespie step. For a more detailed discussion of the al-
gorithm and its limitations see Masuda and Rocha (2018)
and Anderson (2007).

We focus on studying the probabilities of single and dou-
ble resistance for the three growth models, and we study
cases with constant drug and time dependent drug concen-
trations, respectively. We will concentrate on the effects the
choice of the growth model has on these probabilities.

4. Probability of resistance for growth with
constant coefficients

4.1. Setup, and comparison of theory and
simulation

In the case of constant drug concentrations (approximat-
ing e.g. constant intravenous infusion, Shargel et al. (2004))
the birth and death rates for the exponential growth model
[bi and di in Eq. (10)] are time-independent. Similarly, the
quantity �i in the logistic growth models does not explicitly
depend on time. Any dependence of bi and di on time in the
logistic models is through a functional dependence on n̄(t)
[c.f. Eqs. (7) and (8)]. To establish the baseline behaviour
of the different growth models, we address this case of con-
stant coefficients bi and di in this section, that is coefficients
without explicit dependence on time. Specifically, we will
study how the probabilities of single and double resistance
depend on the key model parameters for the three different
types of growth.

The theoretical predictions of single and double resis-
tance are obtained from Eqs. (11), (13) and (16). The ex-
tinction probability, the probability for single and double re-
sistance can always be expressed in terms of the trajectories
n̄i(t), although the remaining integrals in the above equations
may have to be carried out numerically.

For constant coefficients, closed-form solutions can be
obtained for some of the quantities we are interested in, and
in other cases we proceed numerically: (i) For the EGmodel,
we can find a closed-form solution for the extinction proba-
bilities Pext,i(t, T ), this is given in Eq. (S15) in the Supple-
mentary Material. Additionally, the mean cell numbers n̄i(t)
for each strain can be obtained in closed form from Eqs. (1),
see Eq. (S14). With these solutions in turn, one can then de-
rive closed-form expressions for the functions ΦA,ΦB ,ΨA
andΨB , and the probabilities of single and double resistance.
This is explained further in Section S2 of the Supplemen-
tary Material. (ii) For the LG model, we can only find a
closed-form solution for n̄S (t), but not for the other strains.
The probabilities of single and double resistance are calcu-
lated numerically using Eqs. (13) and (16). For further de-
tails see also Section S3 of the SupplementaryMaterial. (iii)
For the CLG model, we cannot express the mean cell num-
ber in closed form for any of the strains. This is due to the
coupling and non-linearity of the equations for the mean cell
numbers. The probabilities of single and double resistance
are again obtained numerically.

For the time-dependent dosing protocols considered in
Section 5, we have not been able to find closed-form solu-
tions of Eqs. (1) for any of the strains and in any of the growth
models. As a consequence the extinction probabilities and
probabilities of single or double resistance cannot be found
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Figure 1: Single and double resistance probabilities for the three different growth models (EG exponential growth, LG logistic
growth without competition between strains, CLG logistic growth with competition between strains). Theoretical predictions
(solid lines) were obtained from equations (13) and (16), while numerical simulations (circles) were conducted using the Gillespie
algorithm, results are averaged over 10000 runs. Parameters used: bS = 1.1, bA = 1.2, bB = 1.3, bD = 1.4, dS = dA = dB =
dD = 0.1, �A = �B = 10−4, n0 = 104. For the logistic growth models, we have set �i = bi − di for i ∈ {S,A,B,D}, and
kS = 106, kA = 1.1 × 106, kB = 1.2 × 106, kD = 1.3 × 106.

in closed form either, and have to be evaluated numerically.
As mentioned above in Section 2.4, in order to be able

to compare the outcome of the different growth models, we
specify fixed death rates di for each strain, and then use these
for all three types of growth. In the EG model also specify
the birth rates bi. In the two logistic growth models we then
set �i ≡ bi − di, so that the behaviour of all three models is
similar for very small cell numbers.

