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ABSTRACT 

In proteogenomic studies, genomic and transcriptomic variants are incorporated into customized 

protein databases for the identification of proteoforms, especially proteoforms with sample-specific 

variants. Most proteogenomic research has been focused on combining genomic or transcriptomic 

data with bottom-up mass spectrometry data. In the last decade, top-down mass spectrometry has 

attracted increasing attention because of its capacity to identify various proteoforms with alterations. 

However, top-down proteogenomics, in which genomic or transcriptomic data are combined with top-

down mass spectrometry data, has not been widely adopted, and there still lack of software tools for 

top-down proteogenomic data analysis. In this paper, we introduce TopPG, a proteogenomic tool for 

identifying proteoforms with genetic alterations and alternative splicing events. Experiments on top-

down proteogenomic data of DLD-1 colorectal cancer cells showed that TopPG can confidently 

identify proteoforms with sample-specific alterations. 
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1. Introduction 

Top-down mass spectrometry (MS) has been widely used in proteoform identification and 

characterization because of its ability to sequence whole proteoforms 1. In a top-down MS experiment 

2, intact proteoforms are separated by a protein separation platform such as a liquid chromatography 

(LC) system,  and then analyzed by tandem mass spectrometry (MS/MS) to generate MS1 spectra of 

proteoforms and MS/MS spectra of proteoform fragments. Each of the mass spectra contains a list of 

peaks measuring the mass-to-charge ratios (m/z values) and abundances of proteoforms or their 

fragments 3, 4.  

Database search is the dominant method for top-down MS-based proteoform identification and 

characterization 5, 6. In this method, a query top-down MS/MS spectrum is searched against a protein 

sequence database to identify a proteoform that best explains the peaks in the spectrum. Proteoforms 

identified by top-down MS are often modified forms of protein sequences in the database. These 

proteoforms can be further characterized to localize their alterations and find their combinatorial 

alteration patterns using probabilistic models 7, 8.  

A main challenge in proteoform identification is that proteoforms contain various alterations, such 

as sequence mutations, splicing events, and post-translational modifications (PTMs) 9, 10. Intact 

proteoforms with hundreds of amino acids tend to have more alterations than short peptides analyzed 

in bottom-up MS. However, most protein databases used in proteomics studies, such as UniProt 

proteome databases, contain only reference protein sequences, not proteoforms with various 

alterations 11.  

Many computational methods have been proposed for identifying proteoforms with alterations, 

which can be divided into three categories 12. In the first approach, sequence annotations in protein 

knowledge bases or genomic or transcriptomic data are used to build an extended database that 

includes proteoforms with alterations 13. A spectrum of a proteoform A with alterations can be easily 

identified if the extended database includes the sequence of A. Even if the sequence is not included, 
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but another proteoform B that is similar to A is included, the extended database also facilitates the 

identification of the spectrum because proteoform B is a good reference sequence.   

In the second approach, an open search method is used to identify proteoforms with unexpected 

alterations, in which the mass shifts of the alterations are reported. This method has been widely used 

in bottom-up 14 and top-down MS 13, 15 data analysis. It is capable of identifying proteoforms with one 

unexpected alteration by using unmodified proteoform fragments. The main limitation of the method is 

that only one unexpected mass shift can be identified in proteoforms.  

In the third approach, spectral alignment algorithms are used to align mass spectra against protein 

sequences 16, 17, which are capable of identifying proteoforms with several unexpected alterations. 

Some alignment algorithms allow users to provide several expected PTMs 7, 15, 18, 19, making it feasible 

to identify highly modified proteoforms, such as histone proteoforms.  

Most existing tools adopt one or two of the above approaches. ProSightPC 13 uses both the 

extended database and open database search methods; TopPIC 20, TopMG 21, SPECTRUM 22 and 

MS-PathFinder 15 use the open search and spectral alignment methods 23. Because of the 

complementary strengths of the approaches, combining extended databases and the other two 

approaches can increase the sensitivity in the identification of complex proteoforms.  

Extended proteoform databases are built using protein annotations and/or proteogenomic 

methods. Building proteoform databases using annotations in protein knowledge bases, such as 

UniProt 11 and neXtprot 24, has several limitations. First, we are still at the early stage of studying 

proteoforms and lack complete annotation of proteins 7, making it impossible to build a comprehensive 

extended database using protein annotations. For example, less than 1% sequences in the Swiss-Prot 

database contain annotated PTMs 25. Second, annotated alterations in these knowledge bases are not 

sample-specific. Many annotated alterations exist in some cell types or conditions, but not the sample 

being studied.   