Figure 1 illustrates a typical profile of the probabilities
of having at least one single-resistant individual (either of
type A or B) or at least one double-resistant individual, re-
spectively. In the figure we compare the theoretical predic-
tions for the three growthmodels against results from numer-
ical simulations of the stochastic dynamics. The parameters
used in the figure are for illustration, and do not necessarily
represent a realistic situation. They describe a scenario in
which the net birth-death rates, ri = bi − di, are positive for
all strains. This ensures that cell numbers increase in time
(on average), so that single and double mutants eventually
emerge. As the graphs show, the profile of the emergence of
single resistance is very similar for the three different growth
models, while double resistance tends to emerge later in the
model with competition than in the other two scenarios. Fur-
ther illustrations comparing simulation and theory for differ-
ent choices of the model parameters are shown in the Sup-
plementary Material (Section S5.2).

In the following sections we discuss the behaviour of
both single and double resistance when varying different
model parameters. In particular, we consider the outcome
as a function of the carrying capacities, ki. In the limit of
very high carrying capacities (very abundant resources), the
logistic models reduce to the exponential model with unlim-

ited growth. When the carrying capacities are finite, growth
becomes restricted due to limited availability of resources.

4.2. Single resistance
Single resistance emerges through mutations during re-

production events of the sensitive strain S and is subse-
quently maintained provided the mutant strain does not be-
come extinct. When the carrying capacity of sensitive cells
kS and single-resistant cells kA and kB are high compared
to the initial number n0 of sensitive cells, there is no notice-
able difference between the predictions of single resistance
in the three different growth models (all three models lead
to largely exponential growth); an example is shown in the
upper row of Figure 1. However, as we will discuss below,
the relation between kS on the one hand, and kA and kB on
the other, can affect the timing of the emergence of single-
resistants in the competitive model. This is the case when
these coefficients are close to each other, and to the the ini-
tial number of cells.

We show theoretical predictions for single resistance in
Figure 2. In the figure we focus on the model with expo-
nential growth, and we show the probability of finding at
least one resistant cell as a function of time T , and varying
a selection of model parameters. High probabilities of resis-
tance are indicated by light colours. As one would expect,
mutants tend to appear sooner as the birth rate bS , the ini-
tial number of sensitive cells n0 or the mutation rates �A, �B
are increased. This can be seen by the increased amount
of lighter colours as one moves up along the vertical axes
of panels (a), (c) and (d) in Figure 2. Panel (b) shows that
the probability of single resistances decreases for increasing
death rates dS of the sensitive strain. Figure 3 illustrates how
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Figure 2: Theoretical prediction of the probability of single re-
sistance obtained from Eq. (13) for the exponential growth
model when varying only one parameter while keeping the
others constant. When not varied, the parameters used are
bS = 1.0, bA = 1.1, bB = 1.2, bD = 1.3, dS = dA = dB = dD =
0.1, �A = �B = 10−4, and n0 = 104.

the predictions for single resistance differs between the lo-
gistic models with and without competition between strains
(LG and CLG respectively), and when the carrying capacity
kS is varied. In the LG model single mutants tend to appear
sooner when the carrying capacity kS is high, see Figure 3
(a). This is as expected, as for higher values of kS the lim-
itations of growth of the sensitive strain only set in at large
cell numbers. The resulting higher number of sensitive indi-
viduals increases the chance of producing single mutants.

The dependence of the probability of single resistance on
kS is more intricate in the model with competition between
strains (CLG). If the carrying capacity for strain S is close
to the initial number of sensitive cells in the population, then
the probability that single mutants emerge depends on how
kS compares to the carrying capacities kA and kB of the sin-
gle mutant strain. We illustrate this Figure 3 (b) and (d) for
a case with �A > �B and kB > kA. The former of these
conditions implies that the first single mutants are likely to
be of type A.

The curve in Figure 3 (d) shows interesting behaviour:
We find that the probability of single resistance decreases
with increasing kS , provided kS is sufficiently small. At an
intermediate value of kS ≈ kA we observe a minimum. For
higher values of kS , the probability of single resistance then
increases again with kS . A small ‘kink’ is seen at kS ≈ kB .

We attribute these features to a combination of several
counteracting effects: (i) Generally, an increase in the carry-
ing capacity kS leads to a less restricted and therefore faster
growth of the sensitive strain. A high carrying capacity also
leads to higher numbers of sensitive cells in the long run.
Both of these effects favour the emergence of single-resistant
cells. (ii) If the carrying capacity kS is lower than kA and
kB , then the total cell number nT is lower than kA and kB
when strain S saturates. The population consists mostly of
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Figure 3: Theoretical prediction of the probability of single
resistance for the logistic growth models without competition
[LG, panels (a) and (c)], and with competition [CLG, panels (b)
and (d)]. This is shown as a function of the carrying capacity
kS , for parameters �S = 0.9, �A = 1.0, �B = 1.1, �D = 1.2, dS =
dA = dB = dD = 0.1, �A = 10−3, �B = 10−4, n0 = 103, kA =
1.1 × 103, kB = 1.2 × 103, kD = 1.3 × 103. Panels (c) and (d)
show vertical cuts in panels (a) and (b) respectively, indicated
by the vertical dashed line in the upper graphs at T = 35.

sensitive cells at this point. As first mutants emerge, they
will be able to proliferate until the total size of the population
reaches the carrying capacity of the relevant single-mutant
strain. This is likely to be A because of the higher mutation
rate �A > �B . The maximum number of single mutants A
that can arise is broadly governed by the difference between
kA and the number of sensitive cells. The latter in turn is
approximately given by kS . Therefore, as kS approaches
kA from below there is only little room for single-resistant
cells to proliferate before saturation sets in. In some cases
only a few single-resistant cells can be produced, and these
may eventually die due to stochastic fluctuations. This ef-
fect acts to reduce the probability of single resistance as kS
approaches kA from below.

In the example of Figure 3 (d), the second effect domi-
nates over the first in the regime kS < kA, and the probabil-
ity of single resistance is a decreasing function of kS . When
kA < kS < kB , the suppression of growth of mutant strainA
(effect (ii) above) is no longer relevant. Effect (i) now dom-
inates, and the probability of single resistance becomes an
increasing function of kS . As a result a minimum is found
for the probability of single resistance at kS = kA. When
kS hits kB any suppression effect due to mutants of type B
is also removed, and the probability of single resistance in-
creases more sharply with kS . This results in a ‘kink’ at
kS = kB in Figure 3 (d).

4.3. Double resistance
We now compare the probability of double resistance in

the three growth models. In Figure 4 we show the effects
of varying bS , dS , bA, and n0 in turn; for other parameters

Page 10 of 17

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.27.119537doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.27.119537
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 2 4 6 8 10 12 14
0.0

0.5

1.0

1.5

2.0

0 5 10 15 20 25

2

4

6

8

10

0 2 4 6 8 10
0

1

2

3

4

5

0 5 10 15 20
0.0

0.5

1.0

1.5

2.0

0 5 10 15 20
0.0

0.5

1.0

1.5

2.0

0 2 4 6 8 10 12 14
0.0

0.5

1.0

1.5

2.0

0 2 4 6 8 10
0

1

2

3

4

5

0 5 10 15 20 25

2

4

6

8

10

0 5 10 15 20
0.0

0.5

1.0

1.5

2.0

0 2 4 6 8 10 12 14
0.0

0.5

1.0

1.5

2.0

0 2 4 6 8 10
0

1

2

3

4

5

0 5 10 15 20 25

2

4

6

8

10
0

0.2

0.4

0.6

0.8

1.0

EG model

LG model

CLG model

a cb d

hgfe

lkji

Figure 4: Theoretical prediction of the probability of double resistance for the three growth models when varying one parameter
(EG exponential growth, LG logistic growth without competition between strains, CLG logistic growth with competition between
strains). When not varied, the parameters used are bS = 1.0, bA = 1.1, bB = 1.2, bD = 1.3, dS = dA = dB = dD = 0.1, �A = �B =
10−4, and n0 = 104. When varying rS = bS − dS (rA = bA − dA), only bS (bA) changes, keeping dS (dA) constant. As described
in the main text, we have used �i = ri for the logistic growth models. Carrying capacities used: kS = 106, kA = 1.1 × 106, kB =
1.2 × 106, kD = 1.3 × 106. The lightest colour represents values of P double