Proteogenomic methods utilize genome annotations and DNA/RNA sequencing data to build 

extended proteoform databases 26. While proteoform databases built with genome annotations only 

are not sample specific, sample specific proteoform sequences can be incorporated into extended 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 28, 2020. ; https://doi.org/10.1101/2020.05.27.119644doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.27.119644


   

 

   

 

database when genome sequencing or RNA-Seq data are available. For example, based on RNA-Seq 

data, a customized proteoform database can be built to include sequences with sample-specific 

genetic alterations and alternative splicing events 27, 28. Using such a database in MS data analysis 

increases proteoform identifications with genetic alterations and alternative splicing events.  

Proteogenomic methods also facilitate proteoform characterization in top-down spectral 

interpretation. Although top-down MS is capable of identifying complex proteoforms, most modified 

proteoforms are not characterized because top-down MS/MS spectra often lack enough fragment 

ions. Genomic and transcriptomic data provide additional information for identifying and characterizing 

alterations in proteoforms. If a mutation in a protein sequence is supported by both MS and 

transcriptomics data, the confidence of the identification is significantly increased 27.  

Many proteogenomic pipelines and software tools have been proposed for combining genomic or 

transcriptomic data with bottom-up MS data 29, 30. Most tools like customProDB31, MutationDB, 

MSProGene32, PGA28, and and JUMPg 33 generate sample specific databases including sequences 

with mutations and/or splice junctions from RNA-Seq data. SpliceDB 34 and Splicify 35 generate 

customized protein database with only splicing variants. SpectroGene 36 builds protein sequence 

database by six-frame translation from open reading frames in genomes. PGTools 37 utilizes 

annotations of Ensembl 38 to build various protein sequence databases with mutations and splicing 

events. Askenazi et al. developed a proteogenomic tool called PGx, which maps identified peptides 

onto their putative genomic coordinates 39.  

Only several studies have been carried out in top-down proteogenomics despite its potential to 

identify complex proteoforms with sample specific alterations. When the genomic annotation of the 

organism being studied is unavailable or incomplete, proteoform databases are generated from 

genomic data of prokaryotic organisms using six frame translation 36 or from transcriptomic data using 

de novo assembly 40. When genomic annotation is available, the annotation is utilized to align RNA-

Seq reads to the reference genome to identify genomic alterations and novel splicing junctions 40, 41. 

One pilot study of patient-derived mouse xenograft samples of human breast cancer identified 41 
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single amino acid variations and 11 novel splicing junctions using a top-down proteogenomic 

approach 41.  

In this paper, we propose TopPG, a software pipeline for combining RNA-Seq and top-down MS 

data for proteoform identification. TopPG builds sample-specific proteoform sequence databases 

using genomic alterations and splicing junctions identified by aligning RNA-Seq reads to the reference 

genome. We assessed TopPG on a top-down MS data set of DLD-1 colorectal cancer cells and 

demonstrated that TopPG increased the number of proteoform identifications and identified many 

proteoforms with sample-specific mutations and splicing events compared with reference databases 

from ENSEMBL 38.  

2. Methods 

2.1 Data sets   

An RNA-seq data set of DLD-1 colorectal cancer cells (SRR6929326) was download from the 

sequence read archive (SRA), which contain 48.8 million paired short reads (150 bp). The RNA 

sample was prepared using the Illumina TruSeq RNA Sample Preparation protocol and deeply 

sequenced with an Illumina HiSeq 3000 42. Phred quality scores (Q score) reported by FastQC 

(version 0.11.8) 43 showed that more than 90% of the short reads reached Q30 (99.9% base call 

accuracy).  

A top-down MS data set of DLD-1 cells was downloaded from the MassIVE repository 

(ftp://massive.ucsd.edu/MSV000079978/) 44. In the MS experiment, protein sample of DLD-1 cells was 

first separated into 12 fractions by a gel-eluted liquid-fraction entrapment electrophoresis (GELFrEE) 

fractionation system. Then the first 8 fractions were analyzed by reverse-phase liquid chromatography 

coupled with a 21 T FT-ICR mass spectrometer. A total of 14588 MS/MS spectra were collected. 

Details of the experiment can be found in ref. 44.  