R > 0.99.

see Section S5.1 of the Supplementary Material. In gen-
eral, the logistic growth model without competition between
strains (LG) seems to produce largely similar behaviour as
the model with exponential growth (compare panels (a)–(d)
with (e)–(h)). However, differences between the EG and LG
models become apparent where the carrying capacities are
varied. This will be discussed below in Fig. 5.

The logistic model with competition between strains,
however, shows notably different behaviour from the other
two models [see Figure 4(i)-(l)]. In particular we make the
following observations:

1. The time it takes for the probability of double resis-
tance to reach a specified value near one in the CLG
model is a non-monotonous function of the net growth
rate rS . This can be seen from the curved shape of the
contour lines in Figure 4 (i). It becomes more likely to
observe double resistance at a given time for increas-
ing rS , provided rS is sufficiently small. Once rS has
reached a certain point, however, increasing rS further
reduces the probability of finding double resistance at
a fixed time. We first look at the regime of small rS .
The total cell number remains low enough to avoid

saturating the growth of the emerging single mutants.
Double-resistants then tend to appear sooner the larger
the growth rate rS of the sensitive strain. Hence, the
probability of double resistance increases with rS . As
rS is increased further, strain S grows fast enough for
the total cell number to saturate the proliferation of
emerging single-resistant strains (due to the competi-
tion between strains). This makes the emergence of
double mutants less likely, hence the probability of
double resistance decreases with rS .

2. For low values of the death rate of strainS, dS , double
mutants tend to appear later in the CLG model than in
the other two growth models [compare the lower right
of panel (j) in Figure 4 with the data in the lower right
of panels (b) and (f)]. This effect is similar what was
discussed in item 1. above. Lowering the death rate
dS while keeping the birth bS fixed results in faster
net growth of the sensitive strain. This means that the
growth of the single-resistant strain saturates, thus re-
ducing the chance of emergence of double mutants.

3. For low values of the net growth rate rA of strain A
(accounting for birth and death), double mutants tend
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to appear very late in the CLG model compared to
the other growth models [compare the lower right of
Figure 4 (k) with those in panels (c) and (g)]. A low
value of rA means that more time is required to gen-
erate a number of A individuals which is sufficiently
large to make the appearance of double mutants likely.
As the other present strains (S and B) have more time
to grow, the total population size nT becomes large
enough to saturate the growth of strains A and B be-
fore the first double-resistants emerge. As a conse-
quence, the chance of double mutants to emerge de-
creases.

4. For an increased number of initial cells n0, it becomes
less likely to observe double mutants at a given time
[see Figure 4 (l)]. The delay in the emergence of dou-
ble mutants is again explained by a saturation of the
growth of sensitive and single-resistant strains. For
higher initial number of sensitive cells, saturation oc-
curs sooner, and double-resistant cells appear later.

These observations suggest that competition can affect
the emergence of double resistance. The predictions shown
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Figure 5: Theoretical prediction for the probability of double
resistance for the logistic models without competition between
strains (LG), and with between-strain competition (CLG) when
varying the carrying capacities. When not varied, the param-
eters used are the same as in Figure 4. In panels (e) and (f),
both kA and kB are varied at the same time. Notice the differ-
ent range of times in panels (d) and (f) compared to the other
panels.

in Figure 4 indicate that the typical time at which the first
double-resistants appear can be notably different when com-
petition is taken into account [compare e.g. Figure 4 panel
(l) with panels (d) and (h)]. The difference between the
competitive model and the other two models in producing
double-resistants is mainly due the saturation of the sen-
sitive and single-resistants before double mutants appear.
This is an important factor to take into account for mod-
elling resistance, in particular in situations where resources
are limited. Moreover, our analysis indicates that the opti-
mum treatment, i.e. the one that most delays the emergence
of double-resistants, can also differ across the models. This
can be illustrated using the behaviour of the probability of
double resistance as dS is varied, see Figure 4 (b), (f) and
(j). The model with competition between strains predicts
that a low dS would maximise the delay the emergence of
double mutants, while the other models predict that a higher
dS would be best.

In addition, the carrying capacities can also affect the
probability of double resistance in both logistic growth mod-
els. An example of this is displayed in Figure 5, where we
vary the carrying capacity of strain S, or of only one of the
single-resistant strains (strainA), or of both (strainA and B)
at the same time.

The lower end of panels (a) and (b) show a situation in
which the coefficient kS is above the initial number of cells
n0 = 10000, but close to it. Double mutants tend to ap-
pear only after a relatively long time in this situation in both
logistic models. When kS is sufficiently far above n0, its
precise value does not have a pronounced effect on double
resistance in the LG model [see Figure 5(a)]. In the CLG
model, however, an increase in the carrying capacity kS of
the sensitive strain results in a delayed emergence of double
mutants [Figure 5(b)].

When varying only kA [Figure 5 (c) and (d)], the proba-
bility of double resistance does not show a notable change in
either of the logistic models. Independently of the dynamics
of strain A, double mutants can still be produced from strain
B. Notice, however, that double mutants tend to appear at
later times in the CLG model than in the LG model. When
both carrying capacities kA and kB are varied together [pan-
els (e) and (f)], double resistance is significantly delayed in
the CLGmodel in comparison to the LGmodel when kA and
kB are high.

In summary we conclude that the carrying capacity of
strain S has a stronger effect on the emergence of double re-
sistance than each of the single-resistant carrying capacities.

5. Time-dependent drug concentrations
The analysis in the previous section focused on situa-

tions in which model parameters do not vary in time. In
many instances however, drugs are administered using time-
varying dosing schedules, giving rise to time-dependent
death and growth rates. Most drug therapies use periodic
dosing schedules, resulting in periodic time-dependences of
drug concentrations (see e.g. Ibrahim et al. (2004); Bur-
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nette (1992)). Modelling the the pharmacokinetics of dif-
ferent methods of repeat drug administration, we consider
two different types of time-dependence for the drug concen-
trations. In the first scenario, drug concentrations are con-
tinuous in time and follow a sinusoidal profile. This approx-
imates the pharmacokinetics for example of repeat antibiotic
dosing via an extravascular route (e.g. oral administration).
In the second scenario the drug concentration profiles con-
sist of a periodic series of pulses, representing, for example,
intermittent intravenous boluses (Shargel et al., 2004; Cham-
bers, 2019).

We note that the net growth rates of the strains affected
by the drugs (ri = bi − di for i ∈ {A,B,D}) in Eq. (10)
can become negative when the concentration of the rele-
vant drugs are sufficiently high. This leads to an effective
reduction of the number of cells of the affected strains. Mo-
tivated by clinical treatment protocols, the drug therapies
discussed below are designed such that the sensitive strain
will eventually become extinct, which is the goal of treat-
ment [see e.g. Foo and Michor (2009)]. This is achieved if
∫ T0 dS

(

t′
)

e−�S(0,t′)dt′ → ∞ as T → ∞, with �S
(

0, t′
)

≡
∫ t

′

0 rS
(

t′′
)

dt′′ as explained in Section 3.1. To achieve this
for oscillatory drug concentrations with period P it is suffi-
cient that �S (0, P ) < 0, i.e., that the time-average of the net
growth rate over one period is negative (assuming that d(t′)
remains above a non-zero value for all t′).