2.2 A pipeline for building proteoform sequence databases with genomic alterations and 

alternative splicing events 

We developed a top-down proteogenomic pipeline that uses RNA-Seq data to build customized 

proteoform sequence databases. In the pipeline, RNA short reads are aligned to a reference genome 
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to identify genomic alterations and alternative splicing events, based on which two proteoform 

sequence databases are generated: one containing proteoforms with genomic alterations, and the 

other proteoforms with alternative splicing events.   

2.2.1 RNA-seq data analysis 

The GATK pipeline (version 4.1.0.0) 45 is used for the alignment of RNA-seq short reads. In the 

alignment process, short reads are aligned to the hg38 reference genome (downloaded from the 

GATK resource bundle) using the two-pass mode of STAR (version 2.7.0.c) 46, in which splicing 

junctions identified in the first round are used to guide the second round of alignment. Picard (version 

2.18.26) 47 is used to remove duplicates from the short read alignment BAM file, then sort and add 

indexes to the file. Finally, we use SplitNCigarReads from GATK to remove skipped regions in 

sequence alignment, and use the BQSR method to recalibrate base quality scores of the short reads. 

The parameter settings and commands of the tools are given the supplementary material.  

The HaploTypeCaller tool in GATK is used to call variants from short read alignment files. The 

minimum phred-scaled confidence threshold is set to 20 (the error rate is smaller than 1%); soft-

clipped bases are excluded to reduce false positives. To further optimize the sensitivity and specificity, 

VariantFiltration is employed to filter out single nucleotide variant (SNV) clusters with 3 SNVs in a 

window of 35 bases 48.    

2.2.2 Building protein sequence databases with genomic variants 

All SNVs, insertions and deletions (indels) reported by HaploTyperCaller are annotated by 

ANNOVAR 49 (version April 16, 2018). A protein sequence often contains multiple genomic variants, 

and many similar proteoform sequences with variants can be generated from the protein sequence. To 

address the problem, we follow the method proposed by Kolmogorov et al. 36 to generate short protein 

sequence segments with variants. Because most mass spectrometers can identify only proteoforms 

with a molecular mass less than 50 k Dalton (Da), we choose 600 as the length of short protein 

sequence segments. Given a transcript with n nucleotides, we split the transcript sequence into 

overlapping segments S1, S2, …, Sk with a window of length L=1800, where  𝑘 = ⌈
2𝑛

𝐿
⌉ − 1. The 
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overlapping region of two segments Si and Si+1, for 1 ≤ 𝑖 ≤ 𝑘 − 1, is 
𝐿

2
= 900. Each segment with 1800 

nucleotide bases is translated to a protein segment with 600 amino acids.      

Genomic variants (SNVs and Indels) reported by ANNOVAR are divided into two types: 

homozygous and heterozygous. For a transcript T with homozygous and heterozygous variants, we 

generate a transcript T’ with all the homozygous variants, and then split T’ into overlapping segments 

S1, S2, …, Sk with length L. If Si (1 ≤ 𝑖 ≤ 𝑘) contains j heterozygous variants, we generate j transcript 

segments from Si, each of which contains one heterozygous variant. Note that a single position in the 

human genome may have more than one heterozygous SNV and that the number of heterozygous 

SNVs may be larger than the number of SNV sites. Finally, we obtain a protein segment from each 

generated transcript segment if it contains genomic variants. If a segment Si (1 ≤ 𝑖 ≤ 𝑘) does not 

contain any variants, it is not used to obtain a protein segment. When a transcript segment has 

frameshift indels, we find the first downstream stop codon with the new frame and use the new frame 

and the stop codon to generate a protein segment.  

2.2.3 Building database with alternative splicing events 

We use the MATS (Multivariate Analysis of Transcript Splicing) tool (version 4.0.2) 50 to identify 

alternative splicing events from RNA-seq data. MATS reports 5 different splicing events: exon 

skipping, mutually exclusive exons, alternative 3’ splice sites, alternative 5’ splice sites, and intron 

retention, in which exon skipping events are the most common form (~30%) 51. Here we generate only 

proteoforms with exon skipping events. An exon splicing event involves three exons: the upstream 

exon, the downstream exon and the cassette (skipped) exon, and results in two transcript forms: the 

inclusive form includes the cassette exon, and the exclusive form does not. If a transcript in genome 

annotation contains the upstream and downstream exons (with or without the cassette exon) of an 

exon splicing event, then the transcript is matched to the event. We search each exon skipping event 

against the GENCODE hg38 basic annotation to find all matched transcripts and then generate an 

inclusive form for each exclusive form transcript matched to the event and vice versa. Both the 
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transcript in the hg38 basic annotation and the one generated with the alterative splicing events are 

added to the customized proteoform database after duplications are removed. 