5.1. Sinusoidal drug concentrations
We first consider a sinusoidal drug profile, with period

P . The drug concentrations take the form

CA(t) = 1 − cos
[2�
P
t
]

,

CB(t) =

{

0 if t ≤ ΔtB
1 − cos

[2�
P

(

t − ΔtB
)

]

if t > ΔtB .

Drug  is applied starting from time t = 0, initially with
concentration zero (CA(t = 0) = 0), and then following a
periodic profile. The application of drug  starts at a later
time ΔtB (CB(t) = 0 for t ≤ ΔtB). The concentration of
 then also follows a sinusoidal profile from time ΔtB on-
wards. The factors fA and fB range from 1 to 3 over each
cycle. The drug profilesCA andCB are shifted by a timeΔtB
[ΔtB mod P when ΔtB > P ] and are out of phase by a frac-
tion ΔtB∕P of a period [(ΔtB mod P )∕P when ΔtB > P ].

A sample profile of the drug concentrations is shown in
Figure 6 (a) for P = 1 and ΔtB = 0.5; the corresponding
growth rates for the different strains are shown in Figure 6
(c).

5.2. Pulsing drug concentrations
In this protocol, the concentration of drug is assumed

to be of the form

CA(t) =
2
P
[P − (t mod P )] . (21)

This means that the profile CA(t) starts off at CA(t = 0) =
2, and then falls linearly with slope 2P−1, so that the drug
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Figure 6: Drug concentrations CA(t) and CB(t) in the sinusoidal
protocal (a) and for pulsing profiles (b) (period P = 1 and
ΔtB = 0.5). Panels (c) and (d) show the respective growth
rates (ri(t) = bi(t)−di(t), with i ∈ {S,A,B,D}) affected by the
drug effect described in equations (9)-(10). Parameters used:
b0S = b

0
A = b

0
B = b

0
D = 1.1, d

0
S = d

0
A = d

0
B = d

0
D = 0.1.

concentration becomes zero at t = P . Then the next pulse
starts, i.e., CA is re-set to its maximum value, and then falls
off linearly again. Similar profiles have been used in Ibrahim
et al. (2004); Chakrabarti and Michor (2017).

The concentration of drug  is assumed to be zero up
to time ΔtB , and then follows a similar sequence of pulses.
This is described by

CB(t) =

⎧

⎪

⎨

⎪

⎩

0 if t ≤ ΔtB

2
P
{

P − [(t − ΔtB) mod P ]
}

if t > ΔtB .
(22)

The concentrations of both drugs are out phase as in the si-
nusoidal drug therapy, and attain their minima at the same
times as in the sinusoidal protocol. Figure 6 (b) illustrates a
sample profile for P = 1 and ΔtB = 0.5; we show the cor-
responding net growth rates for the different strains in panel
(d).

5.3. Probability of double resistance for
time-dependent dosing schedules

In Figure 7 we show the probability of double resistance
resulting from the periodic dosing protocols. Data is pre-
sented as a function of time, and for any pairing of the two
therapy protocols and the three different growth models. We
have considered the cases where drug is administered from
times ΔtB = 0.0, 0.5 P and 1.0 P , with P = 1. Predictions
for other values ofΔtB , as well as the probability of single re-
sistance, can be found in Section S5.3 in the Supplementary
Material. We have chosen parameters such that the carrying
capacities are not too far from the initial number of sensitive
cells, allowing the limitations on growth in the logistic mod-
els to set in quickly. We observe that the double-resistant
strain tends to appear later in the pulsing therapy than in the
sinusoidal therapy (to see this compare the value of P double

R
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for the two protocols at a given time). This is not surpris-
ing as, for equal parameters, the growth rate rS spends more
time taking negative values in the pulsing therapy than in the
sinusoidal therapy [compare panels Figure 6 (c) and (d)].

In addition, we also note that, at equal times after the
treatment has started, the probability of double resistance is
considerably lower in the logistic model with competition
between strains than in the other two growth models, inde-
pendently of the treatment protocol. This is due to the early
saturation of the growth of the single-resistant strains in the
CLG model, inhibiting the emergence of double-resistants.
We observe that the fraction of sensitive cells in the total
population is small at the point where the growth of single-
resistants saturates due to the effects of drugs. This is be-
cause the growth of sensitive cells is heavily suppressed by
the treatment. As a consequence, the contribution of sensi-
tive cells to the saturation of single-resistant strains is negli-
gible in the CLG model.

Interestingly, the data in Figure 7 also shows that the op-
timum treatment within our model setting, i.e., the treatment
with the lowest probability of double resistance at a given

sinusoidal therapy pulsing therapy

a b

c d

e f

EG model

LG model

CLG model

Figure 7: Probability of double resistance as function of time
for each of the three growth models for different values of ΔtB
for sinusoidal and pulsing therapies (EG exponential growth,
LG logistic growth without competition between strains, CLG
logistic growth with competition between strains). Solid lines
represent the theoretical predictions, while open circles the nu-
merical simulations. Parameters used: b0S = b0A = b0B = b0D =
1.1, d0S = d0A = d0B = d0D = 0.1, �A = �B = 10−3, n0 = 5 × 103,
kS = 104, kA = 1.1 × 104, kB = 1.2 × 104, and kD = 1.3 × 104.

time, can be different for different growth models. We de-
scribe this in the context of the sinusoidal therapy: the opti-
mum treatment in the exponential growth model is obtained
when both drugs are administered at the same time, i.e. when
ΔtB = 0 [see Figure 7 (a)]. This is not the case in the other
two growth models [see panels (c) and (e)]. In fact, for the
logistic model with competition between strains [panel (e)],
the case ΔtB = 0 turns out to be the worst treatment of the
ones shown here, as double mutants would appear earliest.
For the pulsing therapy, we observe similar behaviour. For
both logistic growth models, the optimum treatment in each
therapy is found when ΔtB = 0.5, i.e., when the drugs are
applied alternately. This result is consistent with the findings
from Peña-Miller et al. (2012) for synergistic drug therapies.

In Figure S7 of the Supplementary Material we re-plot
the data of Figure 7, but as function of ΔtB for a fixed time
T . This further illustrates that the optimum treatment is
achieved for different choices of the time lag ΔtB in the dif-
ferent growth models. Another example showing that the
optimum treatment varies across the growth models is pre-
sented in Figure S8 in the Supplementary Material for a sce-
nario with higher carrying capacities.

6. Limitations due to deterministic
approximation
The method we have presented to estimate the probabil-

ities of single and double resistance can be used for constant
and time-dependent drug concentrations in exponential and
logistic growth models. However, our approach relies on
an approximation. While we treat the emergence of single
and double mutants and the persistence or extinction of their
lineages as stochastic processes, we disregard fluctuations
in the rates with which mutants first appear. To illustrate
this, we focus on mutants of type A. They are arise from
mutations in reproduction events of sensitive cells S. The
rate with which individuals of type A emerge therefore de-
pends on the number of sensitive cells in the population. As
a consequence, the production of A in mutation events is
a stochastic process with two levels of randomness. First,
the number of sensitive cells is a random quantity. Second,
each of the sensitive cells can produce mutants of type A
with a certain probability upon reproduction, and the subse-
quent birth-death dynamics of the single-mutant cells is also
stochastic. Our approach consists of neglecting the first type
of randomness for the purposes of studying mutants of type
A. In the production rate of A we replace the actual stochas-
tic number of sensitive cells by its mean (over realisations).
We do however retain the second type of randomness, and
treat the subsequent extinction or persistence of the mutants
as a stochastic process. This is captured by the extinction
probabilities Pext,i(t, T ) in Eq. (11). In very much the same
way we treat the number ofA andB cells as deterministic for
the purposes of calculating probability of double resistance,
but retain the stochasticity of the production of double mu-
tants, and the subsequent evolution of their lineages.

This approximation works well for the estimation of the
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probability of single resistance. Single-resistant cells are
produced from sensitive cells in mutation events, and the
number of sensitive cells is large from enough from the be-
ginning to neglect fluctuations.