 

2.2.4 Proteoform identification 

The raw files of the DLD-1 MS data were centroided and converted into mzML files using  

msconvert in ProteoWizard 52, and further deconvoluted into msalign files containing monoisotopic 

masses of fragment and precursor ions using TopFD (version 1.3.1). The deconvoluted spectra were 

searched against protein databases using TopPIC (version 1.3.1) 20. In database search, a shuffled 

decoy database with the same size was concatenated with the target database. The error tolerances 

for precursor and fragment masses were set to 15 parts-per-million (ppm). Identifications of 

proteoform-spectrum-matches (PrSMs) were filtered using a 1% spectrum-level false discovery rate 

(FDR). Identified proteoforms were treated as the same if their spectra were generated from the same 

LC-MS feature reported by TopFD or they were from the same protein and had similar precursor 

masses (within an error tolerance of 2.2 Dalton). Using the method, identified PrSMs were grouped 

into clusters, each of which corresponds to a proteoform. Then the identifications of proteoforms and 

proteins were filtered using a 1% proteoform-level FDR.  

3. Results 

3.1 Comparison of protein reference databases 

Three human proteome databases were compared for proteoform identification by database 

search. The first two databases were generated using the basic and comprehensive annotations of 

GENCODE (version 28) 53 and are referred to as the BASIC (57089 entries) and COMP (97713 

entries) databases, respectively. All sequences in BASIC are included in COMP. The third one is 

referred to as the SWISS (19236 entries) database, which is a subset of BASIC containing only 

proteoforms matched to entries in the Swiss-Prot human proteome database (20380 entries, March 

2019).   
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We searched the spectra in the DLD-1 top-down MS data against the three proteoform reference 

databases separately using TopPIC (see Methods). With a 1% spectrum-level FDR, TopPIC identified 

3857, 3590, and 3535 PrSMs from the SWISS, BASIC, and COMP databases, respectively (Fig. 1a). 

We identified more proteoforms and proteins with the SWISS database than the other two. The main 

reason is that the increase of the database size introduces many decoy identifications in the target-

decoy approach and increases the Q-values of identifications in BASIC and COMP. Because of this, 

some identifications in the BASIC and COMP database search were filtered out. In addition, the 

BASIC and COMP database searches identified some proteoforms not included in the SWISS 

database (Fig. 1b).  

3.2 Sample specific databases with genomic alterations 

The RNA-Seq data of DLD-1 cells were analyzed by the GATK pipeline for short read alignment 

and SNV calling (see Methods). ANNOVAR 49 reported 18133 genomic variants with the basic 

annotation of GENCODE (version May-06-2018), including 9283 nonsynonymous SNVs, 503 

frameshift indels and 152 non-frameshift indels. The nonsynonymous SNVs were mapped to 5420 

genes and 14135 transcripts. Of the 14135 transcripts, 36 were not located on the protein-coding 

region and the others were matched to 5014 and 14099 proteoform sequences in the SWISS and 

BASIC databases, respectively. The 5014 proteoforms in the SWISS database covered 93% of the 

5420 genes with nonsynonymous SNVs. The frameshift indels and non-frameshift indels were also 

used to generate proteoform sequences with alterations. Using the basic annotation of GENCODE, 

the indels were mapped to 605 genes and 1553 transcripts, of which 1391 transcripts contained only 1 

indel. We used the matched SWISS proteoform sequences to generated a database SWISS-M with 

11461 entries: 2633 with homozygous variants only, 6358 with heterozygous variants only, 2470 with 

both homozygous and heterozygous variants, and used the matched BASIC proteoform sequences to 

generate a database BASIC-M with 31010 entries: 6840 with homozygous variants only, 17908 with 

heterozygous variants only, and 6262 with both homozygous and heterozygous variants. Each 

proteoform sequence in SWISS-M and BASIC-M contained at least one sample-specific genomic 

variation.   
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ANNOVAR reported 18682 genomic variants with the comprehensive annotation of GENCODE 

(9576 nonsynonymous SNVs, 526 frameshift indels, and 154 non-frameshift indels). The 

nonsynonymous SNVs were mapped to 17983 transcripts of 5549 genes. Similarly, the 

nonsynonymous SNVs, frameshift, and non-frameshift indels were used to generate a customized 

database COMP-M with 34276 entries: 7595 with homozygous variants only, 20081 with heterozygous 

variants only, and 6600 with both homozygous and heterozygous variants.  

With a 1% spectrum-level FDR, TopPIC identified 242, 325, and 290 proteoforms from the SWISS-

M, BASIC-M, and COMP-M databases, respectively (Fig. 2a). The numbers of identifications were 

similar for the three databases, and BASIC-M achieved the largest number of identifications. All the 

identified spectra were matched to database proteoform sequences generated for SNVs, and no 

identified spectra were matched those for indels. To get the SNV sites covered by the identified 

proteoforms, we mapped the proteoforms to their corresponding RNA transcript segments and 

checked whether the transcript segments contain SNV sites. Of the 242 proteoforms identified by 

SWISS-M, 211 covered 59 SNV sites (some SNV sites were covered by more than one proteoform) 

and 31 did not cover any SNV sites (Fig. 2c).  We further manually inspected the PrSMs covering the 

59 SNV sites and found that 42 SNVs were confidently identified. The other 17 SNV sites were not 

validated because they were covered by proteoforms containing unexpected mass shifts near the SNV 

sites. Similarly, we manually validated 64 and 61 SNV sites identified from BASIC-M and COMP-M, 

respectively.   

The comparison of the three databases on the numbers of identified proteoforms, proteins, and SNV 

sites is summarized in Fig. 2. COMP-M and BASIC-M identified similarly numbers of proteoforms and 

SNVs sites because they have similar database sizes. The reason that SWISS-M identified less SNV 

sites than the other two databases may be that SWISS-M included less proteoforms in the MS data 

compared with the other two databases. All the validated SNVs reported by COMP-M were identified 

by SWISS-M or BASIC-M. In practice, we can combine the search results from the three databases to 

increase the number of identified SNVs. 
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3.3 Sample specific database with three-step pipeline 

We used BASIC and BASIC-M to identify sample specific proteoforms from the DLD-1 MS data 

with a three-step pipeline (Fig. 3). In the first two steps, we searched the spectra against BASIC and 

BASIC-M sequentially, in which no mass shifts were allowed. The objective of the two steps was to 

identify proteoforms without unexpected mass shifts. In the third step, the two databases were 

concatenated, and DLD-1 spectra were searched against the concatenated database to identify 

proteoforms in which one unexpected mass shift was allowed in an identified proteoform. Spectra 

identified in the first step were excluded from the database searches in the next two steps. Similarly, 

spectra identified in the second step were excluded from the analysis of the third step. 

BASIC-M proteoform identifications covered 27 SNV sites in the second step and 24 SNV sites in 

the third-step pipeline (Fig. 4). 9 SNV sites were reported in both the second and third steps, so a total 

of 42 SNV sites were covered by BASIC-M proteoforms. After manual inspection, we removed 7 sites 

that were not confidently identified. Of the remaining 35 sites, 17 were covered by BASIC-M 

proteoform identifications only and 18 (10 from the second step and 8 from the third step) were cover 

by both BASIC and BASIC-M proteoform identifications. The 18 sites covered by both BASIC and 

BASIC-M proteoforms were all heterozygous.   

3.4  Proteoform identifications with splicing events 

MATS 50 reported 22774 exon skipping events in the DLD-1 RNA-Seq data. We generated a 

proteoform databases with 32357 entries, referred to as ES, based on the BASIC annotation of 

GENCODE. (See Methods.) The top-down mass spectra of DLD-1 cells were searched against the ES 

database using TopPIC with two steps. First, we searched the MS data against the ES database 

without unexpected mass shifts and removed identified spectra from the data. Second, we searched 

the remaining spectra against the ES database in which one unexpected mass shift was allowed in a 

proteoform.   

In the first step, we identified 96 PrSMs and 36 proteoforms from the ES database, of which 24 

proteoforms covered 24 splicing events. After manual inspection, we kept 14 inclusive forms and 10 

exclusive forms of exon skipping events that were confidently identified. There were no exon skipping 
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events with both inclusive form and exclusive form identifications. In the second step, we identified 

219 PrSMs and 94 proteoforms from the database, of which 27 proteoforms covered 28 exon skipping 

events. Similarly, we manually validated 24 inclusive forms and 4 exclusive forms of exon skipping 

events that were confidently identified. We found 2 exon-skipping events of which both inclusive forms 

and exclusive forms were identified. A total of 8 exon-skipping events are covered by two or more 

proteoforms. In addition, some identified proteoforms cover more than one splicing event. 