Double resistance on the other hand is produced from
single-resistant cells. Single-resistant cells are not present
in the population at the beginning, and their numbers will
initially be small. One would therefore expect that fluctua-
tions of the number of cells of single resistants A and B will
bemore pronounced than those of the number sensitive cells.
This may make the predictions for double resistance inaccu-
rate. In simulations we find that this tends to be the case
mostly when the first double mutant appears at long times
after the start of the dynamics. This can occur for example
when the initial number of sensitive cells, the mutation rates,
or the birth rates are small. We compare the predictions of
our calculations against simulations for such cases in Section
S6 of the Supplementary Material.

Simulations confirm that the number of the single-
resistant cells can be subject to significant fluctuations un-
der these circumstances. As a consequence, the determinis-
tic approximation in the production rates of double mutants
becomes inaccurate, and with it the approximation for the
probability of double resistance in Eq. (16). Joint effects of
the random occurrence of single-mutants, and their subse-
quent growth are a possible explanation for the fluctuations
of the number of single-resistants. Typical cases in which

The prediction for the presence single mutants appears to
be affected less by these effects. We attribute this to the fact
that single mutants arise from the sensitive strain, which is
present from the start and not generated by randommutation
events.

We note that the method we develop can be extended
to more complex situations, such as models with heteroge-
neous competition. The approach can also be generalised to
combination therapies of more than two drugs, as well as to
cases with more complex interactions between the drugs. It
may also be interesting to account for heterogeneity of the
mutation rate within the population, as this can affect resis-
tance (Alexander et al. (2017)). Given that the limitations
of our approximation can be characterised, we think that the
method we have developed can be useful for these questions,
and for other biological problems in which multiple muta-
tions occur sequentially.

7. Conclusions
Models for estimating the probability of drug resistance

have previously been largely based on exponential growth
(some exceptions are Austin and Anderson (1999); Baker
et al. (2016)). The use of exponential growth models im-
plies an assumption of infinite resources and the absence of
competition between strains. Here, we have shown that the
choice of growth model can affect the probability that resis-
tant cells emerge in when resources are limited and when
there is potential competition between strains.

To do this, we have investigated the evolution of single

and double resistance in a stochastic multi-strain model. Our
analysis focuses on three different growth laws: exponential
growth, logistic growth without competition between strains
and logistic growth with between-strain competition. We
have examined cases in which the model parameters are not
explicitly time-dependent, as well as simple time-dependent
drug therapies. We have analytically estimated the probabil-
ity of having at least one single or double-resistant cell in the
population, and we have verified these predictions in numer-
ical simulations. Our calculations require the evaluation of
a large number of integral terms in the expressions for the
probability of single and double resistance. As a by-product
of our work we have provided strategies to reduce the num-
ber of integral terms to be evaluated, allowing us to make
theoretical predictions more efficiently.

Our results show that the choice of growth model makes
a difference for the probability of double resistance, both for
abundant and limited resources—a distinction not seen for
single drug resistance. Specifically, competition can con-
siderably delay double resistance, both for constant model
parameters and for time-dependent dosing schedules. This
delay in double resistance occurs for a range of parameters
for the sensitive and single-resistant strains. Consequently,
modelling resistance with exponential growth laws may
make combination treatments appear less effective than they
are in the presence of between-strain competition. Further,
careful attention needs to be paid to competition when plan-
ning treatments with time-dependent concentrations. Our
results predict that the optimal dosing schedule for a combi-
nation treatment changes depending on the growth law used.
An accurate representation of growth is therefore critical for
infections where resource competition is strong. This is par-
ticularly relevant to long-term or chronic infections and can-
cer (Wang et al., 2003; Graham, 2008; Mideo, 2009; Hib-
bing et al., 2010; Baishya and Wakeman, 2019). The exact
way in which growth is modelled therefore requires careful
consideration in the design of drug therapies.
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