For each of the inclusive or exclusive form identifications, we computed the RNA expression level 

of the gene and the percentage of the expressed transcript isoforms containing the exon, called the 

percent spliced in index (PSI) value, from the DLD-1 RNA-Seq data. The Reads Per Kilobase per 

Million mapped reads (RPKMs) of genes after logarithm transformation were used as their RNA 

expression levels. Most of the inclusive form identifications have a high PSI value close to 1.0, and 

most of the exclusive form identifications have a low PSI value close to 0 (Fig. 5). The splicing events 

with both inclusive and exclusive forms have a PSI value close to 0.5, showing that the identifications 

are consistent with the PSI values of the splicing events on the transcript level. In addition, most of the 

proteoform identifications have a high expression level at the transcript level, demonstrating that top-

down MS tends to identify only highly expressed proteoforms.   

4. Discussion and conclusions   

      In this study, we proposed a new proteogenomics tool TopPG, which is capable of identifying 

proteoforms with genomic alterations and alternative splicing events. TopPG builds two types of 

customized proteoform sequence databases from RNA-Seq data: one for proteoforms with 

nonsynonymous SNVs, non-frameshift and frameshift indels, the other with exon skipping events. The 

experiments on the DLD-1 data set demonstrated that databases generated by TopPG facilitated the 

identification and characterization of sample specific genomic alterations and exon splicing events. In 

addition, the analysis of exon skipping events showed that their percent spliced in levels were 

consistent in the transcript and proteoform levels.     

Top-down proteogenomics still has many limitations in practice. One limitation is the low 

proteoform coverage of top-down MS in proteome-level studies. A single shot top-down MS 
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experiment usually identifies only hundreds of proteins, which is a small fraction of genes identified in 

the transcript level. As a result, only a small number of SNVs and other alterations can be identified by 

top-down MS.    

Another limitation is that some proteoforms with genomic and/or transcriptomic alterations cannot 

be fully characterized.  Manual inspection of the proteoforms identified from the DLD-1 MS data 

showed that many SNV sites are close to other unknown alterations in identified proteoforms and that 

the SNV sites cannot be confidently identified because the spectra lack enough fragment ions to 

characterize them. Similarly, many exon skipping events cannot be confidently identified because the 

spectra lack enough fragment ions to distinguish between the inclusive and the exclusive forms. 

Increasing proteoform sequence coverage is essential to identifying sample-specific genomics and 

transcriptomic alteration.    
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Figure 1. Comparison of the three protein databases SWISS, BASIC, and COMP on proteoform 

identification using the DLD-1 MS data set. (a) The numbers of identified PrSMs, proteoforms, and 

proteins. (b) Venn diagram showing the overlaps of the proteoforms identified from the three 

databases. 
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Figure 2. Comparison of the three protein databases SWISS-M, BASIC-M, and COMP-M on 

proteoform identification using the DLD-1 top-down MS data set: (a) identified proteoforms, (b) 

identified proteins, and (3) identified mutation sites.  
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Figure 3. A three-step pipeline for identifying PrSMs from the mass spectra in the DLD-1 data set. In 

the first two steps, we searched the mass spectra against BASIC and BASIC-M sequentially, in which 

no mass shifts are allowed. In the third step, the remaining spectra are searched against the 

concatenated database of BASIC+BASIC-M to identify proteoforms in which one unexpected mass 

shift is allowed in an identified proteoform. 
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Figure 4. The numbers of identified mutation sites from the DLD-1 data set using a three-step data 

analysis pipeline. (a) The numbers of mutation sites identified in the first two steps with BASIC and 

BASIC-M proteoform sequences. (b) the numbers of mutation sites identified in the third step with 

BASIC and BASIC-M proteoform sequences.  
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Figure 5. The gene expression levels and PSI values of the splicing events in the DLD-1 data set. 

The splicing events with proteoform identifications are labeled. (a) Splicing events labeled with 

proteoform identifications without mass shifts. (b) Splicing events labeled by proteoform 

identifications with one mass shift.  

 

 

 

a

b

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 28, 2020. ; https://doi.org/10.1101/2020.05.27.119644doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.27.119644

